Related Links

 

Keck Center for Computational Material Science

 

PREM

 

Center for Supramolecular Studies

 

San Fernando Solar Observatory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Faculty Research

Independent research provides an excellent opportunity for students to explore an active research field, and even make original contributions to physics. All physics majors are encouraged to talk to CSUN faculty about pursuing independent research in their labs.

 

Visit our faculty research websites bellow to learn more.

 

Experimental Nanoscience

Professor Postma

The Postma group conducts interdisciplinary research in nanoscience and nanotechnology. We are interested in the properties of materials with intrinsic nanoscale dimensions, such as carbon nanotubes, graphene, nanowires, and DNA. Their small dimensions give rise to interesting effects, such as quantum confinement, and we utilize these for novel applications in computation, sensing, and information storage.


Postma group website

Experimental Biophysics

Professor Ranganathan & Peric

A state-of-the-art Electron Paramagnetic Resonance (EPR) spectroscopy is combined with the optical technique of Time Resolved Fluorescence Quenching (TRFQ) to investigate certain properties of materials with applications in biology, chemistry and physics.


Ranganathan group website
Peric group website

Solar Astronomy

Professor Chapman & Choudhary

The Department operates the San Fernando Observatory to carry out solar research in which students are involved. The main research goals are (1) the study of magnetic fields and their relation to sunspots and other forms of solar activity, and (2) the study of variations in the output of solar energy and its relation to measurements made in space by spacecrafts observing the Sun.


Choudary group website
Chapman group website

Theoretical Condensed Matter Physics

Professor Beloborodov & Sheng

Dr. Igor Beloborodov's interests are in the area of theoretical condensed matter physics. In particular, he is interested in the properties of granular electronic systems, nanoscale superconductors and magnets, quantum nanodevices, nanogranular thermoelectrics, spin-based electronics, and strongly correlated electron systems.

Dr. Donna Sheng's research in condensed matter theory involves the Critical behavior in quantum phase transitions in low dimensions, including quantum Hall effect (QHE) systems, spin-orbit coupling systems, random-magnetic-field systems, and the recently experimentally observed metal-insulator transition at zero magnetic field (B=0) in 2D electron systems; (2) Strongly-correlated electron systems, theoretical study of new kind of ordering and Matter of states.


Beloborodov group website
Sheng group website

Computational Materials Science

Professor Kioussis & Lu

The Computational Materials Research Center is housed in the Keck Laboratory. The center operates state-of-the-art computers to calculate intrinsic properties of materials from basic principles. These include mechanical, optical, magnetic, surface properties, and catalysis. Students who get involved with the center get to use sophisticated computers and learn a variety of issues of interest to the field of materials science. Advanced scientific programming, data analysis, and visualization are among several techniques employed at the center. Capabilities exist to help experimental scientists and industrial engineers understand the origin of different materials properties and to design new materials using only computers.


Kioussis group website

Theoretical Astronomy

Professor Cadavid

The theoretical group associated with the San Fernando Observatory studies the turbulent processes in the solar atmosphere and the effects of the solar energy variability on the climate of our planet earth. Students have the opportunity to learn analytical and numerical methods and techniques commonly used in analyzing nonlinear dynamical systems and stochastic processes.


Adaptive Optics

Professor Ren

We are developing a Universal Adaptive Optics (AO) for solar telescope. Compared with other solar AO systems, our system will be able to deliver extremely high Strehl Ratio (i.e. extremely high correction). The well-corrected solar images will be critical for high-sensitivity solar magnetic field investigation, since scattered light induced by the atmosphere turbulence is dramatically reduced; We are also developing solar Multi-Conjugate AO (MCAO) system, which uses several deformable mirrors to correct the atmosphere turbulence in different altitudes so that a large and uniform corrected field of view is available. Because of the complex of the MCAO system, currently no any MCAO system is available on an astronomical site.


Ren group website

Computational Biophysics

Professor Shiferaw

Dr Shiferaw is interested in the application of nonlinear dynamics and pattern formation to problems in biology. Much of my work revolves around the application of these methods to understand the dynamics that underlies abnormal cardiac rhythms which precede a heart attack. This work involves a wide range of scales ranging from the ion channels that regulate the electrical activity in heart cells, to the dynamics of spiral waves in the whole heart.


Shiferaw group website

Observational Astronomy

Professor Christian

Dr. Christian's is a observational stellar and solar astronomer. He is currently working on high cadence, multi-band imaging of the solar atmosphere, measuring abundance trends in extra-solar planet host stars, and optical properties of active cool stars. Dr. Christian is involved with a new high time resolution multi-camera system developed by Queen's University Belfast called ROSA - Rapid Oscillations in the Solar Atmosphere. ROSA was recently commissioned at the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, and can obtain over 30 fps in multiple wave-bands to study energy transport in the solar photosphere and chromosphere. Dr. Christian is also continuing work he started with the SuperWASP project's search for planets around other stars (www.superwasp.org) and is investigating abundance trends in planet's host stars that may provide clues into planet formation and evolution.