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Abstract.  We prove under certain conditions on a grandcanonical Hamiltonian that at low temperature the
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1. Introduction

An important task for classical equilibrium statistical mechanics is to find general

mathematical criteria for phase transitions and phase coexistence.  One approach to this

problem is the general theory of infinite volume Gibbs states, probability measures

determined by the DLR equations first given in Refs. 1 and 2.  The problem in this context

is to describe all limit Gibbs measures for a given Hamiltonian.  Results of this type include

proofs of the uniqueness or nonuniqueness of Gibbs states for various values of the

thermodynamic parameters associated with the system of particles under consideration.    

Another approach to the study of phase transitions is to try to locate all singularities

of an appropriate thermodynamic function, e.g., the pressure.  Phase transitions are then

associated with these singularities.  In the low temperature region, investigations along these

lines have established smoothness or analyticity for Ferromagnetic-type systems, as in

Basuev3 and the references contained in Slawny4.  The related question of the smoothness

of the low temperature phase diagram has been analyzed by Zahradnik5.

In this paper, we establish some connections between these two criteria for phase

transitions in the low temperature region.  For a fairly general class of Hamiltonians, we

give a simple proof that when parameters in the Hamiltonian like external field strengths are

chosen so that the number of Gibbs states at low temperature is at least than the number of
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ground states, then the pressure is infinitely differentiable with respect to inverse

temperature and these parameters.   Our requirement on the number of Gibbs states is not

as restrictive as it may appear.  It is frequently possible to fix certain parameters while

letting the others vary in such a way that smoothness of the pressure is established in the

(low temperature) regions of the phase diagram where the number of phases is constant.

This is carried out for the antiferromagnet and hard-core gas.

Although Pirogov-Sinai Theory plays a major role here, the parameters we consider

are not necessarily associated with fields which split the degeneracy of our Hamiltonians.

Examples are given in Section 4.  In Section 3 we state and prove our main result, Theorem

3.1.  Section 2 summarizes the parts of  Pirogov-Sinai Theory which are needed in the

proof of Theorem 3.1.  We assume that the reader has some familiarity with the method of

cluster expansions (c.f. Ref. 6) which is also used in the proof.

2. Summary of Pirogov-Sinai Theory

In this section we summarize Pirogov-Sinai Theory7,4,8  in a form which will be

useful in Sect. 3.

We consider Hamiltonians formally given by

H(x) = β∑Λ φ(xΛ) (2.1)

where φ is a finite range periodic interaction potential, xΛ is the restriction of the

configuration x to the subset Λ of Zd, and the sum is over finite subsets of Zd.  The

parameter β represents the inverse temperature.  For i∈Zd let xi, the restriction of x to i, take

values in some finite set X.  The reference measure on X is the counting measure.  The

energy of a finite configuration (with empty boundary conditions) is then given by

  
H(xΛ ) = β φ(xA )

A⊂Λ
∑

With only minor modifications in what follows, we may assume that H has a hard-

core restriction.  In that case, configurations x and y below are assumed to be "allowable" in

that they satisfy the hard-core restriction.
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It is convenient to use the notion of relative Hamiltonian.  Let two configurations x

and y be equal at all but a finite number of sites in Zd.  In this case we write x = y (a.s.).

Define

  
H(x|y) =β [φ(xΛ ) −φ(y Λ )

Λ
∑ ]

        
(2.2)

Note that the sum in (2.2) is finite.  A configuration x is called a ground state if H(x | y) ≥ 0

for each y such that y = x (a.s.).  We consider only periodic ground states and we assume

that H has only a finite number of periodic ground states, x1,..., xn.

The specific energy ex (H) of a periodic ground state x is given by

 
ex (H) = lim

Λ↑ Zd

1

| Λ|
Ui(x)

i∈Λ
∑

where the limit may be taken over an increasing sequence of hypercubes and where

  
U i(x) = β

1

|A|
φ(xA)

A:i∈A
∑

with |  | denoting cardinality.

We note that for any two periodic ground states x1 and x2 of H,

 ex1 (H) = e
x 2 (H)   (2.3)

This is proved in Lemma 2.1 of Ref.4.

For i∈Zd, let

W(i) = {j∈Zd : || i - j || ≤ r}

where ||  || denotes the L∞ --norm of Rd restricted to Zd and r is a fixed number greater than

the radius of interaction of φ and large enough so that all periodic ground states are

uniquely determined by their restrictions to W(i).

A hypercube W(i) is said to be an irregular cube of the configuration x if x

restricted to W(i) is not equal to any ground state restricted to W(i).  The boundary B(x) of

x is the union of all irregular cubes of x.

A subset Λ of Zd is connected if Λ cannot be written as Λ1 ∪ Λ2 with

d(Λ1, Λ2) > 1.  Here the distance is determined by the L∞ norm.
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Let y = xq (a.s.) for some q = 1,..., n and let M be a connected component of the

boundary B(y).  The pair (M, yM) is a contour of y.  A pair (M, xM) is called a contour if it

is the contour of some configuration.  M is called the support of Γ and we write |Γ| = |M|.

Let Γ = (M, xM) be a contour.  Then there exists a unique configuration xΓ such that

xΓ = xM on M and M = B(x).  Also since |M| < ∞ , there exists a unique infinite connected

component of Mc which is called the exterior of Γ, ext Γ, and the rest of Mc is called the

interior of Γ, Int Γ.  On each connected component of Mc, xΓ is equal to one of the ground

states.  We will write Γ = Γq if xΓ = xq on ext (Γ).  The m-interior, IntmΓ, of Γ is the union

of components of the interior of Γ on which xΓ = xm.  The contour Γ is called an exterior

contour if it is not contained in the interior of any other contour.

Let Λ be a finite subset of Zd.  Let Rq (Λ) be the set of all configurations x such that

xi = xiq for all i∈ Λc, d(B(x), Λc) > 1, and for any contour Γ of x, Int (Γ)   ⊂  Λ.  The rarified

partition function in volume Λ with boundary conditions xq for the Hamiltionian H is

defined by

  
Zq (Λ |H) = exp[−H(x|xq )]

x∈Rq ( Λ)
∑

Let   Z Λ
q  denote the usual partition function, i.e.,

  
Z Λ

q = exp[−Hq (x)]
x∈Λ
∑

where the sum is over (allowable) configurations in Λ and

  
H q(x) = φ(yA)

A ∩Λ≠∅
∑

and y = xΛ on Λ and y = xq on Λc.  Observe that given a finite set Λ   ⊂  Zd, there is a unique

subset Λ'   ⊂  Λ such that

  Z
q (Λ |H) = ZΛ '

q exp[−H(x Λ'
q )] (2.4)

As in Ref. 8, we write Γq   ⊂  Λ if supp Γq    ⊂  Λ, dist (supp Γq, Λc) > 1, and Int Γq    ⊂  Λ.  Two

subsets of Zd are said to be far apart if the L∞ distance between them is greater than one.

Let Cq (Λ) be the ensemble whose elements are finite sets of contours   {Γ1
q ,..., Γm

q},   Γi
q   ⊂

Λ with supports pairwise far apart.  These contours   {Γ1
q ,..., Γm

q}in Cq (Λ) are in general not

contours of a configuration x.  Each contour has boundary condition xq.
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Let Fq be a nonnegative functional defined on Cq (Λ).  The contour rarified partition

function in volume Λ is defined by

  
Z( Λ |Fq ) = exp[− Fq (Γi

q )]
i

∑∑
where the summation is over all possible   {Γ1

q ,..., Γm
q}in Cq (Λ).

A functional Fq is called a τ-funtional if

Fq(Γq) ≥ τ | Γq |.

In order to apply Pirogov-Sinai theory, we need to check Peierls' condition for H,

namely, there exists a positive constant ρ such that for any periodic ground state xq, and any

x such that x = xq (a.s.) 

H(x | xq) ≥ ρ |B(x) | (2.5)

The following Lemma is a consequence of Pirogov-Sinai Theory.

Lemma 2.1 Let H have n distinct periodic ground states.  Assume that for all sufficiently

large, H has n distinct Gibbs states which are limits of finite volume Gibbs measures with

boundary conditions equal respectively to the periodic ground states.  Each ground state is

then associated with one Gibbs state.  Assume that there are external fields H1, ..., Hn-1

which completely split the  n-fold degeneracy of H in the sense of Pirogov-Sinai.  Then for

 sufficiently large there exists a number  and -functionals Fq, q= 1,..., n such that

Zq(Λ|H) = Z(Λ|Fq) (2.6)

for all q and .  Moreover each Fq satisfies

Fq(Γq) = H(Γq) + 
  k=1

n

∑  log Z( Intk Γq | Fq) - log Z( Intk Γq | Fk)  (2.7)

where  H(Γq) =   H(xΓ q |x q ) .

The proof of Lemma 2.1 follows easily from the Main Theorem B and the proof of

Proposition 2.6 in Ref. 8.  We note that τ may be chosen arbitrarily large by choosing β

sufficiently large.
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Remark 2.1 The existence of the external fields H1, ..., Hn-1 is a technical requirement which

allows us to apply Pirogov-Sinai Theory.  We are only interested in the case µi ≡ 0 for the

Hamiltonian H' = H + µ1H1 + ... + µn-1 Hn-1.  With the hypotheses of Lemma 2.1, µi ≡ 0

corresponds to the case of n (the maximal number) of coexisting phases for H' at low

temperature and small values of {µi}.

3. Differentiability of the Pressure

 Assume that H depends on parameters λ1,...,λm, where λ1 = β, the inverse

temperature.  The remaining parameters might correspond to external field strengths or to

variables which parameterize a hypersurface in the phase diagram (c.f. Sect. 4). In this

section we use Lemma 2.1 to prove with certain hypotheses that the pressure corresponding

to H is a C∞ function of these parameters.

With the notation of Sect. 2, the pressure P for H is defined by

  
P(λ1,..., λ m ) = lim

Λ↑ Zd

1

|Λ|
ZΛ

∅

 
(3.1)

where   ∅  indicates empty boundary conditions. Under general conditions (see, for example,

Preston8) which are satisfied here,   ∅  may be replaced by an arbitrary boundary condition in

(3.1).  We exploit this fact in the proof of Theorem 3.1 below.

In what follows we use the notation   ⋅ Λ
q
 for expectation with respect to the finite

volume Gibbs state for H in volume Λ with boundary configuration xq.

Theorem 3.1 Let H be a finite range periodic Hamiltonian depending on parameters

1,..., m as described above.  Let intervals I1, ..., Im be given where I1 = ( 1, ).  For

k k = 1,..., m, in any finite open subinterval of Ik assume that H satisfies the following

conditions:

a) H satisfies Peierls' condition

b) H has exactly n periodic ground states x1,..., xn
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c) H has n extremal Gibbs states which are limits of finite volume Gibbs measures with

boundary configurations given respectively  by  x1,..., xn

d)  
  
max
x⊂Λ

∂
∂λk

H(x Λ ) ≤ c1 Λ   for some constant c1 and all finite   ⊂Zd.

e) For any ground state configuration xq and any N, there exists a constant c(N)  such that

  

∂N

∂λk
N H(Γq ) =

∂N

∂λ k
N H(x Γ q |x q ) ≤ c(N) Γq N

 and 
  

∂N

∂λk
N H(xΛ

q ) ≤ c(N) Λ  for any finite .

Then for any k = 1,..., m there exists 0 such that  
  

∂NP

∂λk
N  exists for all N = 1, 2, ..., when

k Ik provided  > 0.

Remark 3.1  We note that condition c) of Theorem 3.1 does not require the number of

Gibbs states to equal the number of ground states; the number of Gibbs states may exceed

the number of ground states.  Thus, for example, the theorem applies to Hamiltonians with

the parameters chosen so that there is only one ground state, but possibly more than one

Gibbs state.  However, examples exist where a) and b) of Theorem 3.1 are satisfied but not

c) as shown in the introduction of Ref. 4. In an interesting example in the introduction of

Ref. 4, a Hamiltonian and its low temperature phase diagram are shown.  There are points

on the phase diagram corresponding to i) three ground states and one Gibbs state ii) one

ground state and two Gibbs states iii) two ground states and three Gibbs states, etc.

Proof. Let {Λn} be a sequence of volumes converging to Zd and for a fixed value of q let

  
fn =

1

Λ
logZ Λ n

q .  If 
  

∂fn

∂λk

 
 
 

 
 
 

 is a family of equicontinuous functions in λk which are

uniformly bounded for all λk in any open subinterval of Ik then by the Arzela-Ascolli

Theorem, there exists a subsequence 
  

∂fnm

∂λk

 
 
 

 
 
 

 uniformly convergent in any open subinterval

of Ik.  This implies that P is differentiable with respect to λk on Ik and

  

∂ P

∂λ k

= lim
m→∞

∂fn m

∂λk
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Similarly, by induction, if 

  

∂Nfn

∂λ k
N

 
 
 

 
 
 

is uniformly bounded in any open subinterval of Ik for all

N = 1, 2, ..., then it follows that P is infinitely differentiable in λk.

Thus it suffices to show that for β in a finite open interval with β > β0 (for some β0)

and λk in an open subinterval of Ik

  

1

Λ '

∂N logZ Λ'
q

∂λ k
N ≤ M'N  (3.2)

for all hypercubes Λ' with side length sufficiently large and some constants M'N which may

depend on the subintervals of I1 and Ik.

We next modify (3.2) by using equation (2.4).  By condition e) of the Theorem,

  

1

Λ '

∂N

∂λ k
N log exp{H(xΛ '

q )}=
1

Λ '

∂N

∂λk
N H(xΛ '

q )  

is bounded for each N and all Λ'.  Also 
  

Λ 'i
Λ i

→ 1 as i →∞ for any sequence Λi ↑ Zd.  To

prove the Theorem it therefore suffices to prove that there exists a β0 such that for β in any

open subinterval of (β0, ∞),

  

1

Λ
∂N logZ q (Λ |H)

∂λ k
N ≤ MN (3.3)

for all λk in a finite open subinterval of Ik , all Λ, and some constants MN which may

depend on the subintervals, and all N = 1, 2, ... .

By (2.6) there exists β0 such that if β > β0 then

                   Zq(Λ|H)  =  Z(Λ|Fq)

                      
  
= exp[− Fq (Γi

q )
i =1

m

∑
{Γ1

q ,..., Γm
q }∈C( Λ )

∑ ]

                                              
  
=

1

m!m =0

∞

∑ ψ(1,...,m) exp[− Fq (Γi
q )

i =1

m

∑
Γ1

q ,..., Γm
q ⊂Λ

∑ ]
        

(3.4)

where
         

  
ψ(1,..., m) = exp[− V(i, j)

1≤ i < j≤ m
∑ ]
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and V(i,j) = ∞ if Γiq and Γjq are not far apart and V(i,j) = 0 if Γiq and Γjq are far apart.  As in

Mayer's expansion6, let

  
ψ c(1,...,m) =

γ
∑

(i,j)∈γ
∏ {exp[−V(i, j)] −1}

where γ is a connected graph6 on {1, ..., m}.

Then

                   log Z(Λ|Fq)  
  
=

1

m!m =1

∞

∑ ψc (1,...,m) exp[− Fq (Γi
q )

i =1

m

∑
Γ1

q ,...,Γm
q ⊂Λ

∑ ]
            

(3.5)

and

         
  

1

Λ
∂N

∂λ k
N logZ(Λ|Fq ) =

1

Λ
1

m!m=1

∞

∑ ψc(1,...,m)
∂N

∂λ k
N exp[− Fq (Γi

q )
i =1

m

∑
Γ1

q ,...,Γ m
q ⊂Λ

∑ ]    (3.6)

Let  
  
f = − Fq (Γi

q )
i =1

m

∑ .  Then 
  

∂N

∂λ k
N expf   is a sum of at most N! terms and each term

is of the form 
  
ef ∂i 1 f

∂λk
i 1

L
∂ iL f

∂λk
iL

 with i1+ ...+iL = N, ij ≥ 1 for all j = 1,..., L.  We use formula

(2.7) to compute 
  

∂ l

∂λ k
l Fq (Γq ) .  It is necessary to first estimate

  

∂ l

∂λ k
l log Z(Λ|Fq ) =

∂ l

∂λ k
l log ZΛ '

q exp{−H(xΛ '
q )[ ]              (3.7)

For   l ≥1 the right side of (3.7) is a sum of at most 2  l    l ! terms of the form

  
±

∂
∂λk

H
 
  

 
  

k1

Λ'

q

∂
∂λk

H
 
  

 
  

k 2

Λ'

q

L
∂

∂λk

H
 
  

 
  

k t

Λ'

q

                  (3.8)

where k1+ ...+kt =   l , ij ≥1 for j = 1,..., t.

By condition d),

  

∂l

∂λk
l log Z( Λ|Fq ) ≤2 l l !c1

l Λ l ≡ c2 Λ l
       (3.9)

Combining (3.9) and (2.7) with condition e) gives

  

∂l

∂λk
l Fq (Γq ) ≤ c(l ) Γq l

+ nc2 Int Γq l

  ≤ c(l ) Γq l
+ c3 Γq dl

≤c4 Γq dl

       (3.10)

for some geometric constants c3 and c4.  Hence

  

∂ l f

∂λk
l ≤ c4

i =1

m

∑ Γi
q d l

≤ c4
i =1

m

∑ Γi
q 

  
 
  

d l

(3.11)

and
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∂Nef

∂λk
N ≤ ef N!c 4

i =1

m

∑ Γi
q 

  
 
  

dN

     
  
≤c4 ef d!(N!)2 exp

i =1

m

∑ Γi
q 

  
 
  ≡ c5 ef exp

i =1

m

∑ Γi
q 

  
 
     (3.12)

Combining (3.6) , (3.12), and using the fact that Fq is a τ-functional gives

  

1

Λ
|

∂N

∂λ k
N logZ(Λ|Fq )| ≤

c5

Λ
1

m!m=1

∞

∑ |ψ c(1,...,m)|exp[(1 −τ ) |Γi
q |

i=1

m

∑
Γ1

q ,...,Γ m
q ⊂Λ

∑ ]    (3.13)

Now using Penrose tree graph bounds and standard arguments6, it follows that (3.13) is

bounded by a constant MN if

  
e

−(τ−2 ) Γ q

Γ q:0∈Γ q

∑ < 1 (3.14)

Since τ may be chosen arbitrarily large by choosing β sufficiently large, (3.14) holds if

β ≥ β0 for some β0 > 0.  The proof is completed by combining (3.13) with (3.3).

The following is a corollary to the proof of Theorem 3.1.

Corollary 3.1 Assume all of the hypotheses of Theorem 3.1 except that condition e) holds

only for N = 1, 2, ..., M+1.  Then the pressure is M times differentiable with respect to k

for  > 0.

4. Examples

In this section we give some examples and applications of Theorem 3.1.

A) Ferromagnetic Ising Model with d ≥ 2

The purpose of this example is just to illustrate Theorem 3.1.  We note that  low

temperature analyticity in β is well-known; references are given in Slawny4 (see also

Ref. 3).  Let

  
H(x) =β J xi x j

i − j =1
∑ −βh xi

i
∑ (4.1)

with J < 0 and xi = ±1 and where |.| denotes the Euclidean norm.  Then H satisfies Peierls'

condition for all β = λ1, and h =λ2.  The Hamiltonian H1 = β∑ i xi completely splits the
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degeneracy of H. If h = 0, H has two periodic ground states and otherwise one.  The

remaining hypotheses of Theorem 3.1 are easily checked.  The following Corollary holds.

Corollary 4.1 There exists 0 (h) depending on h such that if  > 0 (h) and

a) h = 0, then the pressure is infinitely differentiable with respect to .

b) h 0, then the pressure is infinitely differentiable with respect to  and with respect to h.

We note that Lebowitz and Martin-Lof10 proved that the pressure is not

differentiable with respect to h at h = 0 for all values of the temperature below the critical

temperature.

B) Antiferromagnet, d ≥ 2

Let

  
H(x) =β x i x j

i − j =1
∑ −βh xi

i
∑ (4.2)

with xi = ±1.  Note that the term βh∑i xi in (4.2) does not split the degeneracy of the

Hamiltonian consisting of the first term alone.  H(x) has two ground states if |h| < 2d and

one ground state if |h| > 2d.  If |h| < 2d, a perturbation Hamiltonian and coupling constant

βµ which split the degeneracy of (4.2) is βµ∑ i even xi , where the sum is over sites in Zd ,

the sum of whose components is even.  The coefficient µ is of little physical interest and we

consider only the case µ = 0.  It can be shown that (for µ = 0) H(x) has exactly two ground

states and at least two Gibbs states for all |h| < 2d and for  β > β0(h) where β0(h) may be

chosen to depend only on min (|h - 2d|, |h + 2d|).  For a discussion and further references

on this we refer the reader to Ref. 11. Analysis of the case |h| > 2d is straightforward.  As to

the differentiability of the pressure with respect to β and h we have the following corollary

to Theorem 3.1.
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Corollary 4.2  Let P be the pressure for (4.2). Then if |h|  2d, there exists 0(h) which

depends only on min (|h - 2d|, |h + 2d|) such that P is infinitely differentiable with respect

to h for  > 0(h) and infinitely differentiable with respect to  for 0(h).

C) Hard-Core Gas, d ≥ 2

In this example,

H(x) = β∑ i xi (4.3)

where xi  = 0 or 1 and H is restricted to allowable configurations.  A configuration x is

allowable if xi xj = 0 whenever the Euclidean distance between i and j equals one.

Corollary 4.3 Let P be the pressure for (4.3).  Then there exists 0>0 such if  > 0, then

P is infinitely differentiable with respect to .

D) Fisher Antiferromagnet, d = 2

Let

  
H(x) =β J ij xi x j

(i,j)
∑ −βh xi

i
∑  (4.4)

where the sum is over pairs (i, j), xi = ±1, and Jij equals 1 for nearest neighbor pairs (i,j), Jij

is a negative constant when |i - j| = √2, and Jij = 0 otherwise.  This Hamiltonian was

analyzed by Pirogov and Sinai7.  In order to formulate Corollary 4.4 we repeat some of

their analysis.  For simplicity, we consider only h ≥ 0.  The case h ≤ 0 is similar.

Consider the Hamiltonian

  
H1(x) =β J ij xi x j

(i,j)
∑ −4β x i

i
∑   (4.5)

H1(x) satisfies Peierls' condition and has three ground states

x1i = (-1)|i|

x2i = (-1)|i|+1

x3i = 1

where |i| = |(i1, i2)| = |i1| + |i2|.  Let H1 and H2 be given by
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H1 =β xi

i:|i |odd
∑ H2 =β x i

i:|i|even
∑

                            
(4.6)

Then clearly µ1H1 + µ2H2 completely splits the degeneracy of H1.

It follows from Pirogov-Sinai Theory that there exist µ1(β) and µ2(β) such that

H1 + µ1(β) H1 + µ2(β) H2

has three Gibbs measures, no two of which are a convex combination of the third, when β is

sufficiently large. Symmetry arguments show that µ1(β) = µ2(β).  Referring to the common

value of

µ1(β) - 4 and µ2(β) - 4 as h(β), define

  
H 2(x) =β J ij x i x j

(i,j)
∑ − h(β) x i

i
∑ (4.7)

 The following Corollary follows from Corollary 3.1.

Corollary 4.4 Let P be the pressure for H2 given by (4.7). Suppose that h( ) is n times

continuously differentiable with respect to  for all  sufficiently large (possibly depending

on n). Then there exists a 0 such that if  > 0 , P is n times differentiable with respect

to .

 Remark 4.1  Applying the results of Zahradnik on the analyticity of the phase diagram5, it

follows that h(β) is an analytic function.  Thus the hypothesis that h(β) is n times

differentiable may be removed in Corollary 4.4.

Referring back to H defined by (4.4), it is possible to show that the pressure for H is

infinitely differentiable with respect to h and β, for large β, at values of h such that

h > max[h(β), 4] or 0 ≤ h < min[h(β), 4].  This follows from Theorem 3.1 and an analysis

similar to the one given above.
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