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Abstract. We prove under certain conditions on agrandcanonical Hamiltonian that at low temperature the
pressureisinfinitely differentiable with respect to the inverse temperature and other parametersin the
Hamiltonian, when the parameters are chosen so that the number of Gibbs statesis at least equal to the
number of ground states. Applications are made to Antiferromagnets and hard-core gases.
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1. Introduction

An important task for classical equilibrium statistical mechanicsisto find general
mathematical criteriafor phase transitions and phase coexistence. One approach to this
problem isthe general theory of infinite volume Gibbs states, probability measures
determined by the DLR equationsfirst given in Refs. 1 and 2. The problem in this context
isto describe al limit Gibbs measures for a given Hamiltonian. Results of thistype include
proofs of the uniqueness or nonuniqueness of Gibbs states for various values of the
thermodynamic parameters associated with the system of particles under consideration.

Another approach to the study of phase transitionsisto try to locate all singularities
of an appropriate thermodynamic function, e.g., the pressure. Phase trangitions are then
associated with these singularities. 1n the low temperature region, investigations along these
lines have established smoothness or anayticity for Ferromagnetic-type systems, asin
Basuev3 and the references contained in Slawny4. The related question of the smoothness
of the low temperature phase diagram has been analyzed by Zahradnik>.

In this paper, we establish some connections between these two criteriafor phase
trangitions in the low temperature region. For afairly general class of Hamiltonians, we
give asimple proof that when parametersin the Hamiltonian like external field strengths are

chosen so that the number of Gibbs states at low temperatureis at least than the number of



ground states, then the pressure isinfinitely differentiable with respect to inverse
temperature and these parameters.  Our requirement on the number of Gibbs statesis not
asredtrictive asit may appear. It isfrequently possibleto fix certain parameters while
letting the others vary in such away that smoothness of the pressureis established in the
(low temperature) regions of the phase diagram where the number of phasesis constant.
Thisis carried out for the antiferromagnet and hard-core gas.

Although Pirogov-Sinai Theory playsamajor role here, the parameters we consider
are not necessarily associated with fields which split the degeneracy of our Hamiltonians.
Examples are given in Section 4. 1n Section 3 we state and prove our main result, Theorem
3.1. Section 2 summarizesthe parts of Pirogov-Sinai Theory which are needed in the
proof of Theorem 3.1. We assume that the reader has some familiarity with the method of

cluster expansions (c.f. Ref. 6) which is also used in the proof.

2. Summary of Pirogov-Sinai Theory
In this section we summarize Pirogov-Sinai Theory”-4:8 in aform which will be
useful in Sect. 3.
We consider Hamiltonians formally given by
H(x) =ba f(xL) (2.1
wheref isafinite range periodic interaction potential, x| isthe restriction of the
configuration x to the subset L of Z4d, and the sum is over finite subsets of Zd. The

parameter b represents the inverse temperature. For il Zdlet x;, the restriction of x to i, take

valuesin somefinite set X. The reference measure on X isthe counting measure. The
energy of afinite configuration (with empty boundary conditions) is then given by
H(x, )= ba. f(Xy)
Al L
With only minor modifications in what follows, we may assume that H has a hard-
corerestriction. In that case, configurations x and y below are assumed to be "alowable" in

that they satisfy the hard-core restriction.



It is convenient to use the notion of relative Hamiltonian. Let two configurations x
andy be equal at all but afinite number of sitesin Zd. In this case wewritex =y (a.s.).
Define .
H(x]y) =b<’::l [f(x)-F(yo)l (2.2)
Note that the sum in (2.2) isfinite. A configuration x iscalled aground stateif H(x | y) 2 O
for eachy suchthat y = x (a.s). We consider only periodic ground states and we assume
that H has only afinite number of periodic ground states, x1,..., x".

The specific energy ey (H) of aperiodic ground state x is given by
e (H) = lim 13 U.(x)
" L- 2% ||—| ihL I

where the limit may be taken over an increasing sequence of hypercubes and where

o 1
U9=b8 o f(x)

with | | denoting cardinality.

We note that for any two periodic ground states x1 and x2 of H,

e.(H) =e.(H) (2.3

Thisisproved in Lemma 2.1 of Ref.4.

For il zd let

W(Q)={jT zd:|li-jI£1}

where || || denotes the Ly --norm of Rdrestricted to Zdand r is afixed number greater than
the radius of interaction of f and large enough so that all periodic ground states are
uniquely determined by their restrictions to W(i).

A hypercube W(i) issaid to be an irregular cube of the configuration X if x
restricted to W(i) is not equal to any ground state restricted to W(i). The boundary B(x) of

x isthe union of all irregular cubes of x.
A subset L of Zdis connected if L cannot bewrittenasL 1 E Ly with

d(L1,L») > 1. Herethedistanceisdetermined by the Ly norm.



Lety =xd(as) for someq=1,..., nand let M be a connected component of the
boundary B(y). Thepair (M, ym) isacontour of y. A pair (M, x\) iscaled acontour if it

is the contour of some configuration. M is called the support of Gand we write |d = [M|.

LetG= (M, xp) beacontour. Then there exists a unique configuration xg such that
Xg=Xm onM and M = B(x). Alsosince [M| < ¥ , there exists a unique infinite connected
component of MCwhich is called the exterior of G ext G and the rest of MCiscalled the
interior of G Int G- On each connected component of M€, Xgis equal to one of the ground
states. Wewill write G= Hif xg=x90n ext (§. The m-interior, Int,G, of Gis the union
of components of the interior of Gon which xg= x™M. The contour Gis called an exterior
contour if it isnot contained in the interior of any other contour.

LetL beafinite subset of Zd Let Rq (L) be the set of all configurations x such that
xi = xjdfor al il LC d(B(x), L€ > 1, and for any contour Gof x, Int (§ | L. Therarified

partition function in volume L with boundary conditions xdfor the Hamiltionian H is

defined by
Z(LIH)= & exp[- H(x|xY)]

xT Ry (L)
LetZ! denotethe usua partition function, i.e,,
Z{ =Q exp[- H(0)]
Xl L
where the sum is over (allowable) configurationsin L and
HI0) = a f(y,)

ACLLAE

andy =x_ onL andy =xdon LC Observethat givenafiniteset L1 Zd thereisaunique
subset L'l L such that

Z'(L|H) =Z exp[- H(x{.)] (2.4)
AsinRef. 8, wewrite Gl L ifsupp& | L, dist(supp&F L) >1,andIntG 1 L. Two
subsets of Zdare said to be far apart if the Ly distance between them is greater than one.
Let Cq (L) be the ensemble whose elements are finite sets of contours{G',..., G} , G

L with supports pairwise far apart. These contours{G',..., G;} in Cq (L) arein general not

contours of a configuration x. Each contour has boundary condition xd.



L et Fqbe anonnegative functional defined on Cq (L). The contour rarified partition
functioninvolumeL is defined by
Z(LIF)=a expl-a F,(G)]
where the summation is over all possible{G',..., G} in Cq(L).
A functional Fqiscaled at-funtional if
F{(&) 3t | A
In order to apply Pirogov-Sinai theory, we need to check Peierls condition for H,
namely, there exists a positive constant r such that for any periodic ground state x9, and any
x such that x = x4 (a.s.)
HX | X9 3 r [B(X) | (2.5)
The following Lemmalis a consequence of Pirogov-Sinai Theory.
Lemma 2.1 Let H have n distinct periodic ground states. Assume that for all B sufficiently
large, H has n distinct Gibbs states which are limits of finite volume Gibbs measures with
boundary conditions equal respectively to the periodic ground states. Each ground stateis

then associated with one Gibbs state. Assume that there are external fieldsHy, ..., Hp-1

which completely split the n-fold degeneracy of H in the sense of Pirogov-Snai. Then for

B sufficiently large there exists a number T and t-functionals Fq, g= 1,..., n such that
ZALIH) = Z(L|Fg (2.6)
for all gand A. Moreover each Fq satisfies
F(@) =H(@ +a logZ(Int &|Fg - log Z( Int G| Fy) 2.7)
k=1
where H(G) = H(x x?).

The proof of Lemma 2.1 follows easily from the Main Theorem B and the proof of

Proposition 2.6 in Ref. 8. We note that t may be chosen arbitrarily large by choosing b

sufficiently large.



Remark 2.1 The existence of the external fieldsH1, ..., Hn-1 isatechnical requirement which

allows usto apply Pirogov-Sinai Theory. We are only interested in the casem © O for the
HamiltonianH' = H + myH + -+ + mh.1 Hp-1. With the hypotheses of Lemma 2.1, m© 0

corresponds to the case of n (the maximal number) of coexisting phases for H' at low

temperature and small values of {m}.

3. Differentiability of the Pressure

Assume that H depends on parameters| j,...,| m, wherel 1 = b, theinverse
temperature. The remaining parameters might correspond to external field strengths or to
variables which parameterize a hypersurface in the phase diagram (c.f. Sect. 4). Inthis
section we use Lemma 2.1 to prove with certain hypotheses that the pressure corresponding
to H isa C¥ function of these parameters.

With the notation of Sect. 2, the pressure P for H is defined by

.1
P(l ,,..., | m):L“-TdE zF (3.1)

where A indicates empty boundary conditions. Under general conditions (see, for example,
Preston8) which are satisfied here, /£ may be replaced by an arbitrary boundary condition in

(3.1). Weexploit thisfact in the proof of Theorem 3.1 below.
In what follows we use the notation { ><)E for expectation with respect to the finite

volume Gibbs state for H in volume L with boundary configuration x4,

Theorem 3.1 Let H be a finite range periodic Hamiltonian depending on parameters

A1,..., Amasdescribed above. Letintervalsly, ..., Imbegivenwherely = (81, ). For

Ak, k= 1,..., m, in any finite open subinterval of I, assume that H satisfies the following
conditions:
a) H satisfies Peierls condition

b) H has exactly n periodic ground states x1,..., x"



¢) H has n extremal Gibbs states which are limits of finite volume Gibbs measures with

boundary configurations given respectively by x1,..., x

ﬂi H(x, )‘ £cJL| for some constant ¢; and all finite Al Z9.,

Iy

D e

€) For any ground state configuration xdand any N, there exists a constant ¢(N) such that

N ﬂN ﬂN
S H(GY) = o Hix k) S HOE)
k

e (B
N

Then for any k = 1,..., mthere exists B such that % existsfor all N= 1, 2, ..., when
k

’;3(:(N)|GC'|N and £ c(N)|L| for any finite A.

Ake |k provided =M1 > Bo.

Remark 3.1 We note that condition ¢) of Theorem 3.1 does not require the number of
Gibbs states to equal the number of ground states,; the number of Gibbs states may exceed
the number of ground states. Thus, for example, the theorem applies to Hamiltonians with
the parameters chosen so that thereis only one ground state, but possibly more than one
Gibbs state. However, examples exist where @) and b) of Theorem 3.1 are satisfied but not
¢) as shown in the introduction of Ref. 4. In an interesting example in the introduction of
Ref. 4, aHamiltonian and its low temperature phase diagram are shown. There are points
on the phase diagram corresponding to i) three ground states and one Gibbs state ii) one

ground state and two Gibbs states iii) two ground states and three Gibbs states, etc.

Proof. Let {L 5} be asequence of volumes converging to Zd and for afixed value of q let
1]
: [\; isafamily of equicontinuous functionsin | x which are

1 qf
f,=—logz} . Ifj
L ’I‘T”k

uniformly bounded for al | k in any open subinterval of Iy then by the Arzela-Ascolli

19t 0 . .
Theorem, there exists a subsequencej i 2 i:/) uniformly convergent in any open subinterval
i k

of Ix. Thisimpliesthat Pisdifferentiable with respecttol x on Ik and




I qNf U
Similarly, by induction, if { ﬂ—I,”y is uniformly bounded in any open subinterval of Iy for al

T7kp
N=1, 2, .., thenit followsthat Pisinfinitely differentiablein| .
Thusit suffices to show that for b in afinite open interval with b >bg (for some bg)
and | g inan open subinterva of Ik
1 (TMlogZ}.
[T

for al hypercubes L' with side length sufficiently large and some constants M'n which may

M’ (3.2)

depend on the subintervals of 11 and Ik.

We next modify (3.2) by using equation (2.4). By condition €) of the Theorem,
N

L1 pp= Lt I e
7 g 109 @P(HO =1 g HK)

L
isbounded for eachN and all L". Also|—'|® 1 asi® ¥ for any sequencel- Zd To

Ll
prove the Theorem it therefore suffices to prove that there exists abg such that for b in any

open subinterval of (bg, ¥),

1 |1 logZ® (L H)
L

for all g in afinite open subinterva of Iy , adl L, and some constants My which may

£ M, (3.3)

depend on the subintervals,andal N =1, 2, ....
By (2.6) there exists bg such that if b > bg then

ZYLH) = Z(L|Fq

8 eq-aF (G

{G,..GaM C(L) i=1
g 1 o 4

=a = a y@.mep-aFR@G) (B4
m=0 M* ga oy =1

where o
y(L..m =exp[- a V(i)

EEi<jEm



and V(i,j) =¥ if G9and GYare not far gpart and V(i,j) = 0if GAand GYarefar gpart. Asin

Mayer's expansiorb, let .
yo(Lom) = a O {expl- V(i,i)]- 3

g (g

where gis aconnected graph on {1, ..., m}.

Then
g 1 o g
m=1 m: GY,..., qfl]i L i=1
and
LT logz(LlF) =28 L & yuL..m oreq- ARG @6
|L|T“ | |m 1 m! GGl L e T“ l\'l( i=1 ‘ '
m N
Letf=-QF -(G"). Then %I—Nexpf isasum of at most N! terms and each term
i=1 k
isof theforme' El L El— withig+--+ip =N, i3 1fordlj=1,..,L. Weuseformula
k
|
(2.7) to compute ﬂT_' F,(G"). Itisnecessary to first etimate
k
T _ ‘H' q
ﬂl—log Z(LIF,) = |og[z exp{- H(x")] (3.7)

Forl31therightsideof (3.7)isasum of at most 2! 11 terms of the form
Ky LK,
J21 8\ g 8 g 8
&, 5/ \em, s/ D \em, s 59
k k L

whereky+--+k¢=1,i;3 1forj=1,.,t

By condition d),
£2'11¢|L]' ° c, L] (3.9)

Combining (3.9) and (2.7) with condition €) gives

ﬂT— F (G‘*){ £c)|6"] +ncfinte| £c() |6 +cf & £c|e]’  (3.10)
for some geometric constants c3 and ¢4. Hence
I
Tecd o7 sl 1of 311

and
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dN

ﬂNf£eNc a|q‘*|

e

f 2 q O f a8 q C
£c,e dI(N!) expgia=1 |G, |E °c e exp%f’;'iz,1 |Q |E (3.12
Combining (3.6) , (3.12), and using thefact that Fqis at-functional gives

N m
ﬂ o [0gZ(L|F, e = a — a Iy (Q.mlexp[(1-t)a |Gl (3.13
||—| ' L mex M Do, L i=1

Now using Penrose tree graph bounds and standard arguments?, it follows that (3.13) is
bounded by a constant My if

o -(t-2)|ct
8 20

G*01 GY

<1 (3.14)

Sincet may be chosen arbitrarily large by choosing b sufficiently large, (3.14) holds if
b 3 bgfor somebg> 0. The proof is completed by combining (3.13) with (3.3).

Thefollowing isacorollary to the proof of Theorem 3.1.

Corollary 3.1 Assume all of the hypotheses of Theorem 3.1 except that condition €) holds
onlyfor N=1, 2, ..., M+ 1. Thenthe pressureisM times differentiable with respect to A

for B > Bo.

4. Examples
In this section we give some examples and applications of Theorem 3.1.
A) Ferromagnetic Isng Modd withd3 2
The purpose of thisexampleisjust to illustrate Theorem 3.1. We note that low

temperature analyticity in b iswell-known; references are given in Slawny# (see also

Ref. 3). Let
H(x) =bJ & x; X, - bhQ (4.1)
fi- i1 i

with J< 0 and xj = £1 and where || denotes the Euclidean norm. Then H satisfies Peierls

condition for al b =1 1, and h =l . The Hamiltonian H1 = ba j xj completely splitsthe



degeneracy of H. If h=0, H has two periodic ground states and otherwise one. The

remaining hypotheses of Theorem 3.1 are easily checked. The following Corollary holds.

Corollary 4.1 There exists B (h) depending on h such that if B >B¢ (h) and
a) h = 0, then the pressure isinfinitely differentiable with respect to 3.

b) h =0, then the pressureis infinitely differentiable with respect to B and with respect to h.

We note that L ebowitz and Martin-Lof10 proved that the pressure is not
differentiable with respect to h at h = 0 for all values of the temperature below the critical

temperature.

B) Antiferromagnet, d3 2
Let
H(x) =b & x,x, - bh@ x (4.2)
li-jI=1 i
withx; = +1. Notethat the term bha; x; in (4.2) does not split the degeneracy of the
Hamiltonian consisting of the first term aone. H(x) has two ground states if |h| < 2d and

one ground state if [h| > 2d. If |h| < 2d, a perturbation Hamiltonian and coupling constant

bmwhich split the degeneracy of (4.2) isbnd& i even Xi , Wherethe sum is over sitesin Zd,
the sum of whose componentsis even. The coefficient mis of little physical interest and we
consider only the case m= 0. It can be shown that (for m= 0) H(x) has exactly two ground

states and at least two Gibbs states for al |h| < 2d and for b > kp(h) where bg(h) may be

chosen to depend only on min (|h - 2d|, |h + 2d]). For adiscussion and further references

on thiswe refer the reader to Ref. 11. Analysis of the case |h| > 2d is straightforward. Asto
the differentiability of the pressure with respect to b and h we have the following corollary

to Theorem 3.1.

11



Corollary 4.2 Let P bethe pressurefor (4.2). Then if |h| # 2d, there exists Bo(h) which

dependsonly on min (|h - 2d|, |h + 2d]) such that P isinfinitely differentiable with respect
to hfor B > Bo(h) and infinitely differentiable with respect to  for B> po(h).

C) Hard-Core Gas, d3 2
In this example,
H(x) = ba x (4.3)
wherexj =0or 1 and H isrestricted to alowable configurations. A configuration X is

dlowableif xj xj = 0 whenever the Euclidean distance between i and j equals one.

Corollary 4.3 Let P be the pressure for (4.3). Then there exists Bo>0 such if B > Bg, then

P isinfinitely differentiable with respect to j3.

D) Fisher Antiferromagnet, d = 2
Let
H(x) =b@ J,% X, - bhQ x (4.4)
) i
wherethe sumisover pairs (i, ), xj = £1, and J; equals 1 for nearest neighbor pairs (i,j), J;

is anegative constant when |i - j| = O2, and Jj = O otherwise. ThisHamiltonian was

analyzed by Pirogov and Sinai’. In order to formulate Corollary 4.4 we repeat some of
their analysis. For smplicity, we consider only h3 0. Thecaseh £ Oissmilar.
Consider the Hamiltonian
H'(x) =ba@ J; X X, - 4baA X, (4.5)
(%)) i

H1(x) satisfies Peierls condition and has three ground states

x% = (-1l
x2; = (-1)lilF1
x3=1

where|i| = |(i1,i2)| = |i1| + |i2|. Let H1 and Ho be given by

12
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H,=b a x, H,=b ax (4.6)
i2lifodd i:lileven
Then clearly mH1 + nmpH2 completely splits the degeneracy of HY.
It follows from Pirogov-Sinai Theory that there exist my(b) and np(b) such that
H1+ my(b) Hy + mp(b) Hz

has three Gibbs measures, no two of which are a convex combination of the third, when b is
sufficiently large. Symmetry arguments show that my(b) = np(b). Referring to the common

value of

my(b) - 4 and np(b) - 4 as h(b), define

H(x) =b@ J,x,x; - h(b)a x, (4.7)
(i) i

The following Corollary follows from Corollary 3.1.

Corollary 4.4 Let P be the pressure for H2 given by (4.7). Suppose that h(B) is n times
continuoudly differentiable with respect to 3 for all B sufficiently large (possibly depending
on n). Then there exists a Bg such that if § > Bo, P is n times differentiable with respect
to .

Remark 4.1 Applying the results of Zahradnik on the analyticity of the phase diagramd, it

followsthat h(b) is an anaytic function. Thusthe hypothesisthat h(b) isntimes

differentiable may be removed in Corollary 4.4.

Referring back to H defined by (4.4), it is possible to show that the pressure for H is
infinitely differentiable with respect to h and b, for large b, at values of h such that

h > max[h(b), 4] or 0£ h <min[h(b), 4]. Thisfollowsfrom Theorem 3.1 and an analysis

similar to the one given above.
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