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Chapter 2.1  Plane Waves in a Simple, Source-Free, and
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2.1 Plane Wave in a Simple, Source-free, and Lossless Medium
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The general equations for electric and magnetic fields:
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the general solution of (2.5) is in the form of:
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If we restric the electric field as the function z, and the electric field
to one component E  only, equation (2.2) becomes:
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2.1.1      The Relation between E and H
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Assume we have a electric field of uniform plane wave:
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The electric field  of a uniform plane wave in a lossless 
medium is

( , ) Re ( ) ) (2.11)
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2.2 Time-Harmonic Uniform Plane Waves in a Lossless 
Medium
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The electric and magnetic fields of a time-harmonic wave 
propagating in the + Z direction are
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1( , ) cos( ) (2.13)
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The instantaneous expression for the electric field component of an AM 
broadcast signal propagating  is given by

Example 2-1:       A
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(a) Determine the direction of propagation and frequency f.
(b) Determine the phase constant  and wavelength.

(c) Find the instantaneous expression for the corresponding H(x,t).
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An FM broadcast signal traveling in y direction  has a magnetic
field given by the phasor:

ˆ             H(y)= 2.92

Example 2-2:       FM broadcast Si
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the frequency .

ˆ(b) Find the corresponding E(y).

(c) Find the instantaneous expression for the  E(x,t) and H(x,t).



2.3  Plane Waves in Lossy Media
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The electric field  of a uniform plane wave in a lossy 
medium is
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The waves propagate in the +Z directions are
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where intrinsic impedance  is:
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Find the complex propagation constant  and the
intrisic impedance η  of a microwave signal in

muscle tissue at 915 MHz ( =1.6
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Consier distilled water at 25 GHz ( 34 9.01).
Calculate the attenuation constant , phase constant 

, penetration depth d, and t
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2.4 Electromagnetic Energy Flow and the Poynting Vector
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Poynting  Theorem:
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Consider a long cylindrical conductor of conductivity 
 and radius a, carrying a direct current  as shown

in the 

Example 2-12: Wire carryi

figure. Find the power di

ng direct cu
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of the wire of length ,  using 
(a) the left-hand side of (2.31); (b) he right-hand side of (2.31)
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Consider a coaxial line delivering power to a resistor as
shown in the figure. Assume the wire to be perfect conductor

Example 2-13 Power flow in a 

,
so that there is no power di
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ssipati

 line 

on in the wires, and the 
electric field inside them is zero. The configurations of the 
electric and magnetic field lines in the coaxial line are shown.
Find the power delivered to the resistor R.
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A survey conducted in the United State indicated that ~50% of 
the population is exposed to average power densities of 0.0

Example 2-18  VHF/UHF broadcast 
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correcponding amplitudes of the electric and magnetic fields.
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Consider VLF wave progation in the ocean. Find the
time-average Poynting flux at the sea surface (z=0) 
and at the depth of z=100m. Assume:

Example 2-19  VLF wa
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