
Facebreaker: A Compression for Tetrahedral Meshes without Boundary

John DeIonno1, Anna Shustrova2, Ives José de Albuquerque Macêda Júnior3

1University of California, Los Angeles – USA
2University of California, Berkeley – USA
3Pernambuco Federal University – Informatics Center – Brazil

Abstract

Tetrahedral meshes used in applications such as volume visualization consume very large
amounts of memory.  Thus compression is essential for storage and transmission purposes. A lot
of different schemes have been developed to address this problem. Our algorithm handles
tetrahedral meshes that are connected oriented combinatorial 3-manifolds without boundaries. It
extends the Edgebreaker algorithm on a Corner Table for triangular meshes to work with
tetrahedral meshes.

Keywords: tetrahedral meshes; compression algorithms; Edgebreaker algorithm; corner table;

1. Introduction

Mesh compression techniques are a part of a new branch of modern data compression
techniques, 3D compression. In the case of tetrahedral mesh compression, the main areas of
interest include but are not limited to simulations on volumetric domains and volume
visualization. In most applications there is some data attached to the elements of the tetrahedral
mesh. This data can be attached to the vertices, edges, faces or tetrahedra [1]. Some of the
applications are: Digital Entertainment, Computer Aided Design (CAD), Computer Aided
Manufacturing (CAM), Computer Aided Engineering (CAE) and Computational Tomography
(CT). All these areas use very large meshes and thus have great demands for data storage and
transmission. A good compression scheme for tetrahedral meshes is therefore of an utmost
importance.

Our approach to mesh compression deals only with tetrahedral meshes that are connected
oriented combinatorial 3-manifolds. In simple terms we require the following condition to hold:
each face in the mesh is incident to one or two tetrahedra. In particular our algorithm can only
work with meshes without boundaries. This changes the condition to: each face is incident to
exactly two tetrahedra.

The approach we present in this paper extends the Edgebreaker algorithm for triangular
meshes [2] and consists of traversing tetrahedral meshes from a tetrahedron to an adjacent
tetrahedron in order to compress and decompress it. As we traverse the mesh, our compression
method produces a code that describes the topological relations of the current tetrahedron to the
rest of the mesh. Decompression uses these codes and corner table data structure to infer
connectivity among tetrahedrons in order to reconstruct the mesh.

2. Orientation, Conventions and Cases

When traversing a tetrahedral mesh a move is made through the face of the current
tetrahedron to an adjacent tetrahedron that has not been visited yet, and then the new tetrahedron



and all its vertices are marked as visited. To traverse tetrahedral meshes in an orderly manner it
is essential to first create a convention for marking direction. We mark the faces on each
tetrahedron as source, top, right and left. To do so it is necessary to keep track of the last two
moves. In particular, we keep track of the vertex w opposite to the face we went through on the
previous move. Given this information, we say the face we just went through is the source and
the face opposite to w is the top. Left and right faces are determined as shown in Figure 1, where
we are marking faces for the tetrahedron in the center and the previous tetrahedron (not shown)
is above the paper. As a convention we always go through the top if the incident tetrahedron is

not visited, else we try going right and only if both top and right tetrahedrons are visited we go
through the left.

We next define the cases that can come up when traversing a tetrahedral mesh without
boundaries. The nine cases, denoted as C, T, R, ~T, ~R, ~L, E and S, are distinguished according
to Table1, where v is the vertex opposite to the source face of the current tetrahedron and Top,
Right and Left correspond to tetrahedrons adjacent to the respective faces of the current
tetrahedron. Figure 2 illustrates the nine cases, where blue shading indicates that tetrahedron has
already been visited.

Table 1: Facebreaker states

Figure 2: Facebreaker cases illustrated

v Top Right Left

C not visited not visited not visited not visited

T visited visited not visited not visited

R visited not visited visited not visited

 L visited not visited not visited visited

~T visited not visited visited visited

~R visited visited not visited visited

~L visited visited visited not visited

E visited visited visited visited

S visited not visited not visited not visited

top

rightleft

source

w

Figure 1: Face Marking Convention

C

~T

S

~L~R

LRT

E

- w

- v (visited)



3. Corner Table

Originally the Corner Table was used as a very compact data structure for storing
connectivity information for triangular meshes [2]. We extend this structure to work for
tetrahedral meshes. A corner represents the association of a tetrahedron with one of its incident
vertices. The idea is that each corner has a vertex and an opposite corner associated to it. By
opposite corners we mean two corners in adjacent tetrahedrons that are not incident to the face
between these tetrahedrons. The information for each corner’s opposites and their incident
vertices can be stored in two integer arrays called O and V, respectively. The dimension of both
arrays is equal to number of tetrahedra times four.

Our convention for numbering corners in a tetrahedron is as follows: suppose we just
moved to a new tetrahedron and the number for the last corner marked was n–1. The corner
incident to v is numbered n, the corner incident to w is numbered n+1, the order for numbering
the last two corners is determined by the right hand rule with the thumb pointing from w to v.
Note that this way the corner n is opposite to the source, n+1 – to the top, n+2 and n+3 – to the
right and left, respectively. For convenience we will refer to corner n as the source corner, n+1
as the top, etc.

4. Initial Conditions

To start the traversal of a tetrahedral mesh we pick an arbitrary tetrahedron and arbitrarily
mark corners 0 and 1 and then use the right hand rule to mark 2 and 3 (Diagram 3). We also
label their incident vertices 0 through 3 accordingly. We then make a move though the face
opposite to vertex 1. The corner and its incident vertex opposite to the source of the newly
discovered tetrahedron are labeled 4. The corner that is incident to vertex 1 is labeled as 5, the
corner incident to 2 as 6 and the corner incident to 3 as 7. The last arbitrary move we make is
through the face opposite to vertex 0. Table 2 summarizes corner table initialization procedure.
We now have both vertices v and w to start labeling corners its incident vertices and faces of all
other tetrahedra using the conventions described in previous sections.

O V

source 0 0
top 1 4 1
right 2 2
left 3 3

source 4 1 4

top 5 8 0
right 6 2
left 7 3

source 8 5

top 9 4
right 10 2
left 11 3

0

1

2

3

4

5

7

6 10

9

8
11



Figure 3: First Two moves Illustrated Table 2: Corner TableInitialization

5. Compression

The compression algorithm takes in a list of 4-tuples, where an element of a tuple is a
vertex number, a 4-tuple is a tetrahedron represented by its 4 vertices and the whole list
represents a tetrahedral mesh. It returns a string of symbols from the set {C, T, R, L, ~T, ~R, ~L,
E, S} encoded using binary format {0, 1100, 1010, 1001, 1011, 1101, 1110, 1111, 1000}. This
string is a very compact way of storing topological connectivity of a tetrahedral mesh.

We start the traversal (see Section 4) by picking an arbitrary tetrahedron from the mesh
and relabling its vertices from 0 to 4 in the same way as we labeled the corners. We then make
our two initial moves again relabeling the vertices. We keep track of our relabelings in two
arrays A[] and N[] that have demension equal to the number of vertices. A[] contains the old
vertices as they correspond to the new and N[] contains the new as they correspond to the old.

After the initial moves the algorithm makes a decision to move from the current
tetrahedron to one of the adjacent ones. This decision will depend on the type of the current
tetrahedron (defined in Section 2). If the current tetrahedron is of type T for example the Top
tetrahedron has already been visited and based on our movement order convention we chose to
move to the Right tetrahedron.

When dealing with very large meshes the decompression algorithm can theoretically run
into problems in which it would have multiple options for reconnecting tetrahedra. So far we
have no way of predicting when those problems can occur and thus we need to simulate
decompression while we compress the mesh. Therefore, it would make more sense to talk about
the compression algorithm in detail after we discuss the decompression.

Before we go on to the decompression algorithm, it is necessary to mention the putty list.
Whenever the decompression simulated during compression runs into a problem we append the
missing information (a vertex) to this list. During the real decompression when a problem arises
we fall back to the putty list. More details about the uses of the putty and also its construction
will be given in the next two sections.

6. The Decompression Algorithm

The decompression algorithm builds the corner table by processing the information
stored in the compressed mesh file. In the initDecomp procedure, the algorithm first creates a
corner table’s O[] and V[] arrays based on the number of tetrahedra in the mesh and then
initializes it as described in section 4 to account for the first two tetrahedra not stored in the
compressed mesh. initDecomp also initializes next new vertex (NV) to 5, current tetrahedron to 2
and putty list index to 0. The algorithm’s decomp procedure continues to fill in the corner table
by successively attaching a new tetrahedron (current) to the previous tetrahedron and extracting
other connectivity information for the current depending on its type. The type of each new
tetrahedron is obtained from the codes contained in the compressed mesh file. Decomp() stops
when there are no more codes left. The steps taken to fill in the corner table for each type of
tetrahedron are as follows.
1. Tetrahedron C (binary code 0): The SOURCE (current tetrahedron’s source) corner is 

incident to a new vertex, which gives us V[SOURCE] = NV, increment NV by 1. Case C 



means we can move to Top, Right and Left tetrahedra. Based on our convention we move to 
the Top tetrahedron – decomp() calls the moveToTop() procedure.

The procedure moveToTop() sets the opposite corner of the TOP corner to (SOURCE + 4) — 
the next tetrahedron’s source and O[SOURCE + 4] = TOP. It also identifies the vertices 
incident to the next tetrahedron’s top, right and left corners and the SOURCE, RIGHT, 
LEFT respectively as the same. Thus V[TOP + 4] = SOURCE, et.

2. Tetrahedron T (binary code 1100): Case T means the Top has already been visited and so the 
top face is connected to a face of some previously visited tetrahedron. decomp() calls the 
glueTop() procedure to infer this connectivity. With the Top visited we can still move to Right
and Left, by convention we move to Right – decomp() the moveToRight() procedure.

The procedure glueTop() looks for a face to glue the top face of the current tetrahedron. This 
face is defined by the vertices R and L incident to RIGHT and LEFT corners and the unknown
vertex S of the SOURCE corner. The procedure uses the known edge LR on the face to be 
glued and the gluable(tetrahedron, LR, output S, output U) function called on tetrahedra 
starting 2 tetrahedra back from the current to find the correct face to glue. Once a face is 
found, the procedure continues to look for other possible faces. If no other faces are found the 
procedure glues the face found to the top face of the current tetrahedron. The connectivity 
information inferred from this action is as follows. V[SOURCE] is set to S, the O[TOP] is set 
to U and O[U] to TOP, where S is the third vertex on the glued faces and U is the incident 
corner of the remaining vertex in the found tetrahedron. If however another gluable face is 
found then the procedure reads in the connectivity information above from the putty list.

The function gluable(T, edge, output S, output U) takes in the index of a tetrahedron T and an 
edge and returns true if T has a gluable face and false otherwise. For a face to be gluable it 
has to contain the same edge as the face to be glued on the current tetrahedron, the opposite of
the corner incident to the other vertex in the face has yet no value assigned and the face has to 
be oriented correctly. Here we are orienting the faces about the edge all tetrahedrons that have
a possible gluable face revolve about. We put the south and north poles at the vertices of the 
edge and define the two faces on a tetrahedron that share this edge as west and east. So if the 
face on the current is facing west and the face on T is also facing west it is not gluable.

The procedure moveToRight() sets the opposite of the RIGHT corner to (SOURCE + 4) and 
O[SOURCE + 4] = RIGHT. It also identifies the vertices incident to the next tetrahedron’s 
top, right and left corners and the SOURCE, LEFT, TOP respectively as the same.

3. Tetrahedron R (binary code 1010): Case R means the Right tetrahedron has already been 
visited and so the right face can be glued to a face of a previously visited tetrahedron using 
the glueRight() procedure. Since the Top has not been visited moveToTop() is called.

Procedure glueRight() work just like glueTop(), except that it looks for a face to glue the right
face of the current tetrahedron which is defined by the vertices T and L incident to TOP and 
LEFT corners and the unknown vertex S of the SOURCE corner. If only one gluable face is 
found the connectivity information for the SOURCE vertex is the same as in glueTop() but for



the opposites we get O[RIGHT] is set to U and O[U] to RIGHT. If however another gluable
face is found we again fall back to the putty list.

4. Tetrahedron L (binary code 1001): Case L means the Left has been visited and so the left is 
glued with the help of glueLeft() procedure. Again, since the Top has not been visited 
moveToTop() is called.

The procedure glueLeft() is like the other glue procedure discussed above. Here we look at the
edge defined by vertices incident to RIGHT and TOP corners. The inferred connectivity is 
again the same except that we find the opposite for the LEFT corner.

5. Tetrahedron ~T (binary code 1011): In case ~T the LEFT and RIGHT tetrahedra a marked as 
visited. This gives us two faces to glue — right and left. decomp() first calls glueRight() and 
then the pasteLeft() procedure to infer connectivity. And finaly, moveToTop() is called.

The prrocedure pasteLeft() capitalizes on the fact that the vertex incident to the SOURCE has 
been discovered earlier in a glue__() procedure called right before and so all three vertices of 
the face to be glued are known. pasteLeft() checks each tetrahedron starting 2 tetrahedra back 
from current if they contain the same vertices and the vertices incident to the SOURCE, TOP,
and RIGHT corners. Since two and only two tetrahedra can share the same face the search is 
stopped once one is found. We now have the opposite for the LEFT equals the corner opposite
to the pasted face of the second tetrahedron.

6. Tetrahedron ~R (binary code 1101): In case ~R the top and left faces can be glued with 
glueTop() and pasteLeft, respectively. Finally we move to the Right tetrahedron and so 
decomp() calls moveToRight().

7. Tetrahedron ~L (binary code 1110): Since the Top and Right have been visited the top and 
right faces can be glued with glueTop() and pasteRight, respectively. And the only tetrahedron
we can move to is the Left – call moveLeft().

The procedure pasteRight() is similar to pasteLeft(). The only difference is the face we are 
searching for is defined by the vertices incident to the SOURCE, TOP, and LEFT corners.

8. Tetrahedron E (binary code 1111): If a tetrahedron is of type E all the tetrahedra connected to 
its faces have been visited before. First, decomp() calls the glueTop(), pasteRight() and 
pasteLeft() procedures. Since there are no possible tetrahedra to move to next decomp() calls 
popBack() to find a tetrahedron among previously visited tetrahedra that still has an unvisited 
tetrahedron connected to it.

PopBack() looks for the first possible tetrahedron going back consecutively from the current 
tetrahedron that is adjacent to a tetrahedron that has not yet been visited and pops back there. 
It does so by checking all corners of each tetrahedron and stops at the first one that has at least
one corner that still doesn’t have an opposite. The opposite of that corner is then set to 
(SOURCE +4) and vise versa.  If the tetrahedron we popped back to has more then one 



corners with unknown opposites we use same convention as when deciding which tetrahedron
to move to next.

9. Tetrahedron S (binary code 1000): In the type S tetrahedron vertex v is visited, but there are 
no visited tetrahedra adjacent to it, except the Source. Thus there is no information to obtain 
V[SOURCE]. Decomp() gets this vertex from the putty list.

Decomp() completely fills in the corner table. No other manipulations on the table are need.

7. The Compression Algorithm

The compression algorithm starts with calls to initComp() that performs the steps
discussed in Section 5 and to initDecopm() to initialize the corner table for the decompression
simulation.

The procedure compress() is then called recursively until all the tetrahedra in the mesh
are marked as visited. Compress() checks each tetrahedron starting with the third one against the
nine possible cases and appends the correct one to the codes string. Once the correct case has
been determined decompSim() is called to that filled in the information in the corner table
according to the case. The breakdown of information obtainable from each case is discussed in
Section 6.

When simulating the decompression of a case the algorithm runs into a problem when
there is more than one face to glue to the face of the current tetrahedron. This is when the putty
list comes into play. It is sufficient to append the vertex incident to the SOURCE corner to the
putty list for use during the real decompression. Another case where the use of the putty list is
necessary is the S case and again only the vertex incident to the SOURCE is sent.

After compressing and decompressing a tetrahedron compress() moves to the next one
according to convention. When a tetrahedron of type E is reached, as in decompression, the
algorithm looks for the first possible tetrahedron going back consecutively from the current
tetrahedron that is adjacent to one or more tetrahedra that have not yet been visited and pops
back there. The next move is made from that tetrahedron to one of the unvisited ones again by
convention.

The compression is finished when all of the mesh has been successfully compresses into
a codes string and the putty list.

9. Improvements to the Algorithm

Compared to the amount of memory required to store each code the vertices stored in the
putty list take much more memory. Thus having a large putty list undermines the efficiency of
mesh compression into codes. There are a lot of possibilities for improvement, the goal being
elimination of the putty list.

Perhaps the most entries in the putty list are caused by the S case. We’ve considered two
possible ways of dealing with S cases. One way attempted to derive the missing vertex by
looking at all vertices discovered before a particular S case comes up and eliminating all that
cannot possibly be this vertex. For example, we can automatically eliminate the three known



vertices of that S tetrahedron and the fourth vertex of the tetrahedron right before. Unfortunately,
we were only able to narrow the list of possible vertices by about two thirds.

The second approach tried to reduce the number of S cases or in the best case scenario
remove them completely. Whenever an S case was reached we tracked back to the previous
tetrahedron and moved in a different direction if possible. This approach reduced and in simpler
case removed S’s altogether.

We also tried to improve on the number of vertices appended to the putty list due to
multiple 'to be glued to' faces. The approach we now use creates a new code "." to be appended
to the string right after the case in question when the correct gluable face is not the first one
found. We can then append another "." if the correct face is not the second one either and so on.
This approach completely eliminates gluing problem vertices from the putty list.

10. Acknowledgments

 This work was funded by NSF-USA (INT-0306998) and CNPq-Brazil as part of REU at PUC-
RJ, Brazil.

We would like to thanks the Mathematics Department of PUC for their hospitality, our faculty
advisor Hélio Lopes, and REU organizers Maria Helena Noronha and Carlos Tomei.

11. References

[1] Stefan Grumhold, Stefan Guthe, Wolfgang Straßer. Tetrahedral Mesh Compression with the 
Cut-Border Machine.

[2] J. Rossignac, A. Safanova, A. Szymczak. 3D compression made simple: Edgebreaker on a
Corner Table. Shape Modeling International Conference, Genoa, Italy May 2001.




