MATH 581

ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) lecture section, and (5) a grading table. You must work all the problems on the exam. Show ALL your work in your bluebook and **BOX IN YOUR FINAL ANSWERS**. A correct answer with no relevant work may receive no credit, while an incorrect answer accompanied by some correct work may receive partial credit. Textbooks, classnotes, crib sheets, or calculators are <u>NOT</u> permitted.

1. (40 points) Let A be a nonsingular $n \times n$ real matrix and b a vector in \mathbb{R}^n . Let M, N be two $n \times n$ real matrices obtained through the following splitting

$$A = M - N$$

a. Show that the iterative process given by

$$\begin{cases} M x^{k+1} = N x^k + b ; \quad k \ge 0 \\ \\ x^0 \in \mathbf{R}^n \qquad \text{(given)} \end{cases}$$

is equivalent to the following

Given
$$x^k$$
,
compute $r^k = b - A x^k$
solve $Q z^k = r^k$
define $x^{k+1} = x^k + z^k$

where the matrix Q is to be found.

b. Prove that for all $k \ge 0$, we have

$$\begin{cases} r^{k+1} &= (I - A Q^{-1}) r^k \\ z^{k+1} &= (I - Q^{-1} A) z^k \end{cases}$$

c. Let || || be a matrix nom subordinate to a vector norm. Prove that if the number $\delta = ||M^{-1}N||$ is less than 1, then

$$||x^{k} - x|| \le \frac{\delta}{1 - \delta} ||x^{k} - x^{k-1}||$$

where x satisfies A x = b.

- d. Find the explicit form for the iteration matrix $M^{-1}N$ in the Gauss-Seidel method.
- e. Assume that A is a strictly diagonally dominant matrix. Prove that Gauss-Seidel iterate sequence (x^k) must converge for any starting point x^0 .

EXAM #3

- 2. (40 points) Count the number of multiplications and/or divisions needed to invert a unit $n \times n$ lower triangular matrix.
- 3. (30points) Describe the iterates x^k constructed with the precondition conjugate gradient algorithm for solving the linear system A x = b.
- 4. (30 points)

Let A and B be two $n \times n$ real matrices and $|| \cdot ||$ a matrix norm subordinate to a vector norm. Show that if ||AB - I|| = r < 1, then

$$||A^{-1} - B|| \leq \frac{r}{1 - r}||B||$$

- 5. (30 points) Let A and δA be two real and symmetric $n \times n$ matrices. Let α_l (resp. β_l), (l = 1, ...n) be the eigenvalues of A (resp. of $A + \delta A$) counted with their multiplicity.
 - a. Explain why we can assume that

$$\alpha_1 \le \alpha_2 \le \dots \le \alpha_n$$

and

$$\beta_1 \leq \beta_2 \leq \ldots \leq \beta_n$$

b. Prove that

$$|\beta_l - \alpha_l| \le ||\delta A||_2 \quad 1 \le l \le n$$

6. (30 points) Consider the following Householder transformation

$$H_u = I - 2 u u^T; \quad \forall u \in \mathbf{R}^n$$

- a. Prove that if $||u||_2 = 1$, then H_u is an orthogonal matrix.
- b. Prove that for any $a \in \mathbf{R}^n$, there is $u \in \mathbf{R}^n$ and $\alpha \in \mathbf{R}$ such that

$$H_u a = \alpha e^{(1)}$$

where $e^{(1)}$ is the first vector of the standard basis of \mathbf{R}^n .

c. Describe the QR factorization process when using successive Householder transformations.