next up previous
Next: Interpretation of the result Up: master Previous: Perturbations in the pericenter

Secular precession of pericenter

Now we compute the orbital average of perturbations, i.e., the orbital average of $\dot{{\bf L}}$ which will give its secular perturbations. The derivative of the first component ($L_1$), from (29) is

\begin{displaymath}
\dot{L_1} = -\frac{3\epsilon\mu A}{r^5}y
\end{displaymath}

The real work is to compute the orbital average

\begin{displaymath}
\frac{1}{2\pi}\int_{0}^{2\pi} \frac{y}{r^5} \' dM,
\end{displaymath}

where $M$ is mean anomaly. But since the semi-major axis of the ellipse was aligned with the x-axis, parts of the integral with $y>0$ and $y<0$ will cancel each other, yielding zero for the integral. Therefore,

\begin{displaymath}
\dot{L_1} = 0
\end{displaymath}

We have to do actual computation for $\dot{L_2}$, i.e., we need

\begin{displaymath}
\frac{1}{2\pi}\int_{0}^{2\pi} \frac{x}{r^5} \rd M,
\end{displaymath}

We change the variable of integration from $M$ to $E$ (eccentric anomaly). Both change from $0$ to $2\pi$ for a full orbit. We have Kepler's equation

\begin{displaymath}
M = E - e \sin E
\end{displaymath}

which gives

\begin{displaymath}
\,d M = \,d E -e \cos E \,d E = (1-e\cos E)\,d E
\end{displaymath}

We also have

\begin{displaymath}
x = a(\cos E - e), \;\;\; r = a(1-e \cos E)
\end{displaymath}

Then

\begin{displaymath}
\frac{1}{2\pi}\int_{0}^{2\pi} \frac{x}{r^5} \,d M =
\frac{...
...i a^4}\int_{0}^{2\pi} \frac{\cos E - e}{(1-e \cos
E)^4}\,d E
\end{displaymath}

This integral can be computed analytically. In principle, we can compute $\dot{L_2}$ for any value of $e$. This computation will be left as an exercise.

We, however, take the easy road and use an expansion in the eccentricity $e$. The Taylor series gives us

\begin{displaymath}
\frac{1}{(1-e\cos E)^4} = 1 + 4 e \cos E + O(e^2).
\end{displaymath}

Therefore we have

\begin{displaymath}
\frac{\cos E - e}{(1-e \cos E)^4} \approx (\cos E -e )(1+4 e \cos
E) = \cos E -e + 4 e \cos^2 E - O(e^2).
\end{displaymath}

From Trigonometry we recall that

\begin{displaymath}
\cos^2 E = \frac{1}{2}(\cos 2 E + 1),
\end{displaymath}

and we get

\begin{displaymath}
\cos E -e + 4 e \cos^2 E = \cos E -e + 2 e \cos 2 E + 2 e.
\end{displaymath}

Substituing this in the integral we get

\begin{displaymath}
\frac{1}{2\pi a^4}\int_{0}^{2\pi} \frac{\cos E - e}{(1-e \c...
...\cos E -e + 2
e \cos 2 E + 2 e \right)\,d E = \frac{e}{a^4}.
\end{displaymath}

With this, we have

\begin{displaymath}
\dot{L_2} = \frac{3\epsilon\mu A}{a^4} e,
\end{displaymath}

where we (somewhat sloppily) replaced the $\approx$ with $=$.



Subsections
next up previous
Next: Interpretation of the result Up: master Previous: Perturbations in the pericenter
Werner Horn 2006-06-06