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For two vectors:

a=a

b= k 

and θ is the angle between a and b.

The magnitudes of a and b are:
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a b =absinθ                                    (2.1)
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R1.2  Vector product
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The above equation can also be expressed as :
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1.3 Gradient (Grad) and del Operators

Fig.3 Two close contours in a scalar field in the x-y
coordinate system.



 is a Vector Operator:
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Gradient (Grad) and del Operators

he scale 
field , which is perpendicular to the contour at that point.

Physical Example: Electric potential and electric field. 
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1.4 Divergence (Div)

Fig. 5. The relationship of V and the 

small vector area A

Fig. 6. The cube box surrounding the 

point P,  and the vector field  V.
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The divergence is the outward flux per unit volume 
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Divergence (Div)

t point. 
It is a scalar quantity.

Physical Example: electric flux per unit volume.
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1.5 Curl of a Vector Field

Fig. 6. The circulation in a square contour in the x-
y plane.
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Curl of a Vector Field

c
V ds per unit area in the x-y plane.

In a x-y-z coordinate, the vector field V has a rotatory component in a plane whose 

normal is in the direction of V. The circulation per unit area in that pl

⋅∫

ane is given by

 V∇×
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Laplacian operator is a scalar operator, and is defined as :
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x

For a vector field V x y z

y z

V i V j V k

∂ ∂

∇ =

∂
+ +

∂ ∂ ∂

+

∇⋅∇

+

1.6  Laplacian Operator

1.7  Other opera o
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,  we can prove that
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