
NATIONAL SCIENCE FOUNDATION
RESEARCH EXPERIENCE FOR UNDERGRADUATES INSTITUTE

UNIVERSIDADE ESTADUAL DE CAMPINAS – UNICAMP

CAMPINAS, BRAZIL, JULY/2004

REPORT ON THE PROJECT:

SYMMETRY BREAKING IN THE MINIMIZATION OF THE

FUNDAMENTAL FREQUENCY OF PERIODIC COMPOSITE

MEMBRANES

Participants:

Welington Vieira Assunção – Universidade Estadual Paulista, Rio Claro, SP, Brazil
Anne Carolina Bronzi – Universidade Estadual de Campinas, Campinas, SP, Brazil
Lyubov Chumakova – University of Wisconsin, Madison, WI, USA

Supervisor: Renato H. L. Pedrosa – Universidade Estadual de Campinas, Campinas, SP,
Brazil

Abstract. It is shown that configurations with minimal first eigenvalue for the 1–periodic
composite membrane in R

2 (the membrane is a strip Ω = R × [0, 1]) are not necessarily the
ones invariant under x–translations, for given basic data, if the period is taken sufficiently
large.

1. Introduction

The study of vibrating membranes is a classical subject in mathematical physics, and is
at the origin of many important developments in the theory of partial differential equations.
We recall that the wave equation in two space variables is

(1)
∂2f

∂t2
= ∆f,

where f(x, y, t) depends on the position (x, y) ∈ R
2 and on t ∈ R, which is thought of as

the time variable. The Laplacian ∆ is the operator ∂2/∂x2 + ∂2/∂y2, which acts only on the
space variables.

A vibrating membrane with homogeneous density distribution is described mathematically
by this equation, usually with its rest shape given by a domain Ω ⊂ R

2 (open with sufficiently
regular boundary ∂Ω), with some initial and boundary conditions given beforehand. The
shape of the membrane at each instant is given by the graph of f over Ω. The basic reference
for this problem is the book by Courant and Hilbert [2].

Following the original idea of Fourier, one tries to find solutions of the form

f(x, y, t) = u(x, y)v(t),
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(called separation of variables) and it follows that direct substitution into (1) gives that
nontrivial solutions must satisfy (at non–zero points)

∆u

u
=
v′′

v
.

But since the left–hand side depends only on x and y and the right–hand one only on t, they
must be constant. This gives rise to the eigenvalue problem for the Laplacian,

−∆u = λu in Ω,

where the minus sign is introduced so that the possible λ’s become non–negative in some
important cases (see below).

Usually one also has a boundary condition coming from the original problem. We will
consider the case where the membrane is fixed along ∂Ω, i.e. f(x, y, t) = 0 for all (x, y) ∈ ∂Ω
and all t ∈ R. This gives rise to the same condition for u, called the Dirichlet boundary
condition. Thus, one is bound to study the possible solutions of the PDE problem

{

−∆u = λu in Ω
u = 0 in ∂Ω

.

In analogy to the linear algebra concepts, a nontrivial u satisfyng such conditions will be
called an eigenfunction of the Laplacian and the associated real number λ an eigenvalue.

Given two continuous functions φ, ψ in Ω which go to zero at its boundary, their L2–inner
product is given by

〈φ, ψ〉 =

∫

Ω

φψ dxdy.

One then has the classical

Theorem 1 (Spectral Theorem for the Laplacian with Dirichlet boundary condition). There
is an unbounded discrete set of (positive) eigenvalues

(0 <)λ1 < λ2 ≤ λ3 ≤ . . .

and associated set of eigenfunctions ui, which may be taken mutually orthogonal and with
norm equal to 1, with respect to the L2–inner product in Ω, which is complete in the sense
that any (smooth) function v : Ω → R such that v = 0 at ∂Ω may be written as the (Fourier)
series

v =
∞

∑

i=1

〈v, ui〉ui.

Remark . In the case of one space variable, i.e., of a vibrating string, the ui’s are given by sine
functions, the original Fourier series situation.

The (orthonormal) system of eigenfunctions plays the usual role of an orhonormal basis
in finite dimensional linear algebra, when we use orthogonal projection to write a vector in
that basis (in that case one has a finite sum of projected vectors). It is also called a Hilbert
basis for the space of functions in Ω (with Dirichlet boundary condition).

The numbers λi are related to the squares of the frequency of the basic solutions (called
harmonics) for the vibrating membrane. For thas reason, λ1, the first eigenvalue, is also
called the fundamental frequency or pitch of the membrane.

Lord Rayleigh, in the book The Theory of Sound ([9]), studied the values of λ1 as a
function of Ω, once the area of Ω is fixed. He observed that λ1 for the round disk D(r) =
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{(x, y) ∈ R
2 : x2 + y2 < r2} of radius r had, among all domains for which he could calculate

λ1 explicitly, the least value possible. He conjectured that as a property characterizing the
round disk. It is worth quoting his exact phrasing of the problem (op. cit., Vol. 1, p. 339):

We have seen that the gravest tone of a membrane, whose boundary is approxi-
mately circular, is nearly the same as that of a mechanically similar membrane
in the form of a circle of the same mean radius or area. If the area of a mem-
brane be given, there must evidently be some form of the boundary for which
the pitch (of the principal tone) is the gravest possible, and this can be no other
than the circle.

This was proved to be true in the mid 1920’s by Faber and Krahn, independently, now
known as the Faber–Krahn inequality:

Theorem 2 (Faber–Krahn inequality). For all domains Ω ⊂ R
2 of a given area A > 0, one

has

λ1(Ω) ≥ λ1(D(r)),

where r is such that πr2 = A, and if equality occurs, Ω must be a round disk (maybe centered
at some other point).

The result is also true for higher dimensions, with D(r) substituted by the round ball of the
given volume.

The spectral theory in Theorem 1 extends in the same form to the case where the mass
density of the membrane is a variable (positive) function ρ(x, y). Then, the eigenvalue
problem becomes

{

−∆u = λ ρ u in Ω
u = 0 in ∂Ω

.

Now, Lord Rayleigh’s variational problem for the first eigenvalue acquires a different form.
One considers Ω given, then, assuming that the density is bounded between two values, i.e.,
0 < ρ1 ≤ ρ ≤ ρ2 <∞, one fixes the total mass

M =

∫

Ω

ρ dxdy,

and asks which mass distribution ρ satisfying these conditions gives the least λ1 possible.
The result is a bit surprising, since ρ becomes discontinuous. Let χA be the characteristic
function of A ⊂ Ω, i.e.,

χA(x, y) =

{

1 if (x, y) ∈ A
0 if (x, y) ∈ Ac(= Ω \ A)

,

Theorem 3. The distribution function ρ which minimizes λ1 is given by

ρ = ρ1χD + ρ2χDc,

where D is a (closed) subset of Ω. More over, if u the first eigenfunction associated to λ1

for this configuration, D is a sublevel set of u, i.e.,

D = {(x, y) ∈ Ω : u(x, y) ≤ c},

for some c > 0.
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This result was proved for the 1–dimensional case by Krein ([7]) and for general n by
Chanillo et al ([1]).

We observe that the condition of fixed total mass becomes a condition on the area of D,
since

M =

∫

Ω

ρ dxdy = ρ1|D| + ρ2|D
c| = ρ1|D| + ρ2(|Ω| − |D|),

where | · | is the area of a set, implies that

|D| =
ρ2|Ω| −M

ρ2 − ρ1

,

and Ω, ρ1, ρ2 and M are given.
The resulting (optimal) membrane is what is called a composite membrane: it is made of

two materials, distinguished by their mass density distributions. So, it is possible to turn this
situation around, and study vibrating membranes having this type of ditribution of mass.

One chooses Ω and D ⊂ Ω, assumes D has mass density distribution ρ1, its complement
in Ω has mass density distribution ρ2, then arrives at the following Dirichlet boundary
eigenvalue problem:

(∗)α,D

{

−∆u + αχDu = λu in Ω
u = 0 in ∂Ω

,

where α > 0 is a constant which depends on ρ1, ρ2 and the area of D (or the total mass).
We will consider the variational problem for the first eigenvalue of this problem.

2. The variational problem for the first eigenvalue of a composite
membrane

First of all, again there is a spectral theorem as Theorem 1 for problem (∗)α,D, resulting in a
sequence (0 <)λ1 < λ2 ≤ . . . of eigenvalues, with associated (normalized) eigenfunctions ui.
But observe that ui cannot be C2, since the ∆u is not continuous (just move the term αχDu
to the right in the above equation). This is an interesting feature of this problem, unlike
most elliptic problems, where, usually, solutions tend to be very regular (mostly, analytic).
Also, the first eigenfunction (u1, associated to λ1) cannot change sign, by a general result for
such problems (maximum principle), and we will consider the positive normalized one (just
change its sign if necessary).

We can now introduce the variational problem for λ(D) = λΩ,α(D), which is the way
we will denote the first eigenvalue for the problem (∗)α,D stated at the end of the previous
section, depending on D.

Variational problem for λΩ,α(D): fix Ω and α > 0. For each δ ∈ (0, 1), minimize λΩ(α,D)
among all D ⊂ Ω such that |D| = δ|Ω|.

Choosing δ ∈ (0, 1) is the same as choosing the area of D, so we are, in fact, minimizing
λΩ,α(D) among all subsets of Ω with some fixed area. We will also mention the first normal-
ized (positive) eigenfunction u = u1 and call the pair (u,D) an optimal pair for the above
problem and (Ω, D) an optimal α–composite membrane for the volume δ|Ω| in Ω.

Before stating some basic properties of solutions, it is important to remark that minimizers
for this problem and for the original problem for the variable distribution problem are the
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same, by a result of [1]. There are many relevant known results about a minimizing pair
(u,D). We include some of them here (the basic reference is the [1], but see also [7, 4, 3]):

(1) Existence and regularity : for any α > 0 and δ ∈ [0, 1] there exists an optimal
pair (u,D) for α, δ in Ω. Moreover, it satisfies:
(a) u ∈ C1,σ(Ω) ∩H2(Ω) ∩ Cγ(Ω) for some γ > 0 and every σ < 1;
(b) D is a sublevel of u, i.e. there is a c ≥ 0 such that D = {u ≤ c};

(2) Symmetry with convexity : if Ω is symmetric and convex with respect to a line l,
then an optimal pair (u,D) is symmetric and Dc is convex with respect to L. (Ω is
convex with respect to a line L if the intersection of Ω with every line l perpendicular
to L is an interval in l.) Special case: if Ω is a round disk, solutions are circularly
symmetric (D is an annulus attached to the boundary of the disk).

(3) Symmetry breaking for 2–dim’l annuli : let

Ω = {x ∈ R
2 : a < ‖x‖ < a + 1}.

For any α, δ > 0 there is a constant aα,δ > 0, depending only on α and δ, such that,
if a ≥ aα,δ, minimizers D, with |D|/|Ω| = δ, are not circular (see Figure 1).

Figure 1. 2–dimensional annulus: symmetric D and test domain D̃

Remarks . (1) Properties 1. and 2. are valid for R
n, all n (cf. [1]). The symmetry–breaking

for 2–dimensional annuli is also from [1]. For higher dimensional annuli see [8].
(2) Numerical examples showing the symmetry–breaking phenomenon for 2–dimensional annuli

may be found in [1].

3. Symmetry–breaking of optimal 2–dimensional periodic composite
membranes

The purpose of this project is to study symmetry properties of optimal composite mem-
branes in a 2–dimensional strip

Ωa,b = {(x, y) ∈ R
2 : a < y < b},
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where a < b are real numbers, but restricted to periodic configurations only (in the x
direction). In other words, all the eigenfunctions and D considered will be taken of some
given period T in the x variable. Since the width b − a is arbitrary, we fix it at 1 and take
a = 0, b = 1 (see below, after the statement of Theorem 4, on the dependence of the result
on the width value).

Even though Ω is not bounded, once one fixes the period T , it is possible to consider the
piece of right cylinder

x2 + (z −R)2 = R2, 0 < y < 1, where R =
T

2π
,

as our domain Ω (an open subset of the cylinder x2 + (z −R)2 = R2 in R
3) (see the Figure

2 below).
The development the whole theory of periodic composite membranes is beyond the objec-

tives and scope of the project, but we observe that all the general properties of minimizer
given for the bounded case, 1. (existence and regularity) and 2. (symmetry in convex case),
should also hold in this case. Property 2. implies symmetries with respect to a segment
given x = x0 and with respect to the line y = 1/2, with similar proofs. We will concentrate
in proving an anologous result to the symmetry–breaking property 3. above, which we state
now.

In this case the total area of Ω should be thought of as that of one period, i.e., the area
of the piece of the cylinder as above, given by |Ω| = T = 2πR.

The result we will prove is the following:

Theorem 4. For each α > 0 and δ ∈ (0, 1), there is a constant Tα,δ > 0, depending only on
α and δ, such that, if T ≥ Tα,δ, a minimizing D in Ω with area |D| = δ|Ω| is not invariant
under x–translations (or, equivalently, is not invariant under rotations of the cylinder).

Remark . If one vary the width of the strip, the constant will also depend on it, but it will be clear
that it only introduces a correction. The result is essentially the same, and putting it equal to 1
eliminates carrying this correction around.

4. Proof of Theorem 4

The proof is inspired by the one in [1] for the 2–dimensional annulus. Let

Ω = {(x, y) ∈ R
2 : y ∈ (0, 1)}.

Instead of working on Ω with periodic data and functions, we will fix T > 0 and let ΩT be
the fundamental domain

ΩT = {(x, y) ∈ R2 : x ∈ [0, T ], y ∈ (0, 1)},

and consider data and functions which coincide at x = 0 and x = T .
A D ⊂ ΩT which is x–independent (i.e., for which the periodic extension in the x direction

is invariant under x–translations) may be written in the form

D = {(x, y) ∈ ΩT : y ∈ D1 ⊂ (0, 1)}.

Observe that the relevant boundary of ΩT will be only the segments y = 0 and y = 1. The
segments x = 0 and x = T are thought of, in fact, as interior points.
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Now let u be the first eigenfunction for D, with eigenvalue σ, for the composite membrane
problem:

(∗)







−∆u + αχDu = σu on ΩT

u(x, 0) = u(x, 1) = 0
u(0, y) = u(T, y)

.

For T sufficiently large (depending on α and δ = |D|/|Ω|) we will construct a comparison
domain D̃ and a function ũ which satisfy

∫

ΩT

|∇ũ|2 + α
∫

ΩT

χD̃ũ
2

∫

ΩT

ũ2
< σ.(2)

This shows that D is not an optimal configuration and hence implies the theorem.
In order to construct D̃ and ũ, first pick N = N(δ) with

δ < 1 −
1

2N

and consider the piece of ΩT given by

EN = ΩT ∩ {(x, y) : 0 ≤ x ≤ T/2N}.

Then let ũ be the first Dirichlet eigenfunction of the Laplacian on EN ,

−∆ũ = λ1(EN) on EN ,(3)

ũ = 0 on ∂EN

extended to zero on Ω \ EN , and λ(EN) be the first eigenvalue.
Let D̃ be any (closed) subset of Ω \ EN with |D̃| = |D|. This is possible since |D|/|Ω| =

δ < 1 − 1/2N = |Ω \ EN |/|Ω| (see Figure 2).

Figure 2. Periodic case: symmetric D and test domain D̃

Note that since supp ũ ∩ D̃ = ∅, we have
∫

ΩT

|∇ũ|2 + α
∫

ΩT

χD̃ũ
2

∫

ΩT

ũ2
=

∫

EN

|∇ũ|2
∫

EN

ũ2
= λ1(EN ),
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so (2) is equivalent to

(4) λ1(EN) < σ.

In order to prove this, we need to introduce a third eigenvalue problem, which is intermediate
between (∗) and (3).

We will consider the class of solutions of type

v(x, y) = h(y) sin

(

2Nπx

T

)

,(5)

and will define v to be the lowest eigenfunction for the problem (∗) among functions of
this type. Let τ be the associated eigenvalue. Note that problem (∗) for such functions is
equivalent to the problem

−h′′(y) +

(

2Nπ

T

)2

h(y) + αχD1
(y)h(y) = τh(y) on y ∈ [0, 1](6)

h(0) = h(1) = 0

for h. Thus, h is the first eigenfunction of this Sturm-Liouville problem, and the eigenvalue
τ is characterized by

τ = inf
g∈S

∫ 1

0

{

(g′)2 +
[

αχD1
+

(

2Nπ
T

)2
]

g2
}

dy
∫ 1

0
g2dy

,(7)

where S = {g ∈ C1[0, 1] : g(0) = g(1) = 0}.
From this the (well-known) fact that h does not change sign on [0, 1] is evident; so we may

assume

h ≥ 0.

We will compare u with v and v with ũ. The following lemmata provide the needed estimates.

Lemma 1. Let σ be the lowest eigenvalue for the problem (∗) on ΩT = {(x, y) ∈ R2 :
x ∈ (0, T ), y ∈ (0, 1)}, and let τ be the lowest eigenvalue for eigenfunctions of the form
v(x, y) = h(y) sin( 2Nπx

T
) on ΩT . Then we have

τ − σ ≤

(

2Nπ

T

)2

.(8)

Proof. Since χD is assumed independent of x, a simple calculation with separate variables
and the fact that the first eigenfunction of (∗) does not change sign implies that the first
eigenfunction of (∗) with D independent of x is also x–independent: u = f(y). Now consider
the trial function ω(x, y) = f(y) sin( 2Nπx

T
). We have

τ ≤

∫

ΩT

(|∇ω|2 + αχDω
2)

∫

ΩT

ω2
.
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Thus,

τ ≤

∫ 1

0
((f ′(y))2 +

(

2Nπ
T

)2
f(y)2 + αχD1

f(y)2)dy
∫ 1

0
f(y)2dy

=

=

∫ 1

0
((f ′(y))2 + αχD1

f(y)2)dy
∫ 1

0
f(y)2dy

+

∫ 1

0

(

2Nπ
T

)2
f(y)2dy

∫ 1

0
f(y)2dy

By definition of f(y) we get

τ ≤ σ +

∫ 1

0

(

2Nπ
T

)2
f(y)2dy

∫ 1

0
f(y)2dy

≤ σ +

(

2Nπ

T

)2

.

The claim follows. �

Lemma 2. Define v as above. Assume D is radial and |D|/|Ω| = δ. There exists a positive
constant cα,δ, independent of T , such that for all T ≥ 1 we have

∫

D
v2

∫

Ω
v2

≥ cα,δ.

Proof. We see from v(x, y) = h(y) sin( 2Nπx
T

) that

∫

D
v2

∫

Ω
v2

=

∫ 1

0
χD1

(y)h(y)2dy
∫ 1

0
h(y)2dy

,(9)

where h satisfies Eq. (6). For τ one has a uniform bound τ ≤ Cα,δ with Cα,δ independent of
T ≥ 1, because from (7) one gets

τ ≤ inf
g∈S

∫ 1

0
(g′)2dy

∫ 1

0
g2dy

+ α + (2Nπ)2

and by using for g any test function on [0, 1] one sees that the first term on the right is
bounded by some absolute constant.

Therefore, the coefficients of Eq.(6) are uniformly bounded for T ≥ 1. Also, we have
h ≥ 0. Lemma 3 in appendix then implies that one has

inf
[δ/4,1−δ/4]

h ≥ dα,δ‖h‖L2(0,1).

Since |D1| = δ, we have |[δ/4, 1 − δ/4] ∩D1| ≥ δ/2. Therefore,
∫ 1

0

χD1
(y)h(y)2dy ≥

δ

2
inf

[δ/4,1−δ/4]
h2.

Then we have
∫ 1

0
χD1

(y)h(y)2dy
∫ 1

0
h(y)2dy

≥
δ
2
inf [δ/4,1−δ/4] h

2

∫ 1

0
h(y)2dy

≥
δ
2
(dα,δ‖h‖L2(0,1))

2

(‖h‖L2(0,1))2
,

therefore the lemma is proved. �
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End of proof of Theorem 4. We have

τ =

∫

ΩT

|∇ṽ|2
∫

ΩT

v2
+
α

∫

ΩT

χDv
2

∫

ΩT

v2
.(10)

Since v(x, y) = h(y) sin( 2Nxπ
T

), v vanishes on the segments x = 0 and x = T/2N . Since |v|
and |∇v| are periodic in x of period T/2N , we can replace Ω by EN in the first quotient.
Therefore, we can use v as test function in the Rayleigh quotient for the Dirichlet Laplacian
on EN and obtain

∫

ΩT

|∇ṽ|2
∫

ΩT

v2
=

∫

EN

|∇ṽ|2
∫

EN

v2
≥ λ1(EN).(11)

Combining this with Lemma 2 we therefore get

τ ≥ λ1(EN) + αcα,δ −

(

2Nπ

T

)2

.

From Lemma 1 we then get

σ > τ −

(

2Nπ

T

)2

≥ λ1(EN) + αcα,δ −

(

2Nπ

T

)2

.

If T is chosen so large that
(

2Nπ
T

)2
≤ αcα,δ gives

σ > λ1(EN),

and hence the theorem.

5. Appendix: Basic elliptic estimates (reproduced from [1])

Here we collect some well-known facts about uniform estimates for solutions of elliptic
equations. We will state these for an equation

Pu = 0, P = ∆ +
n

∑

j=1

bj(x)
∂

∂xj

+ c(x), x ∈ G,(12)

where P has measurable, uniformly bounded coefficients, u ∈ C1(G) ∩ C0(G), and G ⊂ Rn

is a bounded open set. In the following estimates, saying that the constants depend on P
will mean that they depend on supG(b1, ..., bn, c) and stay bounded when this quantity stays
bounded.

First, we have the uniform bound (see [5], Thm. 8.15 and 8.38)

sup
G

|u| ≤ CG,P (‖u‖L2(G) + sup
∂G

|u|).(13)

Second, we have Harnack’s inequality: If u ≥ 0 on G and G′ is a compact subset of G
then

sup
G′

u ≤ cG,G′,P inf
G′

u(14)

Combining these two we get the following estimate. For ε ≥ 0 let Gε = {x ∈ G :
dist(x, ∂G) ≤ ε}.
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Lemma 3. For any ε ≥ 0 there is a positive constant cG,P,ε such that for any u ∈ C1(G) ∩
C0(G) that solves Pu = 0 and satisfies u ≥ 0 one has

inf
Gε

u ≥ cG,P,ε(‖u‖L2(G) − sup
∂G

u).(15)

Here we set inf∅ u := ∞.

Proof. We have

‖u‖2
L2(G) =

∫

G

u2 =

∫

Gε

u2 +

∫

G\Gε

u2

≤ |Gε| sup
Gε

u2 + |G \Gε| sup
G
u2

≤ (|Gε|
1/2 sup

Gε

u+ |G \Gε|
1/2 sup

G
u)2.

Thus,

‖u‖L2(G) ≤ (|Gε|
1/2 sup

Gε

u+ |G \Gε|
1/2 sup

G
u)

≤ CG,P,ε inf
Gε

u+ |G \Gε|C
′
G,P (‖u‖L2(G) + sup

∂G
u),

where we used Harnack’s inequality and the uniform estimate (13). If ε is so small that
|G \ Gε|C

′
G,P < 1/2 then we can subtract the last two terms, and the claim follows. The

claim for larger ε then follows from the fact that infG
ε′
u ≥ infGε

u if ε′ ≥ ε. �
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