Review: Vector Algebra And Analysis

- **R1.1 Scalar Product**
- R1.2 Vector Product
- R1.3 Gradient and Del operators
- R1.4 Divergence
- R1.5 Curl of a Vector Field
- R1.6 Laplacian Operator
- **R1.7** Other Operators

Scalar and Vector Products

For two vectors:

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$
$$\vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$$

and θ is the angle between \vec{a} and \vec{b} .

The magnitudes of \vec{a} and \vec{b} are:

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2}, \qquad b = \sqrt{b_x^2 + b_y^2 + b_z^2},$$

R1.1 Scalar product

 $\vec{a} \cdot \vec{b} = ab\cos\theta$ (1.1) $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$ (1.2)

R1.2 Vector product

$$\begin{vmatrix} \vec{a} \times \vec{b} &|=absin\theta \qquad (2.1) \\ \vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \qquad (2.1) \end{vmatrix}$$

The direction of $\vec{a} \times \vec{b}$ is determined by the Right-Hande-Rule.

$$\vec{a} \times \vec{b} = (a_x \vec{i} + a_y \vec{j} + a_z \vec{k}) \times (b_x \vec{i} + b_y \vec{j} + b_z \vec{k})$$

= $(a_y b_z - a_z b_y) \vec{i} + (a_z b_x - a_x b_z) \vec{j} + (a_x b_y - a_y b_x) \vec{k}$ (2.3)

The above equation can also be expressed as :

$$\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
(2.4)

1.3 Gradient (Grad) and del Operators

Fig.3 Two close contours in a scalar field in the x-y coordinate system.

Gradient (Grad) and del Operators

 ∇ is a Vector Operator:

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$

Grad
$$\phi = \nabla \phi = (\frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k})\phi$$

$$= \frac{\partial \phi}{\partial x}\vec{i} + \frac{\partial \phi}{\partial y}\vec{j} + \frac{\partial \phi}{\partial z}\vec{k}$$

The gradient is the maximum rate of change of the scale field ϕ , which is perpendicular to the contour at that point.

Physical Example: Electric potential and electric field.

1.4 Divergence (Div)

Fig. 5. The relationship of \vec{V} and the small vector area \vec{A}

Fig. 6. The cube box surrounding the point P, and the vector field \vec{V} .

Divergence (Div)

Div
$$\vec{V} = \nabla \cdot \vec{V} = \left(\frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}\right) \cdot \left(V_x\vec{i} + V_y\vec{j} + V_z\vec{k}\right)$$

$$= \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} + \frac{\partial V_z}{\partial x} \qquad (4.6)$$

The divergence is the outward flux per unit volume at that point. It is a scalar quantity.

Physical Example: electric flux per unit volume.

Divergence Theorem

 $\oint_{\mathrm{Sv}} \vec{\mathrm{V}} \cdot \mathrm{d}\vec{\mathrm{s}} = \int_{\mathrm{V}} (\nabla \cdot \vec{V}) dv$

1.5 Curl of a Vector Field

Fig. 6. The circulation in a square contour in the xy plane.

Curl of a Vector Field

$$\operatorname{Curl} \vec{V} = \nabla \times \vec{V} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_x & V_y & V_z \end{vmatrix}$$
$$= \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}\right) \vec{i} + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right) \vec{j} + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right) \vec{k}$$
(5.2)

The Z components of curl \vec{V} is the circulation $\int_{c} \vec{V} \cdot d\vec{s}$ per unit area in the x-y plane.

In a x-y-z coordinate, the vector field \vec{V} has a rotatory component in a plane whose normal is in the direction of \vec{V} . The circulation per unit area in that plane is given by $|\nabla \times \vec{V}|$

1.6 Laplacian Operator

Laplacian operator is a scalar operator, and is defined as : $\nabla^2 = \nabla \cdot \nabla$

$$=\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
(6.1)

1.7 Other operators

For a vector field $\vec{V} = V_x \vec{i} + V_y \vec{j} + V_z \vec{k}$, we can prove that

$$\nabla \times \nabla \times \vec{V} = \nabla (\nabla \cdot \vec{V}) - \nabla^2 \vec{V}$$
(7.1)