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ME470  Review Homework SOL --- Instructor : Shoeleh Di Julio
Chapter 5, Solution 184.

An adiabatic air compressor is powered by a direct-coupled steam turbine, which is also driving a generator. The net power delivered to the generator is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The devices are adiabatic and thus heat transfer is negligible. 4 Air is an ideal gas with variable specific heats.
Properties From the steam tables (Tables A-4 through 6)

and
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From the air table (Table A-17),
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Analysis  There is only one inlet and one exit for either device, and thus 
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. We take either the turbine or the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for either steady-flow system can be expressed in the rate form as
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For the turbine and the compressor it becomes

Compressor:    
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Turbine:         
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Substituting,
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Therefore,
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Chapter 5, Solution 189E.

Refrigerant-134a is compressed steadily by a compressor. The mass flow rate of the refrigerant and the exit temperature are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.
Properties From the refrigerant tables (Tables A-11E through A-13E)
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Analysis  (a) The mass flow rate of refrigerant is
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(b) There is only one inlet and one exit, and thus 
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. We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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 Substituting,
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Then the exit temperature becomes
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Chapter 7, Solution 109.

Refrigerant-134a enters an adiabatic compressor with an isentropic efficiency of 0.80 at a specified state with a specified volume flow rate, and leaves at a specified pressure. The compressor exit temperature and power input to the compressor are to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.
Analysis (a)  From the refrigerant tables (Tables A-11E through A-13E),
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From the isentropic efficiency relation,

Thus,
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(b)  The mass flow rate of the refrigerant is determined from
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There is only one inlet and one exit, and thus 
[image: image19.wmf]&

&

&

m

m

m

1

2

=

=

. We take the actual compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed as
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Substituting, the power input to the compressor becomes,
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Chapter 7, Solution 167.

Air flows in an adiabatic nozzle. The isentropic efficiency, the exit velocity, and the entropy generation are to be determined.

Properties The gas constant of air is R = 0.287 kJ/kg.K (Table A-1).
Assumptions 1 Steady operating conditions exist. 2 Potential energy changes are negligible.
Analysis (a) (b) Using variable specific heats, the properties can be determined from air table as follows
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Energy balances on the control volume for the actual and isentropic processes give
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The isentropic efficiency is determined from its definition,
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(c) Since the nozzle is adiabatic, the entropy generation is equal to the entropy increase of the air as it flows in the nozzle
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Chapter 7, Solution 175.

Steam expands in a two-stage adiabatic turbine from a specified state to specified pressure. Some steam is extracted at the end of the first stage. The power output of the turbine is to be determined for the cases of 100% and 88% isentropic efficiencies.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The turbine is adiabatic and thus heat transfer is negligible.
Properties From the steam tables (Tables A-4 through 6)
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Analysis (a)  The mass flow rate through the second stage is
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We take the entire turbine, including the connection part between the two stages, as the system, which is a control volume since mass crosses the boundary. Noting that one fluid stream enters the turbine and two fluid streams leave, the energy balance for this steady-flow system can be expressed in the rate form as
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Substituting, the power output of the turbine is
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(b)  If the turbine has an adiabatic efficiency of 88%, then the power output becomes
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Chapter 7, Solution 198.

Refrigerant-134a is vaporized by air in the evaporator of an air-conditioner. For specified flow rates, the exit temperature of air and the rate of entropy generation are to be determined for the cases of an insulated and uninsulated evaporator.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 There are no work interactions. 4 Air is an ideal gas with constant specific heats at room temperature.
Properties The gas constant of air is 0.287 kPa.m3/kg.K (Table A-1). The constant pressure specific heat of air at room temperature is cp = 1.005 kJ/kg.K (Table A-2). The properties of R-134a at the inlet and the exit states are (Tables A-11 through A-13)
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Analysis (a) The mass flow rate of air is 
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We take the entire heat exchanger as the system, which is a control volume. The mass and energy balances for this steady-flow system can be expressed in the rate form as

Mass balance ( for each fluid stream):
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Energy balance (for the entire heat exchanger):
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Combining the two,     
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Solving for T4,
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Substituting,
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Noting that the condenser is well-insulated and thus heat transfer is negligible, the entropy balance for this steady-flow system can be expressed as 
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or,
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where
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(b)  When there is a heat gain from the surroundings at a rate of 30 kJ/min, the steady-flow energy equation reduces to
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Solving for T4,
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Substituting,
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The entropy generation in this case is determined by applying the entropy balance on an extended system that includes the evaporator and its immediate surroundings so that the boundary temperature of the extended system is the temperature of the surrounding air at all times. The entropy balance for the extended system can be expressed as   
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Substituting,     
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Discussion Note that the rate of entropy generation in the second case is greater because of the irreversibility associated with heat transfer between the evaporator and the surrounding air.
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