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Abstract

This paper intends to explore a minimization problem associated with
the cost of operating a hydroelectric and thermal power supply system.
The problem focuses on a fixed span of time for which a changing market
demand must be met. While this problem has obvious relevance to orga-
nizations attempting to meet power demands on a daily basis, it is also
an instructive illustration of the many mathematical approaches that can
be applicable to operations research.

1 Introduction

We consider a simple power grid system consisting of one hydroelectric plant
and a number of thermoelectric plants. A hydroelectric plant generates power
through release of water from its reservoir into a turbine. We assume that
there are no variable costs in this process. A thermoelectric plant generates
power by burning coal or some other sort of fuel, which is quite costly, with
costs increasing with rising output. The total power produced by all plants
together must match market demand. So, given in advance the market’s power
demand for a certain period of time, what is the cheapest way to schedule power
generation to match demand?

This separates immediately into two distinct (though related) problems.
First, what is the optimal way to load a particular power demand between
the different thermal plants so as to minimize cost. Secondly, given this optimal
load sharing and the resulting cost function of producing power with the thermal
plants, what is the optimal way to split power generation between the thermal
and hydroelectric plants. Said differently, but more precisely, how should the
reservoir be managed to minimize total costs.

To focus first on this later question, we will wish to choose ¢, the month’s
total outflow of water, at each of Ng time points. We will assume herein that
Ng = 48, representing monthly stages along four years of scheduling. We begin
with an initial volume vg; later volumes are given by the recursion vy 11 = vy —g;.
Importantly, the outflow at each unit of time is bounded by some maximum out-
flow g7, representing the maximum capacity of the gates. One should note at



this point that we are essentially exploring an optimization problem in 48 di-
mensions, and we will certainly be expounding upon the difficulties encountered
in such a space.

In this model, we assume that the power generated by the hydro at month ¢
depends on ¢, as well as the pressure of the water still in the reservoir, which is
related to the current volume by a function, p(v), determined by the geometry of
the reservoir; for our purposes the hydro power generation will be hy = p(v¢) - g;.

Returning to the former problem, we focus on the Np thermal plants. In
our model, each thermo i can produce only up to gi+ units of power. At each
time step ¢, the relation between a thermo’s power production g;: and its cost
is given by a quadratic function, 6;(gi¢) = aig7,. So, at any given ¢t we must
have that the sum of h; and the various g;; match market demand d;.

We now state the problem in its entirety.

Problem 1
NS—1 NT
min Z Zaig?’t
t=0 =1
subject to
0 < git<gi
vy > U
0 < @<g*
V41 = UVt — G
he = p(v)g
NT
d = ht+zgi,t
i=1

where v=, ¢, ¢, 9], d;, i, vo and p are given.

We will address three formulations of this problem. First we shall consider
the original formulation described above, where ¢; and v; assume real values
and the set of time points is finite. This leads to the division of into two similar
subproblems, as was described above. Secondly we shall apply also restrict the
allowed values for volume and outflow at each time point to a finite set; from this
we derive an algorithm using dynamic programming. Finally, we explore the
possibilities of a continuum limit as the interval between time points approaches
zero, leading to a problem which can sometimes be solved exactly and for which
we have devised a numerical approximation in terms of a simple differential
equation integrator.



2 The Standard Formulation

As preciously mentioned, the problem examined breaks naturally into two parts,
the first dealing with optimal scheduling of the thermal plants, and the second
with the consequential optimal scheduling of the hydroelectric plant.

2.1 Thermal Plant Scheduling

We first attempt to solve Problem 1 as a traditional optimization problem,

finding the minimum value of a function f within a domain D € R™.
Determining the optimum load distribution among the thermal generators

should depend directly only on the total load required of them. That is,

Problem 2

Nt
minelg) = 3 i
i=1

subject to

Nt
Y9 =G
=1
0 < gi<gS

Note that the domain of this problem is the intersection between a hyper-
plane and a box in RN7T. This polytope may have up to 2V7~1 — 1 cells. In a
multivariate calculus course, one learns how to use Lagrange multipliers in order
to locate solutions of optimization problems similar to this. However, with these
methods we must find the points which satisfy regularity conditions for each cell
in the domain; those that do are candidate minima only if they are solutions
of a certain system. Even in our case, where the restrictions are all linear and
thus regularity conditions are automatically satisfied, we would have to solve
a different system for each cell, a combinatorial nightmare. Instead, consider
Proposition 1, which solves a part of the problem in a streamlined fashion.

Before detailing it, we offer a brief reminder of the definition of strict con-
vexity:

Definition 1. A function h : D — R is said to be strictly convex if, for all
a,b € D, for any s € (0,1), sh(a) + (1 —s)h(b) > h(sa+ (1 — s)b); that is, if the
secant line to h at a, b is strictly above the graph of h in the entire open interval
(a,b).

If a function h is strictly convex and has a derivative h', then h' is strictly
increasing. This implies that A" is positive, and thus, by the second-order Taylor
approximation, h(a + x) > h'(a)z.

We may now state Proposition 1:



Proposition 1. Given constants n, X, z;, xf with 1 < ¢ < n, such that

S, zi <X <YL, x;, and n strictly convex, differentiable functions f; :

K3
R — R, there exists a unique solution to the optimization problem

n

min f (21, 22,..@n) = Y fi(x:)

i=1

subject to

zn:wi = X
i=1

j— . +
z; < z; <z

Furthermore this solution is exactly the point x = (x1, 22, ..., Ty ) for which there
exists a A such that

fi(z;)) = Awhenz; <=z <z} (1)
fi(z;) < X whenz; =z} (2)
fi(zi) > X whenuz; =z (3)

This solution can be directly located by varying X and applying the following
rule: given X, if the associated solution = has z; = z], then, for any X > X,
the associated solution Z has Z; = =} (the same applies to the z;).

Proof: We first show that the characterization of minima given above is
necessary. Given a point z = (1,2, ...,2n), will refer to a vector v as be-
ing admissible if there exists a positive e such that the line segment I =
{z +ev : e € [0,e"]} lies within the domain. Let z be a minimum of f. Then, for
any admissible v, the restriction of f to [, that is, the function r(e) = f(x +ev),
must have non-negative derivative at € = 0.

Let  be a minimum of f. Suppose there were two indices ¢ # j for which
fl@:) > fi(z;), o7 < @ < o, and 77 < z; < z]; let v = ¢; — e;. Now
[4f(z +ev)]._, = fi(x;) — fi(x:) <0, a contradiction. Therefore we must
have f;(z;) = fj(z;) for interior coordinates.

Similarly, look at coordinates at their boundaries. Again, let 2 be a mini-
mum of f. Suppose z; = x;r v = e; — e; is admissible when z; < xj Now
[£f(z +ev)]._g = fi(@;) = fi(w:) >0, and so fi(z:) < fi(w;) =\ W 2 = a7
then we have the similar result in (3) from looking at v = e; — ;.

Now we prove sufficiency. Suppose a point z satisfies the conditions (1), (2)
and (3). Then consider any vector A such that z + A is within the domain.
Note that Y-, (z; + A;) = X, and so Y"1, (A;) = 0. Now let U be the set of
i for which z; =z, let L be the set of i for which z; = z; and let M be the
set of ¢ for which z; < z; < z}. We compute

flz+A)-f(z) = Zfi(wi +4) — Zfi(wi)



= Zfz(% +A4A) + Zf’t(xz +4)

€U i€L
+ Y filwi+ 20) =) filw)
ieM i=1
> Z(fz(xz) +f +Z fz mz +f (xz) z)
1€U 1€EL
+ Z fl mi + fl xl Z Zfi mz
i€EM
= Y R@d) + s + 3 (A
1€U i€EL 1EM

We now write, for i € U, f{(z;) = A —¢; with ¢; > 0, and, for i € L,
fi(x:) = A+ ¢ with ¢; > 0. So

S Fa)A) + S (Fla)a) + 3 (fiw) Ay

icU i€l iEM
= D (A =c)A)+ ) (A +e)di)+ Y (AAy)
ieU ieL €M
= - Z(CzAz) + Z(CzAz) +A Z A;
ieU i€L iEM
> 0

Hence the characterization above demonstrates necessary and sufficient con-
ditions. Now, given a A, we can pick a unique point x satisfying the characteri-
zation (1-3) as a direct result of the strict convexity of f,, since f] is increasing.
Since Y., #; = X is strictly increasing and continuous as a function of X, we
have an inverse on this domain. Thus for every X on this interval there is a
unique A and a unique point x where f attains its minimum, and this point
meets the conditions (1-3).

Now consider X as an independent variable. Suppose that, for a certain
value of X, the associated solution x has z; = x . By the above claims, for a
slightly larger X, the solution should not have its coordlnate m decrease, and so
it must remain constant. All other i such that x; < :1: should increase equally,
by the previous section of the proof.

We now apply Proposition 2 to Problem 2. Given a total thermal load G, if
the g are sufficiently large, a minimum g will be interior, that is,

flg)) = 2aigi=\1<i<NT

SoG=>9;= % > a;l, and therefore g will have coordinates

A G

9i= T‘éi B OziZaj_l



Finally, computing cost at g, we have

2
()= Y aug? = Z

Yot

Now consider G as an independent variable. Suppose that for some fixed m
we have that g < gi for all i. The solution above is a minimum for all G <
g am Eaj_l; so, by continuity, it remains a minimum for G = g} a., > o}
But in this case, g, = g;; that is, the minimum lies in the boundary of the
domain. So, by Proposition 2, for values of G a bit greater than g} a,, > a1,

9m = g;;
G .
9i = 7_171757”
@i Y jotm O

And so the cost at g will be
G2
-1
Ei;ém Q;
Summing up, we can consider ¢(g) as a function p of the independent variable
G. We have determined the expression for p(G) above in two cases: first, when
no coordinates are at their maximum, and second, when only one of them is.

In general, p will be a piecewise quadratic function, whose curvature increases
with each piece. This implies that it is a strictly convex function.

clg) = am (g7)° +

2.2 Hydro Plant Scheduling

We can now move on to the hydro plant scheduling problem. Remembering
that Gy = d; — hy, we can then write the volumes as vy = vg — Zz;é q; and so
rewrite the problem as that of obtaining the ¢; which solve

Problem 3

NS—-1

t—1
min Z p(dy — p(vo — Z(Ii)qt)
t=0 i=0

NS—1

subject to Z ¢ < vg—v"
t=0

0 < @<g*

With only one further simplification, though admittedly a physically inaccu-
rate one, we can again make application of Proposition 2 to arrive at a solution.
If we simply assume that power generated is independent of reservoir volume,
that is if p = v a constant, then we have



Problem 4

b—1
min Zp(dt - 7q)
t=a
b—1
subject to Zqi = Uy — Up
t=a

0 < ¢<g

which satisfies the hypotheses of Proposition 2. Since p is strictly convex we
have that there exists a unique optimum point. If 0 < ¢; < q;r for this point
then we have that d%t(p(dt —vq)) = p'(di —vqt) - (—y) = A for all ¢. Since p' is
invertible (it is a strictly increasing continuous function, for p is strictly convex)

we get that
@ = (dt —p"l(_—)‘»v‘l Sy
Y Y

with ¢ a constant. We subject this to the restriction Zf;i gi = Va — Up, tO
get

— 1 g b—1
Ya = Y (T-o=v"Y d-(b-a)-c=v.—uv
t=a t=a Y —

andsoc = O~ Efs);i di + vp — va) ‘

(b—a)

Non-interior optima are more difficult to characterize, but will still follow
the X restrictions (1-3). Thus we can use A as a parameter for finding solutions,
searching for the A\ prescribing a point where Ei’;i q; = vg — vp. This is, of
course, very similar to what happens in the solution to Problem 2.

While Problem 4 is tractable, even a simple p function makes 91 dependent

Oq
upon all g;, and so we weren’t able to solve Problem 3 as formulated.

3 Volume choices in a finite set

To compute approximations of the solution to Problem 3, a reasonable approach
is to restrict choices of the ¢; to multiples of a fixed interval jv, and then attempt
to locate minima in the resulting finite lattice. That is,

Problem 5

NS-1

t—1
min Z p(d; — p(vg — ZQi)Qt)
t=0 =0



NS-1
subjectto Z a < vo—v
=0
¢ € {0,0v,20v,....,q"}

The algorithm we wrote is based on the idea that solving for loose final
volume on the interval from a to b can be split into solving two problems, one
from a to a+ 1 and one from a + 1 to b. To state this simply, one first solves for
the optimal schedule and associated cost for all starting volumes at time a + 1.
This behavior is optimal on this interval, given the starting volume, independent
of the schedule on the interval a to a+ 1. Thus to solve the overall optimum, we
simply look at our actual starting volume, v,, and look at all allowed volumes
at ve41. In assessing the cost of each option, we take the cost of this outflow at
time a and add the previously calculated cost of optimal behavior from a + 1
to b. We then take the outflow at a which minimizes total cost, adjoin it to
the optimal schedule from a + 1 to b, thus forming the overall cost minimizing
schedule.

This method has the excellent property of reducing a finite search in 47
dimensions to one in only 46 dimensions followed by one in two dimensions.
But from this point we can again split the 46 dimensional problem, solving
separately from a+ 1 to a+ 2 and a+ 2 to b. This process cascades until we are
left with 46 two dimensional problems, rather than one massive 47 dimensional
problem. This improvement amounts to making a computationally intractable
problem tractable.

The algorithm thus starts by calculating the cost of all possible choices for
all possible volumes at time ¢ = Ng — 1. It then selects the least expensive
outflow for each volume and records the outflow choice and cost for this volume
at this time. We can now go back to ¢ = Ng — 2. For each allowed volume
vUng—2 Wwe check all possible outflows . To calculate cost of each outflow choice
candidate, we calculate the operating cost at t = N.S — 2 with that outflow and
then add the cost of ideal behavior at t = NS —1 with volume vyg_o —7. Again
we select the least expensive outflow choice v and its cost and associate it with
the given volume. The process continues backward to t = 0, where the desired
volume is known. The pseudocode is given below.

// given: v0, d[t]
The algorithm thus starts by calculating the c for each w in
{vmin,vmin + dv, ... vmax}

m <- 0

for each gamma in {0, dv, ... gmax}

if vmax >= w - gamma >= vmin
if p(d[t] - rho(w)*gamma) < p(d[t] - rho(w)*m)
m <- gamma
q[w,NS] <- m



Clw,NS] <- p(d[t] - rho(w)*m)

for each t from NS-1 to 1

for each w in {vmin,vmin + dv, ... vmax}
m <- 0
for each gamma in {0, dv, ... gmax}

if vmax >= w - gamma >= vmin
if (p(d[t] - rho(w)*gamma) + C[w-gamma,t+1]
< p(d[t] - rho(w)*m) + C[w-m,t+1])
m <- gamma
qlw,t] <- m
Clw,t] <- p(d[t] - rho(w)*m) + Clw-m,t+1]

m <- 0
for each gamma in {0, dv, ... gmax}
if vmax >= v0 - gamma >= vmin
if (p(d[t] - rho(w)*gamma) + C[vO-gamma,1l]
< p(d[t] - rho(w)*m) + C[vO-m,1])
m <- gamma
q[v0,0] <- m
C[v0,0] <- p(d[t],rho(w)*m) + C[vO-m,1]

This method is still far from efficient, as it requires O(n?) inner loops for
n elements in {v™,v~ + dv,v~ + 2dv,...v+}. For n = 1600, the simple perl
script takes 12 minutes to execute on a 500 Mhz Pentium III processor running
Linux. However, it is guaranteed to locate the minimum for the given choice
of dv. Furthermore, increasing the number of volume points does little to alter
the path in most cases, and barely improves optimum cost. Therefore, while we
have not yet devised a bound on the error in this system, we suspect it to be
negligible.

4 The continuous model

We now deal with the possibility of controlling plant operation at any point in
time in an interval [a,b], rather than only at a finite set of time points. This
means our domain D will be a subset of the space of continuous functions from
[a,b] to R, instead of a subset of R". A function from D to R will sometimes
be referred to as a functional.

So, based on Problem 3, we desire to find the point (now a function ¢(t))
that minimizes the cost functional F' between times 0 and N S:

Problem 6

NS t
min F(q) = / p(d(t) = p(u(0) — / o(r)dr)g(t))dt
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subject to / q(t)dt
0
0 < q@t)<q*

To solve this, we also reformulate Problem 3 as that of finding the minimum
in a sub-interval (a,b) where v(a) and v(b) are fixed values. This restricts us to

the domain D = {q € C%a,b] : f q(t)dt = v(a) — v(b),0 < g(t) < q+}. That
is, we have

Problem 7
b t
win F(g) = [ pld(®) - plola) = [ a(r)dr)ate)ds
subject to /b q(t)dt = wv(a) —v(b),
0 < q(t)<q*
(For brevity, we shall write v(t f q(T)dr and k(t) = d(t) — p(v(t)),

so that the cost functional may be written as simply fa p(k(t))dt.)

Let us look at Problem 7. We will first restrict ourselves to the case of interior
minima of F', that is, minima which satisfy the conditions on ¢(t) strictly. We do
this because, as we shall see later, a solution of Problem 7 in a certain interval
must be a juxtaposition of interior minima in sub-intervals and horizontal line
segments.

We will now obtain an explicit necessary condition for interior minima.
Given a point ¢, we will refer to ¢ as being admissible if there exists a pos-
itive €™ such that the line segment [ = {g+ £y : € € [0,eT]} lies within D. If
q is a minimum of F', then, for any admissible ¢, the restricted function from
[0,e%] to R, r(¢) = F(q + ep), must have non-negative derivative at € = 0. In
particular, if ¢ is interior, r'(0) = 0.

So let ¢ be an interior minimum of F. Consider an admissible ¢ at ¢; it must
satisfy f:(q + ep)(t)dt = v(a) f q(t)dt, and therefore f p(t)dt = 0.
So, following the remark above r( ) the restrlctlon of F' to the dlrectlon of ¢
at ¢, must have derivative zero at € = 0. This derivative is

[%F(q+6w)]s_0

b t
= [ o (p’(v(t))q(t)cp(t)+p(v(t)) / SO(T)dT> dt

10



which, by straightforward integration by parts, yields

b t

/ (p'(k(t»p(v(t)) + / p’(k(T))p’(v(T))q(T)dT) p(t)dt
b

/ FOp(t)dt

ﬂw:ﬂwwwwwyi/ﬂwwmmwﬂwm

where

We have, then, that f: F)e(t)dt = 0 for all admissible ¢. Now, since,
for any 1, the function ¢ — ﬁ f(fw(t)dt has integral zero and is therefore

admissible, we have [ f(t)(t)dt = ;L ( L) ) ( IR0 dt)for all ¢. Tn

particular, for arbitrary ¢ € (a,b), taking
1
() = - fort € (c,c+¢)
0 elsewhere

we have fbf t)dt = %fccﬁ f(t)dt = 7 (f: f(t)dt). And so, as e = 0,

= bL ( f f@) ) for arbitrary c¢. Thus f is actually a constant function,
that is,
ﬂﬂ=f®)
meaning p'(k(t))p f p(v(7))) dr = p’(k(a))p(v(a)). So, dif-
ferentiating, (p'(k(t ))) ( ( ) = 0 ThlS 1mp1ies that p' o k is constant, and so
p'(k(t)) = p'(k(a)). Since p is strictly convex, this means

That is, d(t) — p(v(t))q(t) = d(a) — p(v(a))g(a). This may be formulated as
the ODE/initial value problem

v(a) = ¢

This means, given ¢(a), there is a certain v(b) for which the ODE above
characterizes the solution. (This induced the numerical method described be-
low.) By the existence and uniqueness theorem for ODEs, this is a complete
characterization of the solution. Under a certain hypothesis, the uniqueness of
a solution to Problem 7 is guaranteed, and being a solution to the initial value
problem above becomes a sufficient condition. We give two example cases where
the problem simplifies somewhat and we have analytic solutions.

11
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Figure 1: Cost minimizing ¢(¢t) for d(t) = 10 + 5sint

4.0.1 Example 1

If p = 1 (admittedly a very unreasonable assumption), then the problem re-
duces drastically, namely to that of solving v' = d(a) — ¢q(a) — d(t),v(b) = c.
(Assume that —v' < g*.) This yields v(t) = f; d(r)dr + (d(a) — gq(a)) (t —
a) + [c — f: d(T)dr + (d(a) — q(a)) (b— a)] Figures 1 and 2 (d(t) and ¢(¢) on 1,
v(t) on 2) are for the following data: d(t) = 10 + 5sint,a = 0,b = 10,¢(a) =
6,v(a) = 70.

In this case, in fact, we may prove directly that a solution of the ODE is a
global minimum: here f becomes a mere p'(d(t) — ¢(t)), and, given any § in the
domain, we have

b
/ (p(d(t) — 4(t)) — p(d(t) — q(2))) dt

Y

b
/ P(d(t) — q(0)) (d() — d(6)) — (d(t) — q(t))) de
b
- / P(d(®) — g(8)(g(t) — (t))dt
b
- / £(6)(@ — g)(dt

But of course, §— ¢ is an admissible variation, and so f: F@®)(@—q)(@®)dt =0.
Thus the cost of any § is greater than the cost of q.

12
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Figure 2: Cost minimizing v(t) for d(t) = 10 + 5sint

4.0.2 Example 2

If p(t) = 4/z and, additionally, d = D (a constant) and b is such that 7"1}/@_)(2)@ <
v

gT, we have v' = —7"”(3—1‘1(@, v(b) = ¢. The solution is then

2/3

o(t) = (2U(a)3/2 — 3/v(a)qla)(t — a))

Figures 3 and 4 are for arbitrary d, v(a) = 1,q(a) = 1,a = 0,b = 0.9,q% > 4.65.
(Note that, for this formula, ¢ — oo as b approaches 1. This is an example
where a portion of the optimum path is interior, but it will necessarily hit the
gt boundary for instants close to 1.)

4.1 Boundary minima

Now that we have characterized interior solutions of Problem 7, we consider the
possibility that a solution ¢ in [a, b] will be such that ¢(t) = g% or ¢(¢) = 0 for
certain intervals of ¢. Certainly, if we restrict ¢ to a sub-interval [a', '] in which
gt > q(t) > 0, it should satisfy the corresponding ODE for this interval. That
is, ¢ should consist of a succession of curves given by the ODE and horizontal
line segments with values 0 and ¢*.

Indeed, we can easily give a restricted analogue to Proposition 2, that is, a
sufficient condition for a g with the property above to be a local minimum, that
is, for all restricted functions in the direction of admissible directions to have

13
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Figure 3: Cost minimizing v(t) for v(a) = 1,q(a) = 1,a = 0,b=0.9,q" > 4.65.
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Figure 4: Cost minimizing g(t) for v(a) = 1,q(a) =1,a = 0,b = 0.9,¢" > 4.65.
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positive derivatives at zero. Let L = ¢=(0), U = ¢~ *(¢*), M = [a,b] — (LUU).
(As stated above, each of these is a finite union of intervals.) Note that now,
for a variation ¢ to be admissible, it must not only satisfy fab p(t)dt = 0, but
also p(L) > 0 and p(M) < 0. For such ¢, assume that [4£F(q+ep)]__, can

be written as fab f(#)p(t)dt, as before.
So, if there is a constant A such that

fM) = A
f(L)y > Xand
fU) < A

then we can write f = A+, with (L) > 0 and »(U) <0, and we have

U

b b
/a Fptdt = / Np()dt + /L r(t)p(t)dt + / r(t)p(t)dt
0,

>

proving that the requirement above is indeed a sufficient condition for local
minima. (For the p = 1 case, these points are actually global minima also, for
the same argument used above will still apply here.)

4.2 Extensions and numerical results

Ideally, we would like to apply the above developments to a complete solution of
Problem 6. However, the best we could do was the following: if the machinery
above gives us, for each v = v(b), a function g, which is indeed the solution
of Problem 7 in [0, NS] for this v(b), then what we have left is an ordinary
one-variable calculus problem:

NS t
min F(v) = / p(d(t) — p(v(a) - / 4o (7))o (1)) dt
subject to v~ < v <ot

We thus wrote the following algorithm. For arbitrary values of ¢(a), it at-
tempts to follow the ODE (with Euler’s method) where it prescribes admissible
q values, and sticks to the boundary otherwise. It then either reaches v = 0 at
some tg < b (in which case the process is repeated for a smaller value of ¢(a), for
this ¢y can be interpreted as a strictly decreasing function of ¢(a)), or reaches
some v = v(b) > 0. We then compute the total cost of the corresponding g,
and attempt to “home in” on the minimum total cost. (This assumes that the
cost of the optimum path starting at v(a),¢(a) is a well-behaved function of
a(a).)

Figures 5 and 6 show numerical results (in black) against theoretical data
(in red) for the data a = 1,b = 48,v(a) = 100, ¢(a) = 1.449. g(a) was obtained
numerically for minimum cost. The algorithm’s pseudocode follows below.

15



1004~
1 TS

60 \

B0 \

40

201 \

ot 0 20 3 40

Figure 5: Numerical vs theoretical v(t) for a = 1,b = 48,v(a) = 100, ¢(a) =
1.449
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Figure 6: Numerical vs theoretical q(t) for a = 1,b = 48,v(a) = 100,¢(a) =
1.449
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qupper <- gmax; qlower <- 0
for each dq in {1,(1/10),...(1/10"p)
for each q[0] in {qlower, qlower + dq, ... qupper}
for each t from 1 to NS do
qgcandidate <- (rho(v[0]))*q[0] + d[t] - d4[0])/rho(v[t])
if gqcandidate > gmax
qcandidate <- gmax
if qcandidate < 0O
qcandidate <- 0
if v[t] + qcandidate > 0
v[t+1] <- v[t] + qcandidate
else this solution spends too much and we discard it
compute cost[q[0]]
find qOmin in {qlower, qlower + dq, ... qupper} that minimizes cost[q0]
qupper <- qOmin + 2*dq
qlower <- qOmin - 2%*dq

5 Acknowledgements

This work was done when the authors participated in a Research Experience
for Undergraduates (REU) program at PUC-Rio, Rio de Janeiro, Brazil, in
July 2003. It was funded by NSF-USA (INT-0306998) and CNPq-Brazil. We
thank the Department of Mathematics of PUC-Rio, the funding agencies, and
professors Carlos Tomei and Maria Helena Noronha, who guided and supervised
our work.

17



