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Influence of electric conductivity on intensity factors for cracks in conducting piezoelectric materials is
investigated. Mechanical and electric loads are considered for 2D crack problems. The electric displace-
ment in conducting piezoelectric materials is influenced by the electron density and it is coupled with the
electric current. The coupled governing partial differential equations (PDE) for stresses, electric displace-
ment field and current are satisfied in a local weak-form on small fictitious subdomains. Nodal points are
spread on the analyzed domain and each node is surrounded by a small circle for simplicity. Local integral
equations are derived for a unit function as the test function on circular subdomains. All field quantities
are approximated by the moving least-squares (MLS) scheme. Interaction integral method is developed
for evaluating the intensity factors in functionally graded conducting piezoelectric materials.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) could be applied to
reduce the stress concentration and increase the fracture tough-
ness (Suresh and Mortensen, 1998; Paulino et al., 2003). Conse-
quently, the original concept of elastic FGMs can be extended to
piezoelasticity to obtain piezoelectric (PE) materials with high
strength, high toughness, low thermal expansion coefficient and
low dielectric constant. PE materials can be either dielectrics or
semiconductors. Up to date dielectric materials are more intensive-
ly investigated than semiconductors. The solution of the boundary
value problems for continuously nonhomogeneous PE solids
requires advanced numerical methods due to the high mathemati-
cal complexity. The governing equations are more complicated
than in a homogeneous counterpart and the electric and mechan-
ical fields are coupled with each other. Therefore, only few crack
problems in non-conducting PE medium were studied in homoge-
neous bodies. Pak (1990) obtained the closed-form solutions for an
infinite PE medium under an anti-plane loading by using a complex
variable method. Later, Park and Sun (1995) obtained closed-form
solutions for all the three fracture modes associated with a crack in
an infinite PE medium. They investigated the effects of the electric
field on the fracture of PE ceramics. General computational meth-
ods like the finite element method (FEM) (Gruebner et al., 2003;
Govorukha and Kamlah, 2004; Enderlein et al., 2005; Kuna, 2006)
and the boundary element method (BEM) (Pan, 1999; Davi and
Milazzo, 2001; Gross et al., 2005; Garcia-Sanchez et al., 2005,
2007; Sheng and Sze, 2006; Lei et al., 2014) need to be applied
for general crack analyses in PE solids. Recently, the extended
FEM has been applied for crack analyses in non-conducting PE
under thermal or dynamic load (Liu et al., 2013, 2014; Bui and
Zhang, 2012). In recent years, meshless formulations are becoming
popular due to their high adaptivity and low costs in preparation of
input and output data for numerical analyses. A variety of meshless
methods has been proposed so far and some of them are also
applied to PE problems (Ohs and Aluru, 2001; Liu et al., 2002;
Sladek et al., 2007, 2010, 2012). Even continuously varying PE
material properties are considered in some numerical analyses
for non-conducting dielectric PE (Sladek et al., 2007). The results
in numerical examples showed a strong dependence of the stress
intensity factor (SIF) and electrical displacement intensity factor
(EDIF) on material properties. Furthermore, an impact load would
lead to a dynamic overshoot of the static intensity factors. A grada-
tion of material properties affects both intensity factors.

In PE semiconductors (conducting PE) the induced electric field
produces electric current. The interaction between mechanical
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fields and mobile charges in piezoelectric semiconductors is called
the acoustoelectric effect (Hutson and White, 1962; White, 1962).
An acoustic wave traveling in a PE semiconductor can be amplified
by application of an initial or biasing dc electric field (Yang and
Zhou, 2005). This phenomenon is utilized in many acoustoelectric
devices (Heyman, 1978; Busse and Miller, 1981). There are only
few papers devoted to crack problems in piezoelectric semiconduc-
tor materials. These papers are concerned with only the anti-plane
crack problem in unbounded domain with a semi-infinite crack
(Yang, 2005) or a finite crack (Hu et al., 2007) under stationary con-
ditions. The Fourier transform technique was applied to reduce the
problem to a pair of dual integral equations. In the present paper,
we aim at analyzing the in-plane crack problem in bounded
domains under mechanical and electric loads. Static and transient
boundary conditions are considered here. The meshless local Pet-
rov–Galerkin (MLPG) method (Sladek et al., 2013) is developed
for the solution of initial-boundary value problems in conducting
piezoelectric solids. Nodal points are introduced and spread on
the analyzed domain and each node is surrounded by a small circle
for simplicity, but without loss of generality. The spatial variations
of the displacement, electric potential and electron density are
approximated by the moving least-squares (MLS) scheme (Zhu
et al., 1998). After performing spatial integrations, a system of
ordinary differential equations for the unknown nodal values is
obtained. The essential boundary conditions on the global bound-
ary are satisfied by collocation. Then, the system of ordinary differ-
ential equations of the second order resulting from the equations
of motion is solved by the Houbolt finite-difference scheme
(Houbolt, 1950).

2. Local integral equations for piezoelectric semiconductor

Consider a continuously nonhomogeneous n-type piezoelectric
semiconductor with electron density M0 in the unloaded state with
vanishing initial electric field E0. Generally, material properties are
varying with Cartesian coordinates. One can assume quasi-static
character of the first Maxwell equation, since the frequency of
external loadings is significantly lower than the frequency of elec-
tromagnetic fields. The governing equations within the linear the-
ory are given by the balance of momentum, Gauss‘s law and
conservation of charge (Hutson and White, 1962)

rij;jðx; sÞ ¼ q€uiðx; sÞ; Di;iðx; sÞ ¼ qMðx; sÞ; q _Mðx; sÞ þ Ji;i ¼ 0;

ð1Þ

where €ui, rij, Di, and q are the acceleration of elastic displacements,
stress tensor, electric displacement field, and electric charge of elec-
tron, respectively. The electron density and electric current are
denoted by M and Ji, respectively. Symbol q is used for the mass
density. A comma followed by an index denotes partial differen-
tiation with respect to the coordinate associated with the index.

The constitutive equations (Hutson and White, 1962; White,
1962) represent the coupling of the mechanical and electrical fields
and electric current

rijðx; sÞ ¼ cijklðxÞeklðx; sÞ � ekijðxÞEkðx; sÞ;

Djðx; sÞ ¼ ejklðxÞeklðx; sÞ þ hjkðxÞEkðx; sÞ;

Jiðx; sÞ ¼ qM0ðxÞlijðxÞEjðx; sÞ � qdijðxÞM;jðx; sÞ; ð2Þ

where cijklðxÞ, eijkðxÞ, hijðxÞ, lijðxÞ and dijðxÞ are the elastic, piezoelec-
tric, dielectric, electron mobility and carrier diffusion material coef-
ficients, respectively. Generally, these coefficients can be dependent
on Cartesian coordinates for the case of FGMs.

The strain tensor eij and the electric field vector Ej are related to
the displacements ui and the electric potential / by
eij ¼
1
2
ðui;j þ uj;iÞ; Ej ¼ �/;j ð3Þ

In the case of certain crystal symmetries, one can also formulate the
plane-deformation problems (Parton and Kudryavtsev, 1988). For
instance, in the crystals of hexagonal symmetry with x3 being the
6-order symmetry axis and assuming u2 ¼ 0 as well as the indepen-
dence on x2, i.e. ð�Þ;2 ¼ 0, we have e22 ¼ e23 ¼ e12 ¼ E2 ¼ J2 ¼ 0.
Using the Voigt notation, the constitutive equations (2) are reduced
to the following form

r11

r33

r13

24 35 ¼ c11 c13 0
c13 c33 0
0 0 c44

24 35 e11

e33

2e13

24 35� 0 e31

0 e33

e15 0
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� �

� CðxÞ
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2e13
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� �
; ð4Þ
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� �
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� �
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2e13
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� �
; ð5Þ
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� �
E1
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� �
� q
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� �
� qM0AðxÞ

E1

E3

� �
� qFðxÞ

M;1

M;3

� �
: ð6Þ

The following essential and natural boundary conditions are
assumed for the mechanical fields

uiðx; sÞ ¼ ~uiðx; sÞ; on Cu;

tiðx; sÞ � rijnj ¼ ~tiðx; sÞ; on Ct ;C ¼ Cu [ Ct ;

where nj is the unit vector normal to the boundary. For the electrical
fields, we assume

/ðx; sÞ ¼ ~/ðx; sÞ; on Cp;

Qðx; sÞ � Diðx; sÞniðxÞ ¼ ~Qðx; sÞ; on Cq;C ¼ Cp [ Cq;

and for the electric current fields

Mðx; sÞ ¼ ~Mðx; sÞ; on Ca;

Sðx; sÞ � Jiðx; sÞniðxÞ ¼ ~Sðx; sÞ; on Cb;C ¼ Ca [ Cb;

where Cu is the part of the global boundary C with prescribed dis-
placements, while on Ct , Cp, Cq, Ca, and Cb the traction vector, electric
potential, normal component of the electric displacement vector,
electron density, and the electric current flux are, respectively,

applied. Recall that ~Qðx; sÞ can be considered approximately as the
surface density of free charge, provided that the permittivity of the
solid is much greater than that of the surrounding medium (vacuum).
The summation for repeated indices is considered over 1 and 3.

The initial conditions for mechanical displacements are
assumed as

uiðx; sÞjs¼0 ¼ uiðx;0Þ and _uiðx; sÞjs¼0 ¼ _uiðx;0Þ in X:

The local weak form of the governing equations (1) can be written
asZ

Xs

½rij;jðx; sÞ � q€uiðx; sÞ�u�ikðxÞdX ¼ 0; ð7Þ

where u�ikðxÞ is a test function and Xs � X.
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Applying the Gauss divergence theorem to the first integral and
choosing the Heaviside step function as the test function u�ikðxÞ in
each subdomain

u�ikðxÞ ¼
dik at x 2 Xs

0 at x R Xs

�
;

the local weak-form (7) is converted into the following local bound-
ary-domain integral equationsZ

LsþCsu

tiðx; sÞdC�
Z

Xs

q€uiðx; sÞdX ¼ �
Z

Cst

~tiðx; sÞdC; ð8Þ

where the boundary of the local subdomain @Xs consists of three
parts @Xs ¼ Ls [ Cst [ Csu (Atluri (2004)). Here, Ls is the local bound-
ary that is totally inside the global domain, Cst is the part of the local
boundary which coincides with the global traction boundary, i.e.,
Cst ¼ @Xs \ Ct , and Csu is the part of the local boundary that coin-
cides with the global displacement boundary, i.e., Csu ¼ @Xs \ Cu.
Similar definitions are valid also for other fields and related
integration parts.

The local integral equation (8) is valid for both the homoge-
neous and nonhomogeneous solids. Nonhomogeneous material
properties are included in Eq. (8) through the elastic and piezoelec-
tric coefficients involved in the traction components

tiðx; sÞ ¼ ½cijklðxÞuk;lðx; sÞ þ ekijðxÞ/;kðx; sÞ�njðxÞ:

Similarly, the local weak-form of the second governing equation in
(1) can be written asZ

Xs

½Dj;jðx; sÞ � qMðx; sÞ�v�ðxÞdX ¼ 0; ð9Þ

where v�ðxÞ is a test function.
Applying the Gauss divergence theorem to the local weak-form

(9) and choosing the Heaviside step function as the test function
v�ðxÞ, we obtainZ

LsþCsp

Qðx; sÞdC�
Z

Xs

qMðx; sÞdX ¼ �
Z

Csq

~Qðx; sÞdC; ð10Þ

where

Qðx; sÞ ¼ Djðx; sÞnjðxÞ ¼ ½ejkluk;lðx; sÞ � hjk/;kðx; sÞ�nj:

Finally, the local integral equation corresponding to the last govern-
ing equation in (1) has the formZ

LsþCsa

Sðx; sÞdCþ
Z

Xs

q _Mðx; sÞdX ¼ �
Z

Csb

~Sðx; sÞdC; ð11Þ

where the electric current flux is given by

Sðx; sÞ ¼ Jjðx; sÞnjðxÞ ¼ ½�qM0lkj/;kðx; sÞ � qdjkM;kðx; sÞ�nj:

In the MLPG method, the test and trial functions are not necessarily
from the same functional spaces. For internal nodes, the test
function is chosen as the Heaviside step function with its support
on the local subdomain. The trial functions, on the other hand, are
chosen to be the moving least-squares (MLS) approximation over
a number of nodes spread within the domain of influence.

3. Moving least square approximation

In general, a meshless method uses a local interpolation to rep-
resent the trial function with the values (or the fictitious values) of
the unknown variable at some randomly located nodes. The mov-
ing least-squares (MLS) approximation (Lancaster and Salkauskas,
1981; Nayroles et al., 1992) used in the present analysis may be
considered as one of such schemes. According to the MLS method
(Atluri, 2004), the approximation of a field variable is given as
uhðxÞ ¼
Xs

i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð12Þ

where pTðxÞ ¼ fp1ðxÞ;p2ðxÞ; . . . psðxÞg is a vector of complete basis
functions of order s and aðxÞ ¼ fa1ðxÞ; a2ðxÞ; . . . asðxÞg is a vector of
unknown parameters that depend on x. For example, in 2-D
problems

pTðxÞ ¼ f1; x1; x3g for s ¼ 3;

and

pTðxÞ ¼ f1; x1; x3; x2
1; x1x3; x2

3g for s ¼ 6;

are linear and quadratic basis functions, respectively. The basis
functions are not necessarily polynomials. The MLS allows introduc-
ing r�1=2 – singularity for secondary fields at the crack-tip vicinity
for modeling fracture problems (Fleming et al. (1997)). Then, the
basis functions can be considered in the following form

pTðxÞ ¼ 1; x1; x3;
ffiffiffi
r
p

cosðh=2Þ;
ffiffiffi
r
p

sinðh=2Þ;
ffiffiffi
r
p

sinðh=2Þ sin h;
�ffiffiffi
r
p

cosðh=2Þ sin h
�

for s ¼ 7;

where r and h are polar coordinates with the crack-tip as the origin.
The enriched basis functions given above represent all occurring
terms in asymptotic expansion of displacements at the crack tip
vicinity. Then, density of node distribution in such a case can be
lower than that in the case of polynomial basis functions only, while
getting the same accuracy of results. Only slight differences of crack
opening displacements were observed in Sladek et al. (2008) at the
crack tip vicinity if singularity of fields is considered or not. Quan-
tities at the crack tip vicinity are important for an accurate eval-
uation of intensity factors from asymptotic expressions. In the
present paper the interaction integral method is applied for eval-
uation of fracture parameters, where the interaction integral is
computed from quantities far from the crack tip. Accordingly, basis
functions proportional to r�1=2 – singularity (in the equation above)
are not considered. Only the polynomial basis functions were used.

Following the approximation (12), the approximated functions
for mechanical displacements, electric potential and electron den-
sity can be written as (Atluri, 2004)

uhðx; sÞ ¼
Xn

a¼1

NaðxÞûaðsÞ;

/hðx; sÞ ¼
Xn

a¼1

NaðxÞ/̂aðsÞ;

Mhðx; sÞ ¼
Xn

a¼1

NaðxÞM̂aðsÞ; ð13Þ

where the nodal values, ûaðsÞ ¼ ðûa
1ðsÞ; ûa

3ðsÞÞ
T , /̂aðsÞ, and M̂aðsÞ, are

fictitious parameters for displacements, electric potential and elec-
tron density, respectively, and NaðxÞ is the shape function associat-
ed with node a. The number of nodes n used for the approximation
is determined by the weight function waðxÞ. A 4th-order spline-type
weight function is applied in the present work

waðxÞ ¼ 1� 6 da

ra

� 	2
þ 8 da

ra

� 	3
� 3 da

ra

� 	4
; 0 6 da

6 ra

0; da P ra

8<: ; ð14Þ

where da ¼ kx� xak and ra is the size of the support domain. It
should be noted that a smaller size of subdomains may induce larg-
er oscillations in the nodal shape functions (Atluri, 2004). A neces-
sary condition for a regular MLS approximation is that at least s
weight functions are non-zero (i.e. n P s) for each sample point
x 2 X. This condition determines the size of the supporting domain.



82 J. Sladek et al. / International Journal of Solids and Structures 59 (2015) 79–89
Then, the traction vector tiðx; sÞ at a boundary point x 2 @Xs is
approximated in terms of the same nodal values ûaðsÞ as

thðx; sÞ ¼ NðxÞCðxÞ
Xn

a¼1

BaðxÞûaðsÞ þNðxÞLðxÞ
Xn

a¼1

PaðxÞ/̂aðsÞ; ð15Þ

where the matrices CðxÞ; LðxÞ are defined in Eq. (4), the matrix NðxÞ
is related to the normal vector n(x) on @Xs by

NðxÞ ¼
n1 0 n3

0 n3 n1

� �
;

and finally, the matrices Ba and Pa are represented by the gradients
of the shape functions as

BaðxÞ ¼
Na
;1 0

0 Na
;3

Na
;3 Na

;1

264
375; PaðxÞ ¼

Na
;1

Na
;3

" #
:

Similarly the normal component of the electric displacement vector
Qðx; sÞ can be approximated by

Q hðx; sÞ ¼ N1ðxÞGðxÞ
Xn

a¼1

BaðxÞûaðsÞ � N1ðxÞHðxÞ
Xn

a¼1

PaðxÞ/̂aðsÞ;

ð16Þ

where the matrices GðxÞ and HðxÞ are defined in Eq. (5) and

N1ðxÞ ¼ ½n1 n3 �:

Finally, the electric current flux Sðx; sÞ is approximated by

Shðx;sÞ¼�N1ðxÞqM0AðxÞ
Xn

a¼1

PaðxÞ/̂aðsÞ�N1ðxÞqFðxÞ
Xn

a¼1

PaðxÞM̂aðsÞ;

ð17Þ
with the matrices AðxÞ, FðxÞ being defined in Eq. (6).

Satisfying the essential boundary conditions and making use of
the approximation formulae (13), we obtain the discretized form of
these boundary conditions asXn

a¼1

NaðxÞûaðsÞ ¼ ~uðx; sÞ for x 2 Cu;

Xn

a¼1

NaðxÞ/̂aðsÞ ¼ ~/ðx; sÞ for x 2 Cp;

Xn

a¼1

NaðxÞM̂aðsÞ ¼ ~Mðx; sÞ for x 2 Ca: ð18Þ

Furthermore, in view of the MLS-approximations (15)–(17) for the
unknown quantities in the local boundary-domain integral equa-
tions (8), (10) and (11), we obtain their discretized forms asXn

a¼1

Z
LsþCst

NðxÞCðxÞBaðxÞdC

 �

ûaðsÞ �
Z

Xs

qðxÞNadX

 �

ûaðsÞ
� �

þ
Xn

a¼1

Z
LsþCst

NðxÞLðxÞPaðxÞdC

 �

/̂aðsÞ

¼ �
Z

Cst

~tðx; sÞdC; ð19Þ

Xn

a¼1

Z
LsþCsq

N1ðxÞGðxÞBaðxÞdC

 !
ûaðsÞ

�
Xn

a¼1

Z
LsþCsq

N1ðxÞHðxÞPaðxÞdC

 !
/̂aðsÞ�

Xn

a¼1

Z
Xs

qNaðxÞdX

 �

M̂aðsÞ

¼ �
Z

Csq

~Qðx;sÞdC; ð20Þ
�
Xn

a¼1

Z
LsþCsb

N1ðxÞqM0AðxÞPaðxÞdC

 !
/̂aðsÞ

�
Xn

a¼1

Z
LsþCsb

N1ðxÞqFðxÞPaðxÞdC

 !
M̂aðsÞ

þ
Xn

a¼1

Z
Xs

qNaðxÞdX

 �

_̂MaðsÞ

¼ �
Z

Csb

eSðx; sÞdC; ð21Þ

which are considered on the sub-domains adjacent to the interior
nodes as well as to the boundary nodes on Cst , Csq and Csb.

The above given system of ordinary differential equations can
be rearranged in such a way that all known quantities are on the
right-hand-side of an equation. Thus, in matrix form the system
becomes

A€FðsÞ þ B _FðsÞ þ CFðsÞ ¼ YðsÞ; ð22Þ

where the vector F contains all the unknowns to be solved for, as
listed in (19)–(21).

The Houbolt method (1950) is applied for ‘‘acceleration’’ as a
finite-difference scheme

€FsþDs ¼
2FsþDs � 5Fs þ 4Fs�Ds � Fs�2Ds

Ds2 ; ð23Þ

where Ds is the time step. The backward difference method is
applied for the approximation of ‘‘velocities’’

_FsþDs ¼
FsþDs � Fs

Ds
: ð24Þ
4. Evaluation of the intensity factors in FGMs

The enthalpy for conducting piezoelectric material has to con-
tain terms proportional to gradients of electron density, Gi ¼ M;i:

W ¼ 1
2

cijkleijekl � eiklEiekl �
1
2

hijEiEj �
1
2

qdijGiGj þ qM0lijEjGi: ð25Þ

Based on this definition, the constitutive equations (2) can be
obtained from the electric enthalpy (25) as the corresponding
gradients

rijðxÞ ¼
@W
@eij
¼ cijklðxÞeklðxÞ � ekijðxÞEkðxÞ; ð26Þ

DjðxÞ ¼ �
@W
@Ej
¼ ejklðxÞeklðxÞ þ hjkðxÞEkðxÞ; ð27Þ

JiðxÞ ¼
@W
@Gi
¼ qM0lijðxÞEjðxÞ � qdijðxÞGjðxÞ; ð28Þ

which are also the same as those given by Yang and Zhou (2005).
The gradient of the electric enthalpy density (25) is given as

W;mðeij; Ei;Gi; xiÞ ¼
@W
@eij

@eij

@xm
þ @W
@Ei

@Ei

@xm
þ @W
@Gi

@Gi

@xm
þ @W

@xm


 �
expl
;

ð29Þ

where the last term stands for the ‘‘explicit’’ derivative of the
enthalpy density for non-homogeneous materials, which is

@W
@xm


 �
expl
¼ 1

2
cijkl;meijekl � eikl;mEiekl �

1
2

hij;mEiEj �
1
2

qdij;mGiGj

þ qM0lij;mGiEj: ð30Þ
It is assumed that the initial electron density M0 is uniform in
unloaded state. Then, utilizing Eqs. (26)–(28), the gradient of the
enthalpy can be rewritten in the form
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W;m ¼ ðrijui;mÞ; j � rij;jui;m � DiEi;m þ JiGi;m þ ðW;mÞexpl: ð31Þ

Bearing in mind the second equation in (3), one can write the
third term in Eq. (31) as

DjEj;m ¼ DjEm;j ¼ ðDjEmÞ;j � Dj;jEm:

Similarly,

JiGi;m ¼ ðJiGmÞ;i � Ji;iGm:

Then, the gradient of the electric enthalpy density is given as

ðWdjm � rijui;m þ DjEm � JjGmÞ;j
¼ �q€uiui;m þ qMEm þ q _MGm þ ðW;mÞexpl: ð32Þ

An integral form of Eq. (32) may be obtained upon application of the
divergence theorem. If X is a regular bounded region enclosed by a
surface C whose unit outward normal vector is n, it follows thatZ

C
ðWdjm � rijui;m þ DjEm � JjGmÞnjdC

¼
Z

X
� q€uiui;mdXþ

Z
X

qðMEm þ _MGmÞdXþ
Z

X
ðW;mÞexpldX: ð33Þ

The integral identity (33) is valid in a region where no field irregu-
larities prevail. In the presence of a crack, the stresses at the crack-
tip are singular and the displacements are discontinuous across
both crack surfaces. Therefore, a cut-out along the crack with a
small region at the vicinity of a crack-tip Xe has to be excluded. This
region is surrounded by Ce as shown in Fig. 1.

The global Cartesian coordinate system is defined in such a way
that the principal axes of the material orthotropy are aligned with
the global coordinates. All fields rij, ui, Dj, Ej and Gj are regular in
the region X�Xe. The contour C ¼ C0 þ Cþc � Ce þ C�c is a closed
integration path in the counter-clockwise direction. The radius e
is considered to be very small and shrinks to zero in the limiting
process. The crack surfaces Cþc and C�c are assumed to be trac-
tion-free and electrically insulating, i.e., ti ¼ rijnj ¼ 0 and Dn = 0,
and the crack is parallel to the x1-axis of the local Cartesian coordi-
nate system. Then, Eq. (33) can be written as

lime!0

Z
Ce

ðWdjm � rijui;m þ DjEm � JjGmÞnjdC

¼
Z

C0

ðWdjm � rijui;m þ DjEm � JjGmÞnjdC

þ
Z

Cþc

½Wþ �W��d2mdCþ lime!0

Z
X�Xe

q€uiui;mdX

� lime!0

Z
X�Xe

qðMEm þ _MGmÞdX� lime!0

Z
X�Xe

ðW;mÞexpldX:

ð34Þ
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φ
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Fig. 1. Integration paths and coordinate definitions.
Hu et al. (2007) showed that the SIF and EDIF are sufficient to
characterize fracture in a piezoelectric semiconductor like in a
piezoelectric dielectric. However, both SIF and EDIF values are
influenced by the electric current and the density of electrons in
the conducting PE. Asymptotic expressions for stresses and electric
intensity vector at the crack tip vicinity in both conducting and
non-conducting PE are the same (Hu et al., 2007). Intensity factors
(SIF and EDIF) for a crack in conducting piezoelectric materials are
sufficient to characterize fracture as in the non-conducting
(dielectric) ones. Then, the electromechanical J-integral is expressed
in terms of the SIF and EDIF. Therefore, the term JjGm has to give a
vanishing contribution on Ce and the left- hand side of Eq. (34) is
identical to the definition of the J-integral (Pak and Herrmann
(1986)) for piezoelectric dielectric, denoted by A1 [A1 ¼ lime!0

R
Ce

ðWdj1 � rijui;1 þ DjE1ÞnjdC]. Then from Eq. (34), A1 will take the
following form (with m ¼ 1 (Atluri, 1986)):

A1 ¼
Z

C0

ðWdj1 � rijui;1 þ DjE1 � JjG1ÞnjdC

þ lime!0

Z
X�Xe

q€uiui;1dX� lime!0

Z
X�Xe

qðME1 þ _MG1ÞdX

� lime!0

Z
X�Xe

ðW;1ÞexpldX: ð35Þ

From the definition of the enthalpy (25) and constitutive equations
(26)–(28) it is possible to show that for linear material one can
write

W ¼ 1
2
rijeij �

1
2

DiEi þ
1
2

JiGi þ
1
2

qM0lijGiEj:

We now consider two independent equilibrium states in the func-
tionally graded PE material. Let state (1) corresponds to the actual
state specified by the prescribed boundary conditions (without
superscript ‘‘(1)’’ for simplicity). Since field singularities in the con-
ducting and non-conducting piezoelectrics are the same, the auxil-
iary state (2) can be selected as the asymptotic field in piezoelectric
dielectrics. Superposition of the actual and auxiliary fields leads to
another equilibrium state, state(s) for which the J-integral is given
as

AðsÞ ¼
Z

C0

W ðsÞn1 � rij þ rð2Þij

� 	
nj ui;1 þ uð2Þi;1

� 	h
þ Dj þ Dð2Þj

� 	
nj E1 þ Eð2Þ1

� 	i
dC

�
Z

C0

JjnjG1dCþ lime!0

Z
X�Xe

q€uiðui;1 þ uð2Þi;1 ÞdX

� lime!0

Z
X�Xe

q MðE1 þ Eð2Þ1 Þ þ _MG1

h i
dX

� lime!0

Z
X�Xe

1
2

cijkl;1 eij þ eð2Þij

� 	
ekl þ eð2Þkl

� 	�
� eikl;1 Ei þ Eð2Þi

� 	
ekl þ eð2Þkl

� 	
� 1

2
hij;1 Ei þ Eð2Þi

� 	
Ej þ Eð2Þj

� 	
� 1

2
qdij;1GiGj þ qM0lij;1GiðEj þ Eð2Þj Þ

�
dX; ð36Þ

where

W ðsÞ ¼ 1
2
ðrij þ rð2Þij Þðeij þ eð2Þij Þ �

1
2
ðDi þ Dð2Þi ÞðEi þ Eð2Þi Þ þ

1
2

JiGi

þ 1
2

qM0lijGi Ej þ Eð2Þj

� 	
:

Note that the auxiliary fields correspond to static case (€uð2Þi ¼ 0).
The J-integral (36) can be conveniently decomposed into

AðsÞ ¼ A1 þ Að2Þ þ T; ð37Þ

while A1 will be given in Eq. (40) below, A(2) is defined as
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Að2Þ ¼
Z

C0

1
2

rð2Þij eð2Þij þ Dð2Þi Eð2Þi

� 	
n1 � rð2Þij nju

ð2Þ
i;1 � Dð2Þj njE

ð2Þ
1

� �
dC

� lime!0

Z
X�Xe

1
2

Cijkl;1eð2Þij eð2Þkl � eikl;1Eð2Þi eð2Þkl �
1
2

hij;1Eð2Þi Eð2Þj

� �
dX;

ð38Þ

and the interaction integral T by

T ¼
Z

C0

W ð1;2Þn1 � rijnju
ð2Þ
i;1 þ rð2Þij njui;1

� 	
� DjnjE

ð2Þ
1 � Dð2Þj njE1

h i
dC

þ lime!0

Z
X�Xe

q€uiu
ð2Þ
i;1 dX� lime!0

Z
X�Xe

qMEð2Þ1 dX

� lime!0

Z
X�Xe

1
2

cijkl;1 eijeð2Þkl þ eð2Þij ekl

� 	
� eikl;1 Eieð2Þkl þ Eð2Þi ekl

� 	�
� 1

2
hij;1 EiE

ð2Þ
j þ Eð2Þi Ej

� 	
þ qM0lij;1GiE

ð2Þ
i

�
dX; ð39Þ

where

W ð1;2Þ ¼ 1
2

rijeð2Þij þ rð2Þij eij � DiE
ð2Þ
i � Dð2Þi Ei

� 	
þ 1

2
qM0lijGiE

ð2Þ
j :

Intensity factors (SIF and EDIF) for a crack in conducting
piezoelectric materials are sufficient to characterize fracture as in
the non-conducting (dielectric) ones (Hu et al., 2007). Then, the
electromechanical J-integral can be expressed in terms of the SIF
and EDIF (Pak, 1990; Enderlein et al., 2005)

A1 ¼
1
2

KMKNYMN; ð40Þ

where M and N take the summation over all the intensity factors
and YMN is the Irwin matrix. If the poling direction of the material
and the mechanical loading are perpendicular to the crack, only
modes I and IV (D) exist. Then, the Irwin matrix YMN has a simple
form and Eq. (40) is reduced to (Enderlein et al., 2005)

A1 ¼
KIKI

cT
� KDKD

j
þ KIKD

e
; ð41Þ

where cT , e and j are the effective material constants of the
simplified Irwin matrix (Kuna, 2006).

For the two admissible fields (actual and auxiliary), one obtains

AðsÞ ¼ 1
cT

KI þ Kð2ÞI

� 	2
þ 1

e
KI þ Kð2ÞI

� 	
KD þ Kð2ÞD

� 	
þ 1

j
KD þ Kð2ÞD

� 	2

¼ A1 þ Að2Þ þ T;

where

Að2Þ ¼ 1
cT

Kð2ÞI

� 	2
þ 1

e
Kð2ÞI Kð2ÞD þ

1
j

Kð2ÞD

� 	2
;

and

T ¼ 2
cT

KIK
ð2Þ
I þ

1
e

KIK
ð2Þ
D þ Kð2ÞI KD

� 	
þ 2

j
KDKð2ÞD : ð42Þ

Mode-I and mode-IV intensity factors are evaluated by solving the
following system of linear algebraic equations

2
cT

KI þ
1
e

KD ¼ TI; ð43Þ

1
e

KI þ
2
j

KD ¼ TD; ð44Þ

resulting from Eq. (42) by taking Kð2ÞI ¼ 1;Kð2ÞD ¼ 0 for TI , and

Kð2ÞI ¼ 0;Kð2ÞD ¼ 1 for TD, respectively. The values TI and TD are
computed numerically by Eq. (39) with an adequate choice of
the auxiliary solutions according to Park and Sun (1995), with the
following fields for the PE dielectric state (state (2)):
uð2Þi ðr; hÞ ¼
ffiffiffiffiffi
2r
p

r X4

N¼1

KNdN
i ðhÞ;

/ð2Þðr; hÞ ¼
ffiffiffiffiffi
2r
p

r X4

N¼1

KNmNðhÞ;

rð2Þij ðr; hÞ ¼
1ffiffiffiffiffiffiffiffiffi
2pr
p

X4

N¼1

KNf N
ij ðhÞ;

Dð2Þi ðr; hÞ ¼
1ffiffiffiffiffiffiffiffiffi
2pr
p

X4

N¼1

KNgN
i ðhÞ

Eð2Þi ¼ �/ð2Þ;i ðr; hÞ: ð45Þ

The angular functions f N
ij ðhÞ, gN

i ðhÞ, dN
i ðhÞ and mNðhÞ are dependent on

material properties only and given by

f N
i1 ¼ �

X4

a¼1

Re
MiaNaNpaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ pa sin h
p( )

;

f N
i2 ¼

X4

a¼1

Re
MiaNaNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ pa sin h
p( )

;

gN
1 ¼ �

X4

a¼1

Re
M4aNaNpaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ pa sin h
p( )

;

gN
2 ¼

X4

a¼1

Re
M4aNaNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ pa sin h
p( )

;

dN
i ¼

X4

a¼1

Re AiaNaN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ pa sin h

q� �
;

mN ¼
X4

a¼1

Re A4aNaN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ pa sin h

q� �
;

where pa are eigenvalues of the characteristic equations for an
anisotropic body and the matrices Aia, Mia and NaN are defined in
the work Park and Sun (1995).

5. Numerical examples

5.1. A central crack in a finite homogeneous strip

In the first example a straight central crack in a homogeneous
finite strip under uniform mechanical and/or electrical loads is
analyzed (Fig. 2). The strip is subjected to a stationary and impact
loads with Heaviside time variation and the intensity r0 ¼ 1 Pa for

a pure mechanical load and J0 ¼ 1� 10�10 Am�2 for a pure electric
current load. The geometry of the strip is given in Fig. 2 with the
following values: a ¼ 0:5 m, a=w ¼ 0:4 and h=w ¼ 1:2 are used.
Electrically impermeable boundary conditions are assumed on
crack surfaces.

Due to the symmetry of the problem with respect to both
Cartesian coordinates, only a quarter of the strip is modeled. We use
930 (31 � 30) nodes equidistantly distributed for the MLS
approximation of the physical quantities. The local subdomains are
considered to be circular with a radius of rloc ¼ 0:033 m. The material
properties correspond to aluminum nitride (AlN) (Auld, 1973):

c11 ¼ 403� 109 Nm�2; c12 ¼ 143� 109 Nm�2; c13

¼ 104� 109 Nm�2; c33 ¼ 382� 109 Nm�2;

c44 ¼ 120� 109 Nm�2; e15 ¼ �0:39 Cm�2; e31

¼ �0:66 Cm�2; e33 ¼ 1:57 Cm�2;

h0 ¼ 8:854� 10�12 CðVmÞ�1
; h11 ¼ h33 ¼ 9:14 h0; l11 ¼ l33

¼ 3:0� 10�2 m2ðVsÞ�1
;
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Fig. 2. Central crack in a finite homogeneous strip.

0 0.2 0.4 0.6 0.8 1
-0.01

-0.005

0

0.005

0.01

0.015

x1/a

φ 
[V

]

Non-conducting
M0 = 106 [1/m3]

M0 = 108 [1/m3]

Fig. 4. Variation of the electric potential on the crack surface with normalized
coordinate x1=a under pure mechanical load r0 ¼ 1 Pa.
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d11 ¼ d33 ¼ 7:0� 10�4 m2 s�1; q ¼ 1:602� 10�19 C;

q ¼ 3255 kg=m3
:
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Fig. 5. Variation of the electron density M on the crack surface normalized
coordinate x1=a under pure mechanical load r0 ¼ 1 Pa.
Stationary boundary conditions are considered in the first example

and absence of surface free electric charge ~Q ¼ 0 and electric current
flux ~S ¼ 0 are assumed on the outer boundary. Variations of dis-
placements, electric potentials and electron densities along the
crack surface (x3 = 0) for various initial electron densities M0 are pre-
sented in Figs. 3–5, respectively. The presented numerical results
correspond to a pure mechanical load (i.e., t3 = r0, D0 = J0 = 0 in
Fig. 2). Numerical results for non-conducting PE can be found in
Sladek et al. (2007), where one can also find comparison between
MLPG results and FEM results. One can observe that while the initial
electron density has only a small influence on the crack displace-
ment, it strongly affects the induced electric potential. The largest
value of the induced potential is for a non-conducting PE material,
and with increasing value of M0, the induced electric potential
decreases. Furthermore, the distribution of the electron density on
the crack surface is also strongly dependent on M0. The larger the
value of M0, the larger the induced density of electrons M.

The same cracked sample under pure electric current load

J0 ¼ 1� 10�10 A=m2 and stationary conditions is investigated too.
Variations of the induced displacement, electric potential and elec-
tron density on the crack surface are presented in Figs. 6–8, respec-
tively. It is observed clearly that a larger M0 would induce a smaller
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Fig. 3. Variation of the crack-opening-displacement on the crack surface with
normalized coordinate x1=a under pure mechanical load r0 ¼ 1 Pa.
crack displacement and density of electrons M, but a larger electric
potential.

For the same central crack under pure mechanical load and sta-
tionary boundary conditions in the non-conducting PE, the stress
intensity factor of pure mode I is Kstat

I ¼ 1:4 Pa m1=2. We also
obtained the same value of SIF for the cracked sample in the con-
ducting PE. Next the influence of the non-stationary boundary con-
ditions on the physical quantities is investigated. The same strip
(Fig. 2) is subjected to an impact mechanical load with Heaviside
time variation. The time variation of the normalized stress intensi-
ty factors for a non-conducting and semiconductor PE solid are
presented in Fig. 9. One can observe that the initial electron density
has no influence on the SIF. The normalized electrical displacement
factor KKD=Kstat

I is presented in Fig. 10, where K ¼ e33=h33. While
the electrical displacement intensity factor for a pure static
mechanical load is zero, the EDIF is not in the dynamic case with
a finite velocity of wave propagation for a pure mechanical load.
Furthermore, one can observe that initial electron density M0 has
a strong influence on the EDIF. A larger M0 corresponds to a larger
EDIF.

SIF and EDIF for a pure electrical displacement load are present-
ed in Figs. 11 and 12, respectively. Contrary to the static pure
mechanical load case, the SIF under static pure electrical displace-



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3 x 10-9

x1/a

u 3 [m
] M0 = 106 [1/m3]

M0 = 108 [1/m3]
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Fig. 7. Variations of the electric potential on the crack surface with normalized
coordinate x1=a under pure electric current load J0 ¼ 1� 10�10 A=m2.

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1 x 1011

x1/a

M
 [1

/m
3 ]

M0 = 106 [1/m3]

M0 = 108 [1/m3]

Fig. 8. Variation of the electron density M on the crack surface with normalized
coordinate x1=a under pure electric current load J0 ¼ 1� 10�10 A=m2.

0 0.2 0.4 0.6 0.8 1 1.2
x 10-3

0

0.5

1

1.5

2

τ [sec]

K I/K
Ist

at

M0 = 0

M0 = 107 [1/m3]
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Fig. 10. Normalized electrical displacement intensity factor for a central crack in a
strip under pure mechanical load.
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Fig. 11. Normalized stress intensity factor for a central crack in a strip under pure
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Fig. 12. Normalized electrical displacement intensity factor for a central crack in a
strip under pure electrical displacement load D0.
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Fig. 13. Normalized stress intensity factor for edge crack in a strip under pure
mechanical load.
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Fig. 14. Normalized electrical displacement intensity factor for edge crack in a strip
under pure mechanical load.

0 0.5 1 1.5
x 10-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τ [sec]

K I/K
Ist

at

FGPM γ = 2
homogeneous

Fig. 15. Normalized stress intensity factor for edge crack in PE conducting strip
with M0 ¼ 1� 107 m�3 under pure mechanical load.
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Fig. 16. Normalized electrical displacement intensity factor for edge crack in PE
conducting strip with M0 ¼ 1� 107 m�3 under pure mechanical load.
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ment load is not vanishing. This could be explained as below. From
Maxwell‘s equations, it is known that the velocity of electromag-
netic waves is equal to the speed of light, which is much greater
than the velocity of elastic waves. Therefore, both SIF and EDIF
are reduced in conducting PE compared to dielectric PE .
5.2. An edge crack in a finite strip

An edge crack in a finite strip is analyzed in the second example.
The geometry is only the right half of the central crack case in Fig. 2
with the following geometric parameters: a ¼ 0:5 m, a=w ¼ 0:4 and
h=w ¼ 1:2. Due to the symmetry with respect to x1-axis, only half of
the specimen is modeled. The geometry is the same as in Fig. 2 but
with free lateral boundary conditions on the left-hand side. Materi-
al properties are also the same as in the previous example. We have
used 930 nodes equidistantly distributed for the MLS approxima-
tion of physical fields. The static stress intensity factor for the con-
sidered load and geometry is equal to Kstat

I ¼ 2:642 Pa m1=2. The
normalized SIF and EDIF for the homogeneous cracked strip under
an impact pure mechanical load are presented in Figs. 13 and 14,
respectively. One can again observe that the initial electron density
has a vanishing influence on SIF. However, the EDIF is strongly
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dependent on the initial electron density. In the conducting PE, the
EDIF is enlarged with respect to that in non-conducting PE under
pure mechanical load.

5.3. An edge crack in a finite strip of functionally graded piezoelectric
material

Finally, an exponential variation, characterized by the para-
meter c, for the elastic, piezoelectric and dielectric tensors is
considered

cijklðxÞ ¼ cijkl0 expðcx1Þ;
eijkðxÞ ¼ eijk0 expðcx1Þ
hijðxÞ ¼ hij0 expðcx1Þ;

ð46Þ

where cijkl0, eijk0 and hij0 correspond to the material parameters used
in the previous examples. The influence of the material gradation on
the stress intensity factor and electrical displacement intensity fac-
tor is analyzed. One can observe a strong influence of material gra-
dation on the SIF in the conducting PE cracked specimen (Fig. 15).

For a gradation of mechanical material properties with x1 coor-
dinate and a uniform mass density, the wave propagation is grow-
ing with x1. Therefore, the peak value of the SIF is reached in a
shorter time instant in the functionally graded PE material (FGPM)
than in a homogeneous one. The maximum value of the SIF is only
slightly decreased for the FGPM cracked strip.

In the non-stationary case a pure mechanical load can induce a
finite electric displacement intensity factor. The temporal variation
of the EDIF in the cracked conducting PE strip is presented in
Fig. 16. The character of the EDIF curve is similar to the SIF in FGPM
specimen. The maximum value of the EDIF is larger for the FGPM
than in the corresponding homogeneous material.

6. Conclusions

The MLPG method has been developed for general 2-D crack
problems in functionally graded conducting piezoelectric solids.
Both stationary and transient dynamic conditions are considered.
Our numerical results for stationary conditions reveal that initial
density of electrons (carriers of electric charge in n-type piezoelec-
tric semiconductors) has only moderate influence on the crack dis-
placement. However, the induced electric potential is strongly
affected by the initial electron density. The largest value of the
induced electric potential is achieved for a non-conducting piezo-
electric material. For the cracked specimen under pure electric cur-
rent load, the initial electron density also has a large influence on
the crack displacement. A larger M0 would induce a smaller crack
displacement and density of electrons, but a larger electric
potential.

Furthermore, the initial electron density has no influence on the
stress intensity factor (SIF) for a crack under pure mechanical load.
In non-stationary case, a pure mechanical load would also induce a
finite EDIF. For non-conducting PE, the character of the EDIF curve
is similar to the SIF. For the central crack specimen case, the value
of the EDIF in the conducting material is reduced as compared to
the non-conducting PE. However, for the edge crack specimen,
the EDIF in the conducting PE is slightly larger. Generally, the EDIF
in the cracked specimen is strongly dependent on both the bound-
ary conditions and the specimen geometry. Furthermore, interac-
tion of waves could enhance or reduce the EDIF in the
conducting specimen, since electric fields are strongly dependent
on the conductivity of PE. A quite simple conclusion can be made
for cracked specimen under pure electric load: The SIF and EDIF
are reduced in the conducting PE specimen case.

In the functionally graded PE material (FGPM), the peak value of
the SIF is reached in a shorter time instant than in a homogeneous
one. The maximum value of the SIF is only slightly reduced for the
FGPM cracked strip. However, the maximum value of the EDIF is
larger for the FGPM than in the corresponding homogeneous
material.
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