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1 Introduction

In Euclidean Geometry, it is well known that when you reflect a point through
two concurrent and different lines, you end up with a rotation. In the same
way, when you reflect a point through two parallel lines, you end up with a
translation. It is interesting to observe that under certain conditions a family
of rotations turn into a translation. In fact,

Theorem 1. Let n and m be two parallel lines in Euclidean Space. Let A ∈ n
and let point Q be the foot of the perpendicular line to m dropped from A.
Consider point B on m and let l be the line through A and B.

n

m

A

B

Q

l

Let Sl and Sm be reflections of an arbitrary point P in the plane through
lines l and m respectively. The composition of Sl and Sm obtains a rotation
centered at B, i.e.,

RB = Sm · Sl
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If we move point B along line m to infinity, then the line l will eventu-
ally coincide with line n. Therefore, the rotation of point P , will become a
translation of point P .

In other words,

limB→∞Sm · Sl = Sm · Sn

We have a proof of the above theorem in Section 2. You should observe
that in our proof, we used the Euclidean parallel postulate which states that
for every line l and every point P not lying on l, there exists a unique line
through P that is parallel to l.

The question is now, can we make the same generalization in hyperbolic
geometry? We have to be careful how we answer this question because in
hyperbolic geometry the Euclidean parallel postulate does not hold. In fact,
given a line in a plane and a point not on the line, we have infinitely many
parallels to the line through the point. Never the less, the results still can be
generalized in the Hyperbolic case in the context that we explain in section
3.

2 Euclidean Case

First we need to find the composition of reflections Sm · Sl, by setting up a
coordinate system with the origin at point Q. Let the line m be the X-axis
and AQ lie along the Y-axis.

Let point A and B be two fixed points with coordinates, A = (0, a) and
B = (b, 0). Let line l = mx + c go through the points A and B. Label the
angle between line l and the X-axis as θ and denote α = 180 − θ. Now let
point P = (x, y) be an arbitrary point in the coordinate system. Note, we
shall write the compositions of reflections in terms of P .

In order to get the rotation RB, we must first reflect point P through line
l and then reflect point P through line m.

2.0.1 Sub-Proof

To reflect point P through the line whose equation is y = mx+ c is complex.
However, translating l to the origin and then from the origin rotating l onto
the X-axis makes the reflection through the line l = mx+ c = 0 much easier.
So then to reflect point P through line l, a composition of translation (T ), a

2



a
a

rotation (RP ),then a reflection through line l (S ′

l), the inverse rotation (R−1),
and finally the inverse translation (T−1) is needed. Therefore, the reflection
of P through line l is:

Sl = T−1 · R−1 · S ′

l · R · T
To reflect P through l we can follow the next steps:

Step 1: Translate horizontally the line l to the origin, subtracting

[

b
0

]

n

l

P

(−b,o)

Step 2: Rotate line l around the origin by an angle α using the following
rotation matrix

[

cos α − sin α
sin α cos α

]

Step 3: So we can reflect P through l using the reflection matrix through
the X axis:

[

1 0
0 −1

]
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Step 4: Now perform an inverse rotation on line l, using the rotation
matrix with an angle −α

Step 5: Finally translate the line l by adding

[

b
0

]

.

If we consider only the composition of the two rotations and the reflection,
we obtain this multiplication of matrices:

R−1 · S ′

l · R =

[

cos−α − sin−α
sin−α cos−α

]

·
[

1 0
0 −1

]

·
[

cos α − sin α
sin α cos α

]

·

Manipulating this product of matrix, we have:

[

cos α sin α
− sin α cos α

]

·
[

1 0
0 −1

]

·
[

cos α − sin α
sin α cos α

]

·
[

cos α. cos α − sin α. sin α − sin α. cos α − sin α. cos α
− sin α. cos α − sin α. cos α − cos α. cos α + sin α. sin α

]

Recall that cos (2α) = cos2 α − sin2 α and sin (2α) = 2 sin α. cos α, so we
have:

[

cos (2α) − sin (2α)
− sin (2α) − cos (2α)

]

Considering the translations, we have a final formula to a reflection through
a generic line l whose inclination is equal θ:

P ′ = T−1 · R−1 · S ′

l · R · T
[

cos (2α) − sin (2α)
− sin (2α) − cos (2α)

]

· (P −
[

b
0

]

) +

[

b
0

]

(1)

Reflecting P ′ through X-axis and using formula (1):

P ′′ = Sm · T−1 · R−1 · S ′

l · R · T =

[

1 0
0 −1

]

· P ′

P ′′ =

[

cos (2α) − sin (2α)
sin (2α) cos (2α)

]

· (P −
[

b
0

]

) +

[

b
0

]

(2)

P ′′ −
[

b
0

]

=

[

cos (2α) − sin (2α)
sin (2α) cos (2α)

]

· (P −
[

b
0

]

)
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This composition of reflections results in a rotation by the angle 2α cen-
tered in B = (b, 0).

Solving the product of formula (2), we have:

P ′′ =

[

(cos 2α).(x − b) − (sin 2α).y + b
(sin 2α).(x − b) + (cos 2α).y

]

(3)

Using the relations about sin α and cos α:

sin α =
a√

a2 + b2

cos α =
b√

a2 + b2

Now, we want to describe sin 2α and cos 2α in terms of a and b:

sin 2α = 2 sin α cos α =
2ab

a2 + b2

cos 2α = cos2 α − sin2 α =
b2 − a2

a2 + b2

Using this equalities in (3), we obtain:

P ′′ =

[

x. b2−a2

a2+b2
− b b2−a2

a2+b2
− 2aby

a2+b2
+ b

2abx
a2+b2

− 2ab2

a2+b2
+ y b2−a2

a2+b2

]

(4)

Now, that the matrix is in terms of b and a, the limit as b goes to infinity
can be taken:

lim
b→∞

P ′′ = lim
b→∞

[

x. b2−a2

a2+b2
− b b2−a2

a2+b2
− 2aby

a2+b2
+ b

2abx
a2+b2

− 2ab2

a2+b2
+ y b2−a2

a2+b2

]

=

[

x
y − 2a

]

=

[

x
y

]

−
[

0
2a

]

Therefore, we have shown, thus far, that as b goes to infinity, the rotation
of the point P becomes a translation of point P .
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(0,a)

P=(x,2a−y)

P=(x,y−2a)

P=(x,y)

This transformation happens because line l converges to line n. The
following is a formal explanation.

2.1 Proof l = n

With the same coordinate system as before, let B = (b, 0) go to infinity and
A = (0, a) remains constant.

l : y = mx + c

m = tan θ = − tan α =
−a

b

lim
b→∞

−a

b
= 0

But l passes through the point A = (0, a), so:

a = m0 + c ⇒ c = a

Therefore, as B goes to infinity the equation of l is y = a, which equals
to the equation of line n.

6



n=l
A

Notice, in the Euclidean case we showed how line l converges to line n by
first defining a coordinate system. In the coordinate system we are assuming
the Euclidean Parallel Postulate. However, we could have easily shown that
line l converges to line n by using the converse of the Alternate Interior Angle
Theorem. Observe in the below picture that θ becomes smaller as B moves
along line n and since line n and m are parallel and cut by a transversal l we
can use the converse of the Alternate Interior Angle Theorem to conclude that
the angle between line m and l equals θ. So, this angle also becomes smaller.
In fact, θ converges to zero. At this point the transversal l will converge to
line n. Note that this proof uses the the converse of the Alternate Interior
Angle Theorem which also assumes the Euclidean Parallel Postulate. This
brings us to the conclusion that the Euclidean proof can not be directly used
to generalize results in the Hyperbolic case.

theta

theta

m

n

l

What we showed in tha Euclidean case is that two reflections, respec-
tively, through the transversal and one of the parallel lines starts as rotation,
but as the intersection moves along the same parallel line to infinite, the ro-
tation becomes just a translation. The transformation of the rotation into a
translation shows what is happening to the transversl as you move the point
of intersection to infinite in the Euclidean plane. The transversal converges
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to the other parallel line. Now, does this same conversion happen in the
hyperbolic plane? We will explore this question but, first in the next section
we state some Hyperbolic properties.

3 Hyperbolic Case

3.1 Properties of Hyperbolic Geometry

In Hyperbolic geometry we can study many models, however we will only
describe the hyperbolic plane in the Poincare Disk Model. In this model the
circumference of the disk represents infinity. All points and lines exist only
inside the disk. Lines in this plane are called geodesics and are defined as
arcs of circles that meet the circumference orthogonally.

Lets recall some important facts about hyperbolic geometry:

1. The hyperbolic Parallel Postulate is just the negation of the Euclidean
Parallel Postulate.

Hyperbolic Parallel Postulate: there exist a line l such that for
some point P not on l at least two lines parallel to l pass through P .

2. We can assume all axioms of neutral geometry, so we can use the fol-
lowing theorem:

Theorem 2. Given a line l and a point P /∈ l, let Q denote the foot of
the perpendicular dropped from P to Q. Then there exist two rays ~PR
and ~PS on opposite sides of ~PQ such that

(a) The ray ~PR and ~PS do not intersect l.
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(b) A ray ~PX intersects line l if and only if ~PX is between ~PR and
PS.

(c) ∠QPR ' ∠QPS.

Q

PR PS

n

P

theta

We will not state the full proof of this theorem however we will give a
brief outline ([N]).

The measurement axioms for angles imply that for every real number
x ∈ [0, 180] there exists a point X on one side of the line through
P and Q such that the measure of the angle ∠XPQ equals x. Now,
let Y = {x ∈ [0, 180o]/ the ray ~PX intersects l}.Note that Y is non-
empty and bounded. Therefore, the set has a supremum supY = s.
Then there exists a point S on one side of PQ such that m(∠SPQ) = s

and that the ray ~PS does not intersect line l. In fact, that in Euclidean
geometry the sets supremum will be 90o and in Hyperbolic geometry
the supremum of the set is less than 90o.

In hyperbolic geometry the measure of this angle is called the angle of
parallelism of l at P and the rays PR and PS the limiting parallel rays
for P and l.

3. In Hyperbolic geometry there are infinitely many parallels to a line
through a point not on the line. However, there are two parallel lines
that contains the limiting parallel rays which are defined as lines criti-
cally parallel to a line l through a point P /∈ l. In the Poincare model
lines that are critically parallel meet only at infinity.

9



4. Any line passing through the point P that does not intersect l nor
contains the limiting parallel rays are simply parallel to l at point P .

The following illustrations are a visualization of parallel and critically
parallel lines in the Poincare model.

3.2 Stating the Theorem

Theorem 3. Let n be a line in the hyperbolic plane. Choose point P in the
plane not on the line n. Let Q be the foot of the perpendicular line dropped
from P to line n. Denote this line by t. Let m and m′ be the two critically
parallel lines to n through point P . Choose point B ∈ n and let l be a line
through point P and B. Let 0 be the coordinate of Q and b be the coordinate
of B on the line l

Then as b approaches +∞ i.e. point B moves in the positive direction
along line n, then line l tends to one of the two lines critically parallel to n
through point P . Likewise, if b approaches −∞ i.e. point B moves in the
negative direction along line n, then line l tends to the other line critically
parallel to n through point P . (see fig).
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P=(0,a)

B=(b,0)

t

In order to prove the above theorem we first need to prove the following
lemma.

Lemma 1. Denote point Q as Q0 and choose point Q1 on the line n such
that PQ0 = Q0Q1. In the same way, let Q2 be on the line n such that
PQ1 = Q1Q2. So we can construct a sequence of points (Qn) such that
PQn−1 = Qn−1Qn, for n = 1, 2, .... Denote θn as the measure of the angle
∠PQnQn−1. Then the sequence (sn) given by sn =

∑n

i=1
θi converges to the

parallelism angle.

P

Qn

Q2Q1Q0 n

m

o1 o2

Proof: Since PQn−1 = Qn−1Qn, observe that the triangle 4PQn−1Qn is
isosceles. Therefore, ∠Qn−1PQn ' ∠PQnQn−1 and the measure of the angle
∠Qn−1PQn is θn.

From hyperbolic geometry we know that the angle sum of a triangle is
less than 180◦. So, for the first triangle we have

∠PQ0Q1 + ∠Q0PQ1 + ∠Q0Q1P < 180o

and since ∠PQ0Q1 = 90o
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90o + θ1 + θ1 < 180o ⇒ θ1 < 45o

Analogously, for the second triangle

∠PQ1Q2 + ∠Q1PQ2 + ∠Q1Q2P < 180o

But the angles ∠PQ1Q2 and ∠Q0Q1P are supplementary and if we denote
the angle ∠PQ1Q2 as β1 we have

β1 + θ1 = 180o ⇒ θ1 = 180o − β1

Therefore

θ2 <
180o − β1

2
⇒ θ2 <

θ1

2
<

45o

2
.

Now, denoting the angle ∠PQ2Q3 as β2 we have

β2 + θ2 = 180o ⇒ θ2 = 180o − β2

and for the triangle 4PQ2Q3 we have

∠PQ2Q3 + ∠Q2PQ3 + ∠Q2Q3P < 180o,

θ3 <
180o − β2

2
,

θ3 <
θ2

2
<

θ1

4
<

45o

4
.

This argument can be repeated as many times as needed and after n times
we have

θn <
45o

2n−1

Furthermore, we know that
∑

∞

n=1

45o

2n−1 is a geometric series that converges
to 90o. So by the Comparison theorem, we can say that

∑

∞

n=1
θn converges

as well, i.e., the sequence (sn) given by sn =
∑n

i=1
θi converges.

Note, the measurement axioms for angles imply that for every real number
x ∈ [0, 180] there exists a point X on one side of the line through P and Q0

such that the measure of the angle ∠XPQ0 equals x. Now, let S = {x ∈
[0, 180o]/ the ray ~PX intersects n}, where sn is contained in the set S. Since
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(sn) is an increasing bounded sequence that converges, we know that the limit
of this sequence when n goes to infinity is the supremum (sup) of the set S.
The sup of this set is the angle of parallelism, therefore, sn converges to the
angle of parallelism.

Proof of Theorem 1: In lemma 1 we constructed a sequence (Qn) of
points on the line n. Now, let us denote the coordinates of these points as qn

where, q0 = 0. Lemma 1 proves that when qn → ∞ the sequence (sn) given
by sn =

∑n

i=1
θi converges, i.e.,

lim
n→∞

sn = θ

where θ is the angle of parallelism. So, the lemma proves that ∀ε > 0,∃N
such that if n > N then |sn − θ| < ε.

Let B be any point on n such that its on the same side of the line t that
the points Q1, Q2, ..., Qn, ... are constructed. Let b be the coordinate of the
point B and α(b) the angle ∠Q0PB. We want to prove that

lim
b→∞

α(b) = θ

i.e. ∀ε > 0,∃M such that if b > M then |α(b) − θ| < ε.
Given ε > 0, let ε′ = ε

2
. Since limn→∞ sn = θ, we have that for ε′, ∃N1

such that if n > N1 then |sn − θ| < ε′.
We can write

|α(b) − θ| = |α(b) − sn + sn + θ| ≤ |α(b) − sn| + |sn − θ|
As qn → ∞ and ∀b, 0 = q0 < b. So we can conclude that when q → ∞∃n

such that
qn ≤ b ≤ qn+1,∀b

Since α is increasing, we have

α(qn) = sn ≤ α(b) ≤ sn+1 = α(qn+1)

We know that a convergent sequence is a Cauchy sequence, and hence
(sn) is a Cauchy sequence. Therefore, given the same ε > 0 and ε′ = ε

2
, we

have that ∃N2 such that if n > N2 and m > N2 then |sn − sm| < ε′. In
particular,
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|sn − sn+1| < ε′ ⇒ sn − ε′ < sn+1 < sn + ε′

If n > N2, and b is such that qn ≤ b ≤ qn+1. We have

sn − ε′ < sn ≤ α(b) ≤ sn+1 < sn + ε′ ⇒

sn − ε′ < α(b) < sn + ε′ ⇒ |α(b) − sn| < ε′

Now, take N = max{N1, N2}. We conclude that if n > N then

|α(b) − θ| ≤ |α(b) − sn| + |sn − θ| < ε′ + ε′ = ε

which implies,

lim
b→∞

α(b) = θ

Observe that if b → +∞ line l converges to line m. In the same way if
b → −∞ line l converges to line m′.

4 Conclusion

According to this theorem, if we have two concurrent lines intersecting at a
point, and we move the point of intersection to infinity along one of the two
lines, these lines will become critically parallel.

In conclusion, in the Euclidean case, if we have two parallel lines and a
transversal and send the intersection point to infinity along one of the two
parallel lines, the transversal will become the other parallel line. However,
in the Hyperbolic case, the same will occur only when the parallel lines are
critically parallel. Otherwise, if the lines are just parallel then the transversal
will not converge to the other parallel line.
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