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Abstract. We show that any 4-manifold, after surgery on a curve, admits an achiral Lefschetz
fibration. In particular, if X is a simply connected 4-manifold we show that X#S2

× S2 and
X#S2 e×S2 both admit achiral Lefschetz fibrations. We also show these surgered manifolds admit
near-symplectic structures and prove more generally that achiral Lefschetz fibrations with sections
have near-symplectic structures. As a corollary to our proof we obtain an alternate proof of
Gompf’s result on the existence of symplectic structures on Lefschetz pencils.

1. Introduction

Symplectic 4-dimensional manifolds are known to be characterized as those admitting the struc-
ture of a Lefschetz fibration. More precisely, Donaldson [4] proved that every symplectic 4-manifold
admits a Lefschetz pencil, which can be blown up at its base points to yield a Lefschetz fibration.
Conversely, Gompf [17] showed that any 4-manifold with a Lefschetz fibration admits a symplectic
structure, provided the fibers are non-trivial in homology.

The definition of a Lefschetz fibration includes the provision that the orientations in the local
holomorphic description of a critical point match the global orientations of the total and base spaces
of the fibration. This condition is crucial for the above results, for symplectic structures serve to
orient the manifolds involved, and Donaldson and Gompf each elucidate how symplectic structures
on fibers are compatible with a global symplectic structure. Therefore if one relaxes this requirement,
the resulting wider class of fibrations, known as achiral Lefschetz fibrations, will no longer respect
symplectic structures. It is natural to ask which arbitrary (i.e. not necessarily symplectic) smooth
manifolds admit achiral Lefschetz fibrations.

The first result concerning the existence of achiral Lefschetz fibrations is due to Harer [18] who
proved that a 4-manifold that has a handle decomposition with only a 0-handle, 1-handles and 2-
handles admits an achiral Lefschetz fibration over the disk. It was observed in [17] that any closed
simply-connected 4-manifold admits an achiral Lefschetz fibration over S2 after connect summing
with S2 × S2 some number of times–this number is unknown and depends on the manifold. There
is no similar statement for non-simply connected 4-manifolds.

In the other direction, the only known obstruction to the existence of an achiral Lefschetz fibration,
also found in [17], is that for a manifold with positive definite intersection form the inequality

1 − b1 + b2 ≥ q ≥ 0.

must hold, where q is the number of negative vanishing cycles. (There is an analogous result for
negative definite manifolds.) Thus, for example, #nS1 × S3 does not admit an achiral Lefschetz
fibration for n > 1.

Our main result is the following.

Theorem 1. Let X be a smooth, closed, oriented 4-manifold. Then there exists a framed circle in
X such that the manifold obtained by surgery along that circle admits an achiral Lefschetz fibration
with base S2. Moreover, all these fibrations admit sections.

Since surgery on a circle in simply-connected 4-manifolds always changes the manifold by a
connected sum with an S2-bundle over S2, we immediately see that X#S2 × S2 or X#S2×̃S2

admits an achiral Lefschetz fibration whenever X is simply-connected. This can be strengthened to
the following result.

Corollary 2. Let X be a smooth, closed, simply-connected 4-manifold. Then both X#S2 × S2 and
X#S2×̃S2 admit an achiral Lefschetz fibration.
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Recently work of Taubes [24] has created a great deal of interest in near-symplectic structures.
These are closed 2-forms on a 4-manifold that are symplectic off of an embedded 1-manifold, and
vanish in a prescribed way along this 1-manifold (see Section 7). We prove the following about
achiral Lefschetz structures and near-symplectic structures.

Theorem 3. If a 4-manifold admits an achiral Lefschetz fibration over S2 with a section, then it
has an near-symplectic structure. Moreover, the near-symplectic structure can be chosen so that any
pre-assigned disjoint sections are symplectic.

We note that since b+
2 > 0 for the achiral Lefschetz fibrations of Theorem 1, the existence of a

near-symplectic structure follows from a result of Honda [21]. Our proof, however, gives a more
explicit construction of the near-symplectic form (cf. [13]) and illuminates the relationship between
the achiral Lefschetz structure and the near-symplectic structure. This allows, among other things,
for the possibility of a Donaldson-Smith approach to studying symplectic submanifolds/holomorphic
curves in these manifolds, as in [5]. Combining this theorem with Theorem 1 yields the following
result.

Corollary 4. Let X be a smooth, closed, oriented 4-manifold. Then there exists a framed circle in
X such that the manifold obtained by surgery along that circle admits a near-symplectic structure.
Moreover, if X is simply connected then both X#S2 × S2 and X#S2×̃S2 admit a near-symplectic
structure.

The method of proof for Theorem 3 yields a different proof of the well-known result of Gompf
mentioned above.

Theorem 5 (Gompf, [17]). If a 4-manifold X admits a Lefschetz fibration over S2 with a section,
then it has a symplectic structure. Moreover, the symplectic structure may be chosen so that any
preassigned disjoint sections are symplectic.

This is actually weaker that Gompf’s result, where one does not need to assume the existence
of a section, only that the fiber is non-trivial in homology; however, we are still able to recover an
important corollary of Gompf’s result.

Corollary 6. If a 4-manifold X admits a Lefschetz pencil, then it admits a symplectic structure.

This corollary was previously observed to follow from arguments similar to ours by David Gay
[12].

Acknowledgments: The first author was partially supported by NSF Career Grant (DMS-0239600)
and FRG-0244663.

2. Lefschetz fibrations, open book decompositions and handlebodies

A Lefschetz fibration of an oriented 4-manifold X is a map f : X → F to a surface F such that
all the critical points of f lie in the interior of X and for each critical point there is an orientation
preserving coordinate chart on which f : C2 → C takes the form f(z1, z2) = z1z2. We assume all the
critical points occur on distinct fibers.

If x is a non-critical value in F then Σ = f−1(x) is a surface properly embedded in X. The
diffeomorphism type of f−1(x) is independent of the non-critical value x, and may have boundary, if
X does. Let p be a critical point in X and U a closed disk neighborhood of f(p) in F that contains
no other critical values. If y ∈ ∂U and c is a radial path in U from y to f(p) then there is an
embedded disk Dc in X that projects to γ and f−1(x) ∩ Dc is a simple closed curve γp in the fiber
above x for all x ∈ (c \ {f(p)}). (Note we use γp for all curves in the fibers above c.) Note that γp

will usually be non-trivial in the homology of the fiber but will be trivial in the homology of f−1(U).
The curve γp is called the vanishing cycle associated to p. It can be shown that f−1(U) is obtained
from Σ × D2 by attaching a 2-handle to γp with framing one less than the framing induced on γp

by f−1(y). In addition f−1(∂U) is a Σ-bundle over S1 = ∂U with monodromy given by a positive
Dehn twist along γp, which we denote Dγp

.

More generally, if F = D2 then we fix a point y ∈ ∂D2 and a collection of embedded arcs c1, . . . , ck

connecting y to the critical points p1, . . . , pk, such that they only intersect at y. We order the ci’s so
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that a small circle about y intersects them in a counter-clockwise order. We now have a collection of
vanishing cycles γp1

, . . . , γpk
in Σ = f−1(y). The manifold X is obtained from Σ × D2 by attaching

2-handles along the γpi
’s with framing one less than the framing induced by Σ. Moreover, f−1(∂D2)

is a Σ-bundle over S1 with monodromy Dp1
◦ · · · ◦ Dpk

.
If the fibers of the Lefschetz fibration do not have boundary (and F = D2) then ∂X = f−1(∂D2) is

the surface bundle described above. If the fibers do have boundary then ∂X = ((∂Σ)×D2)
∐

(f−1(∂D2)).
Clearly (∂Σ) × D2 is a neighborhood of B = ∂f−1(x) ⊂ ∂X for any x in the interior of D2. Thus
it is easy to see that (∂X) \ B is the Σ-bundle over S1 described above. More specifically, the
Lefschetz fibrations induces an open book decomposition of ∂X. Recall an open book decomposition of
a 3-manifold M is a pair (B, π) where B is an oriented link in M and π : M \B → S1 is a fibration

of the complement of B such that ∂π−1(θ) = B for all θ ∈ S1. The fibers of π are called pages of
the open book and B is called the binding of the open book. For a more complete discussion of
topological Lefschetz fibrations and open book decompositions see [8, 17].

An achiral Lefschetz fibration is an oriented 4-manifold X and a map f : X → F exactly as
in the definition of Lefschetz fibration above except that the coordinate charts do not have to be
orientation preserving. Critical points with non-orientation preserving charts will be called a negative
critical point. The entire discussion above carries over to the achiral case, except that the 2-handles
attached to the vanishing cycle of a negative critical point will have framing one more than the
framing induced by Σ and the contribution to the monodromy will be a left handed Dehn twist D−1

γp

about the vanishing cycle.
A key theorem for the proof of our main theorem is the following result.

Theorem 7 (Harer 1979, [18]). Let X be a 4-dimensional handlebody with all handles of index less
than or equal to two. Then X admits an achiral Lefschetz fibration over D2 with bounded fibers.

Sketch of Proof. We briefly sketch Harer’s original proof, since it is very nice and not easy to find in
the literature (cf. [1]). Recall if Σ is any oriented surface with boundary, then Σ×D2 is diffeomorphic
to B4 with k 1-handles attached, where k = −χ(Σ) + 1. Thus if X has k 1-handles, then we begin
by letting Σ be a disk with k open disks removed. We can picture Σ as a disk-with-bands inside of
the 1-handlebody X1 of X as on the left side of Figure 1. Note that we have constructed a trivial

Figure 1. The surface Σ in X1.

Lefschetz structure for X1.
We next consider the attaching link L for the 2-handles of X . We first isotope L into a neighbor-

hood of Σ so that it projects onto Σ with only double points, as on the right side of Figure 1. To
prove the theorem we must modify Σ so that the attaching circle of each 2-handle can be embedded
on a separate fiber of ∂(Σ×D2), and arrange that each is attached with framing ±1 relative to the
product framing on Σ × D2. Ignoring the framings momentarily, we can accomplish the former by
forming the connected sum of Σ with a torus at each double point of the projection of L onto Σ;
see the left side of Figure 2. To arrange that the new Σ is a fiber in a non-tivial Lefschetz fibration
on X1, we add canceling pairs of 1- and 2-handles (using ±1-framed 2-handles) for each newly in-
troduced band, as on the right of Figure 2. Note that the canceling 2-handle may be isotoped to lie
on Σ.
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±1 ±1

Figure 2

We are left to correct the framings on the components of L. The operation shown in Figure 3
preserves X , and alters the framing of a component K of L by ±1 with respect to the product
framings determined by the old and new surfaces Σ. By repeating this procedure as necessary, we

k

k ± 1 ∓1

Figure 3. A stabilization operation for Σ.

can arrange that the framing of K differs from the product framing by either plus or minus one.
Moreover, the newly introduced ∓1-framed 2-handles satisfy the framing requirement as well.

We remark that by carefully analyzing this proof one can construct an achiral Lefschetz fibration
for X with genus bounded above by the bridge number of the link L (as measured with respect to
its projection onto Σ). �

Let f : X → D2 be an achiral Lefschetz fibration with bounded fibers. As above we can describe
X as Σ × D2 with 2-handles attached to vanishing cycles γ1, . . . γk with framing one less than
the product framing and attached to vanishing cycles γ′

1, . . . , γ
′
k′ with framing one more than the

product framing. Let Σ′ be the surface obtained from Σ by attaching a 1-handle. Let γ be a simple
closed curve embedded in Σ′ that intersects the cocore of the new 1-handle exactly once. A positive
(negative) stabilization of this achiral Lefschetz fibration f is the achiral Lefschetz fibration described
as Σ′ × D2 with 2-handles attached to γ1, . . . , γk and γ′

1, . . . , γ
′
k′ as above and a 2-handles attached

to γ with framing one less (one more) than the product framing. Note that stabilizing results in an
achiral Lefschetz fibration of the same 4-manifold X. The achiral Lefschetz fibration f induces an
open book decomposition (B, π) of ∂X and the positively (negatively) stabilized achiral Lefschetz
fibration also induces an open book decomposition (B′, π′) of ∂X. The open book (B′, π′) is said to
be obtained by positive (negative) stabilization.

3. Contact geometry and open book decompositions

An oriented contact structure on an oriented 3-manifold M is a hyperplane field ξ that can be
written as the kernel of a 1-form α such that dα is non-degenerate when restricted to ξ. In other
words ξ = kerα and α∧dα 6= 0. We assume the reader is familiar with the basic notions from contact
geometry (such as Legendrian knot, Thurston-Bennequin invariant and so on). For a review, see
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[9]. A contact structure ξ on M is said to be supported by an open book (B, π) if ξ is isotopic to a
contact structure given by a 1-form α satisfying α > 0 on positively oriented tangents to the binding
B and dα is a positive volume form on each page of the open book. Thurston and Winkelnkemper
[25] showed that any open book supports a contact structure. In addition it is fairly simple to show
that two contact structures supported by the same open book are isotopic. Recently Giroux [15]
has strengthened this connection between contact structures and open book decompositions.

Theorem 8 (Giroux 2002, [15]). Let M be a closed oriented 3-manifold. There is a one-to-one
correspondence between oriented contact structures on M up to isotopy and open book decompositions
of M up to positive stabilization (and isotopy).

Given a Legendrian knot L let N(L) be a standard tubular neighborhood of the Legendrian curve
L. This means the neighborhood has convex boundary and two parallel dividing curves (see [10]).
Choose a framing for L so that the meridian has slope 0 and the dividing curves have slope ∞.
With respect to this choice of framing, a ±1 contact surgery is a ±1 Dehn surgery, where a copy
of N(L) is glued to M \ N(L) so that the new meridian has slope ±1. Even though the boundary
characteristic foliations may not exactly match up a priori, we may use Giroux’s Flexibility Theorem
[14, 19] and the fact that they have the same dividing set to make the characteristic foliations agree.
This gives us a new contact manifold (M ′, ξ′). For a detailed discussion of contact surgery see [3].
The following is a well known theorem, see for example [11].

Theorem 9. Suppose that L is a Legendrian knot in the contact manifold (M, ξ), ξ is supported by
the open book (B, φ) and L is contained in a page of the open book. The contact manifold obtained
from (M, ξ) by ±1 contact surgery on L is equivalent to the one compatible with the open book with
monodromy φ ◦ D∓

α .

Returning to Lefschetz fibrations, let f : X → D2 be an achiral Lefschetz fibration with bounded
fibers. As at the end of Section 2 we can describe X as Σ×D2 with 2-handles attached to vanishing
cycles γ1, . . . γk and γ′

1, . . . , γ
′
k′ with the appropriate framings. The Lefschetz structure on Σ × D2

induces an open book and hence a contact structure on ∂(Σ×D2). Using the Legendrian realization
principle [19] we can assume the (non-null homologous) vanishing cycles are sitting on the various
pages of the open book as Legendrian curves. Moreover the contact structure induced on ∂X is
the one obtained from the contact structure on ∂(Σ×D2) by ±1-contact surgeries on the vanishing
cycles.

In our discussion below it will be useful to see how to stabilize (and destabilize) a Legendrian
knot on a page of an open book so that the stabilized knot is also on a page of an open book. Given
an oriented Legendrian knot L, let S+(L) and S−(L) be the positive and negative stabilizations of
L obtained by adding down or up “zig-zags”.

Lemma 10. Let (B, φ) be an open book decomposition supporting the contact structure ξ on M.
Suppose L is a Legendrian knot in M that lies on a page of the open book. If we positively stabilize
(B, φ) twice as shown in Figure 4 then we may isotop the page of the open book so that S+(L) and
S−(L) appear on the page as seen in Figure 4.

If (B, π) is negatively stabilized twice as shown in the figure, then the contact structure supported
by this open book is no longer ξ but we still see L as a Legendrian knot in the new contact structure.
Moreover L+ and L− in the figure are now the positive and, respectively, negative destabilizations
of L. That is S±(L±) = L.

This Lemma is relatively easy to prove, see [8].

4. Overtwisted contact structures and homotopy classes of plain fields.

Contact structures in dimension three fall into two disjoint classes: tight and overtwisted. A
contact manifold (M, ξ) is called overtwisted if there is an embedded disk D such that TxD = ξx for
all x ∈ ∂D. If ξ is not overtwisted it is called tight. One may easily prove [8] that if one negatively
stabilizes an open book then the associated contact structure is overtwisted. We have the following
fundamental theorem of Eliashberg.
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L

L+

L−

Figure 4. A neighborhood of a piece of L in Σ, left. (L is oriented so it points
towards the left.) The twice stabilized open book, right. If the two stabilizations
are positive then L± = S±(L) and if the stabilizations are negative then S±(L±) =
L.

Theorem 11 (Eliashberg 1990, [6]). If two overtwisted contact structures are homotopic as plane
fields then they are isotopic as contact structures.

Using this theorem we can understand overtwisted contact structures by understanding their
homotopy class of plane field. According to [16] the homotopy class of an oriented plane field ξ on
M is completely determined by two invariants. To simplify the discussion we will assume H2(M ; Z)
has no 2-torsion (this will suffice for our applications). The first invariant is the first Chern class
(a.k.a. Euler class) c1(ξ) ∈ H2(M ; Z), which is simply the obstruction to the existence of a non-
zero section of ξ. Suppose the contact manifold (M, ξ) is supported by an open book (B, π) that is
induced as the boundary of the achiral Lefschetz fibration f : X → D2. We describe this Lefschetz
fibration as in Section 2 with vanishing cycles γ1, . . . γk and γ′

1, . . . , γ
′
k′ . We can assume the γi and γ′

i

are Legendrian knots in ∂Σ×D2. A slight generalization of a formula from [16] (see [23]) computes
the Poincaré dual to c1(ξ) as

(1) P.D.c1(ξ) =

k∑

i=1

r(γi)ci +

k′∑

i=1

r(γ′
i)c

′
i,

where the ci and c′i are the image of the cocores of the 2-handles attached to the γi and γ′
i’s under

the boundary map in the long exact sequence of the pair (X, M).
The second invariant of a homotopy class of oriented plane fields is the so called 3-dimensional

invariant d3(ξ), which is a rational number well-defined modulo the divisibility of c1(ξ). We will only
describe how to compute d3(ξ) when c1(ξ) = 0. To this end let M and X be as above. Then we have

(2) d3(ξ) =
1

4
(c2(X) − 3σ(X) − 2χ(X)) + q,

where σ is the signature of X, χ is the Euler characteristic, and q is the number of negative vanishing
cycles of X. The number c2(X) is the square of the class c(X) with Poincaré dual

k∑

i=1

r(γi)Ci +

k′∑

i=1

r(γ′
i)C

′
i,

where the Ci and C′
i’s are the cocores of the 2-handles attached along γi and γ′

i. Note that c(X)|M =
c1(ξ), which we are assuming to be zero. Thus c(X), which naturally lives in H2(X ; Z), comes from
a class in H2(X, ∂X ; Z) and thus can be squared. Formula (2) is a slight generalization of the one
given in [3], where it was assumed that X had no 1-handles. Their proof caries over to our case.
In particular, according to [16], d3(ξ) = 1

4 (c2(Y ) − 3σ(Y ) − 2χ(Y )) where Y is any almost complex
4-manifold with M = ∂Y and ξ is the set of almost complex tangencies to M. If X is as above then
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there is a natural almost complex structure on Y = X#qCP 2 (see [3]) with ξ the set of complex
tangencies. Moreover,

c1(Y ) = c(X) + (3, . . . , 3) ∈ H2(X ; Z) ⊕q H2(CP 2; Z),

σ(Y ) = σ(X) + q, and χ(Y ) = χ(X) + q. The formula follows.

5. Proof of Theorem 1

We are now ready to establish the existence of Lefschetz fibrations.

Proof of Theorem 1. We begin by giving X an arbitrary handlebody structure, letting X1 denote
the union of the 0-, 1- and 2-handles of X , and X2 denote the union of the 3- and 4-handles. Then as
each Xi is a 2-handlebody, we can use Theorem 7 to find achiral Lefschetz fibrations (with bounded
fibers) f1 : X1 → D2 and f2 : X2 → D2, with each inducing an open book structure on the common
boundary ∂X1 = −∂X2. We can stabilize the achiral Lefschetz fibrations so that each has fibers
with connected boundary.

If these induced open books are the same (under the identification of ∂X1 and −∂X2 used to
reconstruct X), we can attempt to reconstruct X from the pieces X1 and X2 by gluing them along
their boundaries in a two step process. We first glue along the pages of the open books, by forming

W = X1

⋃

f
−1

1
(∂D2)=f

−1

2
(∂D2)

X2.

We then have an achiral Lefschetz fibration with bounded fibers

f1 ∪ f2 : W → S2.

Since the fibers in the two achiral Lefschetz fibrations have connected boundary we see ∂W =
S1 ×S2 = S1 ×D2

1 ∪S1 ×D2
2 , where S1 ×D2

i is ∂Xi \ f−1
i (∂D2). Gluing S1 ×D2

1 to S1 ×D2
2 in ∂W

will yield X. Gluing an S1 × D3 to W will produce the same result as gluing S1 × D2
1 to S1 × D2

2.
So we see that

X = W ∪ S1 × D3

or said another way there is an embedded curve γ in W such that W = X \ N where N is an open
tubular neighborhood of γ.

Notice that in a collar of ∂W = S1 × S2 we may express the above achiral Lefschetz fibration as
the projection I × S1 × S2 → S2. If we now glue in D2 × S2 so that each ∂D2 × {pt.} matches to
S1 × {pt.}, then the resulting closed manifold has an achiral Lefschetz fibration over S2. Moreover,
this manifold is the result of surgering X along the circle γ.

The theorem is therefore proven once we establish the following proposition. �

Proposition 12. Let X be a closed, smooth, 4-manifold. Then we may write X = Y1 ∪ Y2 where
each Yi is a 2-handlebody which admits an achiral Lefschetz fibration over D2 with bounded fibers of
the same genus, and with the induced open books on ∂Y1 = −∂Y2 coinciding.

Proof. Fix a handle decomposition of X and let Y1 be the union of the 0-, 1- and 2-handles and let
Y2 be the union of the 3- and 4-handles. By Harer’s Theorem 7 we know there are achiral Lefschetz
fibrations fi : Yi → D2, i = 1, 2, with bounded fibers. By adding a canceling 2-handle/3-handle pair
to X if necessary we may assume that −Y2 has one 0-handle and an even number 2k of 1-handles.
We may then write −Y2 as Σ × D2 where Σ is a genus k surface with one boundary component.
Written as such, Y2 has an obvious Lefschetz fibration with no singular fibers. We take f2 to be this
fibration.

Let ξi be the contact structure supported by the open book associated to the achiral Lefschetz
fibration fi, i = 1, 2. By Giroux’s Theorem 8 these open books associated to the achiral Lefschetz
fibrations will be isotopic, after possible positive stabilization, if the supported contact structures are
isotopic. We will show how to choose the achiral Lefschetz fibrations so that the associated contact
structures ξ1 and ξ2 are isotopic. We begin by showing they are homotopic as plane fields. To this
end notice that −Y2 supports a Stein structure and hence ξ2 is tight. In addition using Equation (1)
we see c1(ξ2) = 0.
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Let Y ′
1 denote the union of the 0- and 1-handles of Y1. Let K1, . . . , Kl ⊂ ∂Y ′

1 be the attaching
circles for the 2-handles in Y1. We know there is a Lefschetz fibration of Y ′

1 so that the Ki are
Legendrian in the contact structure supported by the induced open book. Moreover we can assume
the Ki lie on distinct pages of the open book and the attaching framing is ±1 the page framing (=
contact framing). Attaching the 2-handles now gives a natural achiral Lefschetz fibration to Y1. By
Equation (1) the Poincaré dual of the first Chern class of the induced contact structure ξ1 is

P.D.c1(ξ1) =

l∑

i=1

r(Ki)ci,

where ci ∈ H1(∂Y1; Z) is the image of the cocore of the ith 2-handle under the boundary map in the
long exact sequence of the pair (Y1, ∂Y1).

In [16] it was shown that the parity of r(Ki) is fixed by the contact framing of Ki and the
number of 1-handles Ki runs over. We claim that it is possible to alter the Lefschetz fibration (and
hence the contact structure) so that any integer with the right parity can be realized as the rotation
number of Ki. We begin by stabilizing the Lefschetz fibration of Y ′

1 one time positively and one time
negatively. This does not effect the Chern class of the contact structure induced on ∂Y ′

1 , though
the contact structure is different. Thinking of Ki as a Legendrian knot on a page of this new open
book for ∂Y ′

1 , let K ′
i be the result of pushing Ki over the two new 1-handles in the page. We can

assume K ′
i is Legendrian. Using Lemma 10 we see that the framings on Ki and K ′

i coming from
the page are the same. Moreover, using Lemma 10, we can choose the stabilizing 1-handles so that
r(K ′

i) = r(Ki)± 2. Thus by a sequence of stabilizations we can alter the rotation number of any Ki

by any even number. Since P.D.c1(ξ1)|2 = 0 (see [17]), it now follows that there exists a sequence
of alterations of rotation numbers which gives c1(ξ1) = 0. (To see this, let G denote the subgroup
of H1(∂Y1) generated by c1, . . . , cl, and note that the subgroup of even elements of G is generated

by 2c1, . . . , 2cl. Hence we may write P.D.c1(ξ1) =
∑l

i=1 ai(2ci), which combined with Equation (1)

gives
∑l

i=1(r(Ki) − 2ai)ci = 0.)
At this point we may assume that c1(ξ1) = c1(ξ2) = 0. The homotopy class of a plane field with

c1 = 0 is determined by the invariant d3. If ξ is supported by an open book and ξ′ by the open
book obtained by negatively stabilizing one time, then Equation (2) yields d3(ξ

′) = d3(ξ) + 1. By
negatively stabilizing the achiral Lefschetz fibration on Y1 or Y2 we may assume that d3(ξ1) = d3(ξ2)
and thus ξ1 and ξ2 are homotopic as plane fields. If we now negatively stabilize the achiral Lefschetz
fibrations on each of Y1 and Y2 we may assume the associated contact structures are overtwisted.
Eliashberg’s Theorem 11 allows us to conclude that ξ1 and ξ2 are isotopic contact structures. �

Proof of Corollary 2. If X be a simply connected 4–manifold and γ the curve identified in the proof
of Theorem 1 on which surgery produces a manifold X ′ with an achiral Lefschetz fibration over S2.
It is well-known (see for example [17]) that X ′ is either X#S2×S2 or X#S2×̃S2, with the outcome
determined by the framing of γ. (The set of framings can be identified with π1(SO(3)) = Z2. )
Moreover, since γ ⊂ M3 ⊂ X4, a framing of γ in M gives a framing of γ in X. Recall that γ is the
binding of an open book and the framing of γ in M comes from a page Σ in the open book. If we
positively stabilize the open book twice as shown in Figure 5 we have a new knot γ′ and page Σ′.
The knots γ′ and γ are homotopic in M (just change one crossing of γ′) and hence isotopic in X.
The homotopy from γ′ to γ takes the framing on γ′ coming from Σ′ to one less than the framing
on γ coming from Σ. Thus the framing on γ′ in X differs from the framing on γ in X and therefore
surgery on one these curves will yield X#S2×̃S2 while surgery on the other will yield S2 × S2. �

6. Symplectic and near-symplectic structures

Let X be a 4-manifold. If we fix a metric g on X we can consider the bundle Λ2
+ of self-dual

2-forms on X. A closed 2-form ω on X is a near-symplectic structure if ω2 ≥ 0 and there is a metric
g such that ω is harmonic and transverse to the 0-section of Λ2

+ By transversality one can see that
the zeros Z of ω2 form a union of embedded circles. Honda [20] showed that each component of Z
has a neighborhood S1 ×B3 where ω can be written as one of two models. The “orientable” model
is dt ∧ dh + ?3dh, where h is a Morse function on B3 with one index 1 or index 2 critical point at 0
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ΣΣ
′

≈∂

Figure 5. Surface Σ′ on the left. In the middle we have ∂Σ′ with a crossing
change and on the right is Σ. The boundary of the middle surface is isotopic to the
boundary of the right hand surface. Although the surfaces are not isotopic, they
give the same framing to the knot.

and ?3 is the 3-dimensional Hodge star operator. The “non-orientable” model is a Z2 quotient of the
above model. One may define a near-symplectic structure without regard to a metric by demanding
that ω is closed and symplectic away from a union of circles Z, and near each component of Z
has a model as above. There has been great interest in near-symplectic structures following work of
Taubes [24] that suggests they might be used to give a “geometric” understanding of Seiberg-Witten
theory.

If X is allowed to have boundary it is possible that the near-symplectic form ω degenerates along
properly embedded arcs in X. In this article we will assume that Z is always a union of circles in the
interior of X. Given this we can discuss the convex boundary of a near-symplectic 4-manifold (X, ω).
We say ∂X is convex, or strongly convex, if there is a vector field v defined near ∂X, transverse to
∂X , whose flow expands ω, namely

Lvω = cω,

where L denotes Lie derivative and c is a positive constant. The 1-form α = (ιvω)∂X is a contact
form on ∂X. Setting ξ = kerα, we will say (X, ω) is a near-symplectic filling of (∂X, ξ). It is a
standard fact, see [8], that if β is any other contact form for ξ then there is a neighborhood of
∂X in X that is symplectomorphic to a (one-sided) neighborhood of the graph of some function in
(∂X) × R with symplectic form d(etβ), where t is the coordinate on R.

The following result, restated for our context, is well-known.

Theorem 13 (Eliashberg [6] and Weinstein [26]). Suppose (X, ω) is a near-symplectic filling of
(M, ξ), and L is a Legendrian knot in (M, ξ). If a 2-handle is attached along L with contact framing
−1, then ω may be extended over the 2-handle to obtain a near-symplectic filling of (M, ξ′), where ξ′

is the contact structure obtained by contact −1 surgery on L. Moreover, (M, ξ′) is strongly convex.
There are no new circles of degeneration in the extended near-symplectic structure.

We now turn to establishing a version of this Theorem for +1-framed surgeries. To this end we
first observe an alternate description of +1-contact surgery.

Theorem 14. Let L be a Legendrian knot in a contact manifold (M, ξ). The contact structure
obtained from ξ by performing a +1-contact surgery on L is the same as the contact structure
obtained by performing a Lutz twist on the positive transverse push-off of L followed by a Legendrian
surgery.

We recall the definition of a Lutz twist. If γ is a knot transverse to the contact planes of (M, ξ)
then γ has a standard neighborhood contactomorphic to a neighborhood of the image of the z-axis
in R2/ ∼, where (r, θ, z) ∼ (r, θ, z + 1), with contact structure dz + r2dθ. We can identify slopes
s ∈ R ∪ {∞} of a linear foliation of T 2 by angles θs ∈ R/πZ. To distinguish different amounts of
twisting we will lift θs to R. We can express a neighborhood of γ as N = S1 × D2 and assume that
on concentric tori Ta = {r = a} the characteristic foliation is linear with monotonically decreasing
(as a increases) slope ranging in (0,−ε]. (This description uniquely determines the contact structure
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on N.) If we leave the contact structure ξ the same outside N but change it so that the slopes of the
characteristic foliation on the Ta range in (0,−π − ε] then we get a well defined contact structure ξ′

on M. This contact structure is said to be obtained from ξ by a (half-)Lutz twist along γ.

Proof. Consider a Legendrian knot L in (M, ξ). Let N(L) be a standard neighborhood of L. (See
Section 3.) We pick a framing on N(L) so that the dividing curves on ∂N(L) have slope ∞ and
the meridian has slope 0. Let L+ be the positive transverse push-off of L contained in N(L), and
let ξ′ denote the contact structure that is the result of performing a Lutz twist on L+. The contact
structure ξ′ agrees with ξ outside N(L) and on N(L) the contact structure ξ is determined by the
fact that the slopes of the characteristic foliation on concentric tori range in (0,−π

2 ], and ξ′ by

the fact that the slopes range in (0,− 3π
2 ]. Inside the neighborhood N(L) we may find a standard

neighborhood of a Legendrian knot with twisting 2 in our chosen framing as follows. Break N(L)
into two pieces N1 ∪ N2 where N1 is a solid tori containing L+ with slope ranging in (0,− 5π

6 ] and

N2 = T 2×[0, 1] with slopes ranging in [− 5π
6 ,− 3π

2 ]. (So N(L) is split along a torus with dividing slope
1
2 .) The solid torus N1 is a standard neighborhood of a Legendrian knot L′ with twisting number
2 with respect to the framing chosen on N(L) (see [10]). Thus if we perform a Legendrian surgery
on L′ this will, topologically, correspond to a +1 surgery on L. Moreover, one can check that the
contact structure on N(L), after Legendrian surgery on L′, has slopes of the characteristic foliation
on concentric tori ranging in (− 3π

4 ,− 3π
2 ]. Such a contact structure on a solid torus is tight. Thus

we have removed N(L) from (M, ξ) and reglued it with a +1-twists and extended ξ|M\N(L) to the
surgered manifold so that it is tight on the surgery torus. This is precisely a +1-contact surgery. �

To perform a Lutz twist via a near-symplectic cobordism we recall the following result.

Theorem 15 (Gay and Kirby 2004, [13]). Let (M, ξ) be a contact manifold and let ξ′ be obtained
from the contact structure ξ by a Lutz twist along the transverse curve γ. Assume the Lutz twist
occurred in the neighborhood N of γ. If (X, ω) is a near-symplectic filling of (M, ξ), then ω may be
extended over X ∪ M × [0, 1], where ∂X and M × {0} are identified, to be a near-symplectic filling
of (M, ξ′). Moreover, ω is symplectic on (M \N)× [0, 1] and ω has one singular circle in N × [0, 1].

This theorem, coupled with Theorem 13 and the proof of Theorem 14 proves the following result.

Theorem 16. Suppose (X, ω) is a near-symplectic filling of (M, ξ), and L is a Legendrian knot in
(M, ξ). If a 2-handle is attached along L with contact framing +1, then ω may be extended over the
2-handle to obtain a near-symplectic filling of (M, ξ′), where ξ′ is the contact structure obtained by
contact +1 surgery on L. Moreover, (M, ξ′) is strongly convex. There is exactly one singular circle
of ω in the near-symplectic structure on the 2-handle.

We now rephrase Theorem 1.1 of [7] for our current purposes.

Theorem 17 (Eliashberg 2004, [7]). Let (X ′, ω) be a near-symplectic filling of (M, ξ) and (B, π) be
an open book decomposition supporting the contact structure ξ. Let X be X ′ with 2-handles attached
to B with framing given by the pages of the open book. One may extend the near-symplectic structure
on X ′ to X so that no new circles of degeneration are added and so that the near-symplectic structure
restricted to each fiber in the surface bundle ∂X is symplectic.

The proof in [7] goes through unchanged–in fact, the proof can be simplified since we are assuming
∂X is strongly convex.

This theorem points out the need to study symplectic surface bundles. A symplectic bundle over
S1 is a 3-manifold M that fibers over the circle together with a closed 2-form ω which is positive on
each fiber. The kernel of ω defines a line field that is transverse to the fibers of the fibration. An
orientation on M and on the fibers induces an orientation on the line field and thus we can fix a
fiber Σ0 of the fibration and use the line field to define a return map H(M,ω) : Σ0 → Σ0, called the
holonomy of the symplectic fibration. The holonomy H(M,ω) is a symplectomorphism of (Σ0, ω|Σ0

). If
we normalize ω so that it integrates to 1 on each fiber of the fibration then the holonomy determines
(M, ω) up to fiber preserving diffeomorphism.
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Recall a symplectomorphism f of a surface (Σ, ω) is Hamiltonian if there are functions Ht : Σ → R

such that the vector field Xt determined by

ιXt
ω = dHt

generates a flow whose map at t = 1 is f. A Hamiltonian diffeomorphism is always isotopic to the
identity, although the converse is false. The main result we need is the following.

Lemma 18 (Eliashberg 2004, [7]). Suppose the holonomy of the symplectic fibration (M, ω) is
a Hamiltonian diffeomorphism. Then there is a symplectic form Ω on X = Σ × D2, such that
∂(X, Ω) = (M, ω), where Σ is the fiber of the fibration. We can moreover assume that Σ× {pt} and
{pt} × D2 are symplectic submanifolds in X.

Since not all symplectomorphisms isotopic to the identity are Hamiltonian, we will need a criterion
below to determine when a symplectomorphism is Hamiltonian. For this, we consider the flux map.
Let φt, 0 ≤ t ≤ 1, be a path of symplectomorphisms of a surface (Σ, ω). There is a family of vector
fields Xt determined by

Xt(φt(x)) =
dφt(x)

dt
.

The flux of the path φt is defined to be

Flux({φt}) =

∫ 1

0

[ιXt
ω] dt,

where [·] denotes cohomology class. This is an element in H1(Σ; R). (If Σ is a torus then the flux is
in H1(Σ; R/Z).) One can show that the flux only depends on the path of symplectomorphisms up
to homotopy with fixed endpoints. A path of symplectomorphisms is homotopic to a Hamiltonian
path if and only if its flux is zero, see [2]. There is an alternate interpretation of flux (see [22])
that will be more useful below. Let (M, ω) be a symplectic bundle over S1 with a holonomy map
isotopic to the identity; assume also that the fiber Σ has genus greater than 1. In this case we can
identify M as Σ×S1 (up to fiber preserving isotopy). Under this identification we have a map from
H1(Σ) to H2(M) that sends [c] to [c × S1]. With this understood the flux of the holonomy is the
map H1(Σ) → R given by

Flux([c]) =

∫

c×S1

ω.

7. Near-symplectic structures and achiral Lefschetz fibrations

We are now ready to prove our main theorem concerning near-symplectic structures.

Proof of Theorem 3. Suppose f : X → S2 is an achiral Lefschetz fibration with fiber Σ and section
S. Let NΣ be a neighborhood of Σ that is fibered by non-singular fibers of f and let NS be a
neighborhood of S that contains no singular points of f. Let X ′ = X \ (NΣ ∪ NS). We can describe
X ′ as an achiral Lefschetz fibration over D2 with non-singular fibers Σ′ by restricting f to X ′. Here
Σ′ is simple Σ with an open disk removed. Thus X ′ may be built from Σ′×D2 by attaching 2-handles
along curves γ1, . . . , γk and γ′

1, . . . , γ
′
k′ on fibers with framing one less and, respectively, one more

than the fiber framing. We know Σ′ ×D2 has a symplectic structure with convex boundary, see [8].
Moreover, the open book induced on the boundary from the product structure supports the induced
contact structure on the boundary. Thus from Theorems 13 and 16 we see that X ′ has a near-
symplectic structure, with one degenerate circle for each γ′

i. In addition, with this near-symplectic
structure the boundary of X ′ has a contact structure supported by the open book induced by f.

Notice that NΣ ∪NS is simply Σ×D2 union a 2-handle h. If we view h as attached to X ′ instead
of NΣ, it will be attached to the binding of the open book with framing coming from the fibers of
the open book. This process simply caps off the fibers Σ′ to recover the fibers Σ, since the result of
moving h to X ′ is X \ (Σ×D2) which has an achiral Lefschetz fibration over D2 with fiber Σ. Thus
the result of surgery along the binding of the open book for ∂X ′ with framing coming from the fiber
is Σ × S1. Moreover, by Lemma 17, we know the near-symplectic form on X ′ extends to X ′ ∪ h so
that the surfaces Σ × {pt} are all symplectic. If the holonomy of this symplectic fibration is trivial,
or Hamiltonian isotopic to the identity, then, by Lemma 18, we may extend this near-symplectic
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structure over NΣ thus constructing the near-symplectic structure on X. We are left to show that
we can arrange the holonomy to be trivial.

We begin by observing that the monodromy of the open book is a composition of Dehn twists
parallel to the boundary of Σ′. (Of course the monodromy expressed in terms of Dehn twists along
the γi’s and γ′

i’s might look more complicated, but it will be isotopic to this.) We may assume
that the monodromy is supported in a collar neighborhood of the boundary, and we write Σ′′ for
the complement of this neighborhood in Σ′. The complement in M = ∂X ′ of the binding and the
support of the monodromy (in all fibers) can be written Σ′′ × S1, and is denoted M ′. The contact
structure ξ on M ′ is isotopic to one given by the kernel of α|M ′ = K dt + λ, where K is any large
positive constant, t is the coordinate on S1 and λ a primitive for a volume form on Σ′′. It is easy
to see the Reeb vector field for α is X = ∂

∂t
. Now if we consider the 4-manifold Y = M × [a, b] with

symplectic form ω = d(esα), where s is the coordinate on the interval factor, the upper boundary of
Y is convex and induces the contact structure ξ. In addition, the kernel of ω|M×{a} is spanned by
the Reeb vector field and the flow of the Reeb vector field induces the identity return map on the
Σ′′ part of a page of the open book. Now if we attach a 2-handle to Y along the binding of the open
book in M ×{b} as in Lemma 17, then we obtain a symplectic manifold Y ′ with an upper boundary
Σ×S1, which has symplectic fibers Σ×{pt}. Since the symplectic structure is only affected near the
attaching region for 2-handle, the kernel of the symplectic form restricted to the upper boundary
will still induce the identity map on the Σ′′ part of the fiber. Given any primitive homology class
h ∈ H1(Σ; Z) we can represent it by an embedded curve c contained in Σ′′. Now ω restricted to
c × S1 in the upper boundary of Y ′ is zero (since the {pt} × S1 is in the kernel of ω|∂Y ′). Thus∫

c×S1 ω = 0. Using our second interpretation of flux we see the flux of the holonomy is zero and
hence the holonomy map is Hamiltonian isotopic to the identity.

Since ∂X ′ is strongly convex (and the near-symplectic structure is symplectic there) a neighbor-
hood of ∂X ′ is symplectomorphic to a neighborhood of the graph of a function g in M × R with
symplectic structure ω = d(esα). Let b be any number larger than the maximum of g. We can add
the collar {(x, s) ∈ M ×R : g(x) ≤ s ≤ b} to X ′ and extend the symplectic structure over it so that
a neighborhood of ∂X ′ is symplectomorphic to M × [a, b], as in the previous paragraph. We may
now attach the 2-handle h to X ′ and see the holonomy is Hamiltonian isotopic to the identity, as
described above.

Finally we note that the section of X ′ union h given by the co-core of the 2-handle is symplectic.
By Lemma 18, this section may be symplectically extended over NΣ, showing that the original
section of X over S2 is symplectic. If we started with more than one section of X then we could
have removed NΣ and neighborhoods of each of these sections to form X ′. The argument above
applies equally well to this case. �

References

[1] Selman Akbulut and Burak Ozbagci. Lefschetz fibrations on compact Stein surfaces. Geom. Topol., 5:319–334
(electronic), 2001.

[2] Eugenio Calabi. On the group of automorphisms of a symplectic manifold. In Problems in analysis (Lectures
at the Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), pages 1–26. Princeton
Univ. Press, Princeton, N.J., 1970.

[3] Fan Ding, Hansjörg Geiges, and András I. Stipsicz. Surgery diagrams for contact 3-manifolds. Turkish J. Math.,
28(1):41–74, 2004.

[4] S. K. Donaldson. Lefschetz pencils on symplectic manifolds. J. Differential Geom., 53(2):205–236, 1999.
[5] Simon Donaldson and Ivan Smith. Lefschetz pencils and the canonical class for symplectic four-manifolds. Topol-

ogy, 42(4):743–785, 2003.
[6] Yakov Eliashberg. Topological characterization of Stein manifolds of dimension > 2. Internat. J. Math., 1(1):29–

46, 1990.
[7] Yakov Eliashberg. A few remarks about symplectic filling. Geom. Topol., 8:277–293 (electronic), 2004.

[8] John B. Etnyre. Lectures on open book decompositions and contact structures. proceedings of the “Floer Ho-
mology, Gauge Theory, and Low Dimensional Topology Workshop”.

[9] John B. Etnyre. Introductory lectures on contact geometry. In Topology and geometry of manifolds (Athens, GA,
2001), volume 71 of Proc. Sympos. Pure Math., pages 81–107. Amer. Math. Soc., Providence, RI, 2003.

[10] John B. Etnyre and Ko Honda. Knots and contact geometry. I. Torus knots and the figure eight knot. J. Symplectic
Geom., 1(1):63–120, 2001.

[11] John B. Etnyre and Ko Honda. On symplectic cobordisms. Math. Ann., 323(1):31–39, 2002.



REALIZING 4-MANIFOLDS AS ACHIRAL LEFSCHETZ FIBRATIONS 13

[12] David T. Gay. Explicit concave fillings of contact three-manifolds. Math. Proc. Cambridge Philos. Soc.,
133(3):431–441, 2002.

[13] David T. Gay and Robion Kirby. Constructing symplectic forms on 4-manifolds which vanish on circles. Geom.
Topol., 8:743–777 (electronic), 2004.
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