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Abstract: 

 

The Magnetorheological fluid, as one of the smart materials, is the focus of many 

researches running nowadays and is getting to replace many materials in several 

engineering applications. This fluid is characterized by its ability to change from liquid 

into semi-solid gel in few milliseconds as a result of applying magnetic field. 

This paper deals with a magnetorheological fluid embedded in an Aluminum sandwich 

beam to give the whole sandwich structure relevant controllability of various parameters 

such as natural frequencies, vibration amplitudes, and damping factors.  

This paper presents Finite Element formulation of the MR sandwich beam, and uses the 

finite element model to solve for various beam boundary conditions, various magnetic 

field levels and configurations. The paper also compares the finite element results with 

published analytical and the experimental results. 

Finally, the paper checks the suitability of the spectral element method in dealing with 

the MR sandwich beam, and compares the spectral results with the finite element 

results. 
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1. Introduction: 

 

Magnetorheological (MR) fluids belong to the class of controllable fluids. The essential 

characteristic of MR fluids is their ability to reversibly change from free-flowing, linear 

viscous liquids to semi-solids having controllable yield strength in milliseconds when 

exposed to a magnetic field. This yield stress increases with the applied magnetic field. 

This feature provides simple, quiet, rapid response interfaces between electronic 

controls and mechanical systems ‎[1]. 

These fluids are suspensions of micron-sized magnetic particles in an appropriate carrier 

liquid. There are different types of liquids which can be used as the carrier fluid i.e. 

hydrocarbon oils, mineral oils and silicon oils. Normally, MR fluids are free flowing 

liquids having a consistency similar to that of motor oil. However, in the presence of an 

applied magnetic field, the iron particles acquire a dipole moment aligned with the 

external field which causes particles to form linear chains parallel to the field. This 

phenomenon can solidify the suspended iron particles and restrict the fluid movement. 

 

1.1 Applications of MR fluids in adaptive sandwich beam structures 

 

Typically, MR adaptive structures are achieved by having MR material layers placed in 

solid metal or composite layers. The dynamic response of the structure can be varied 

when different levels of magnetic field are applied over the MR layer, which in turn 

produce structures with variable stiffness and damping properties. These variations in 

the rheological properties of MR materials are fast (a few milliseconds) and reversible, 

in response to variations in applied magnetic field, and can manipulate the dynamic 

vibration responses of the composite quickly. By controlling the applied magnetic field, 

the vibration of adaptive structures can be minimized for a broad range of external 

excitation frequencies. 

 
Figure (1): Three-layered adaptive beam configuration with MR material situated in 

the middle layer 



Proceedings of the 14
th

 AMME-14 Conference, 25-27 May, 2010 AM-PT 

 

3 

Yalcintas ‎[2] turned to the MR sandwich beam problem after making a performance 

comparison between ER and MR sandwich beams. From that study it was observed that 

both ER and MR adaptive structures show variations in their vibration responses when 

subjected to electric field and magnetic field respectively. These variations were mainly 

a decrease in vibration amplitudes and loss factors, and an increase in the natural 

frequency when the electric/magnetic field is increased. However, variations were more 

significant for MR adaptive structures than for the ER adaptive structures. 

Yalcintas and Dai ‎[3], followed by  Sun et al. ‎[4], developed a theoretical model for the 

MR sandwich beam and solved it for the case of Simply Supported beams to predict its 

vibration response. Since the MR materials have higher stiffness values, the shear 

stresses experienced remain in the pre-yield regime. Therefore, the energy model 

considered‎in‎Yalcintas’‎study‎was‎based‎on‎the‎pre-yield rheological properties of MR 

materials. 

Spectral analysis has been used for the approximate solution of different types of 

structural vibration problems. Doyle ‎[5] used exponential interpolation functions with a 

wave‎ length‎parameter‎ that‎changes‎with‎ the‎ frequency‎ for‎ the‎bars‎and‎beams’‎ finite‎

element models that suit the nature of a structural dynamics problem. 

Mahapatra et al.‎[6] presented a spectral finite element model for the study of composite 

beams. Wang and Wereley ‎[7] presented a formulation for the application of spectral 

element analysis to a sandwich beam with a viscoelastic core. The spectral element 

method provided much higher accuracy with a smaller number of elements as compared 

to the traditional finite element method. 

In this paper, the modeling of a Magnetorhelolgical (MR) sandwich beam structure 

using the spectral element and the higher order finite element methods in structural 

analysis will be presented for the first time.  

 

1.2 MR material rheological properties 

 

According to MR rheological studies, the shear stress–shear strain relation is analyzed 

in two regimes as pre-yield and post-yield regimes. These behaviors are illustrated in 

Figure (2). 

 
Figure (2): Shear stress –shear strain relationship of MR materials 

https://www.researchgate.net/publication/231146416_Magnetorheological_and_electrorheological_materials_in_adaptive_structures_and_their_performance_comparison?el=1_x_8&enrichId=rgreq-30220006-771d-4cb4-b72a-42faa7e2e5f5&enrichSource=Y292ZXJQYWdlOzI3MDY2ODE3ODtBUzoxODQzNDQ3NjUyODAyNTZAMTQyMDk2MjYyNTMyMg==
https://www.researchgate.net/publication/230907856_Vibration_suppression_capabilities_of_magnetorheological_materials_based_adaptive_structures?el=1_x_8&enrichId=rgreq-30220006-771d-4cb4-b72a-42faa7e2e5f5&enrichSource=Y292ZXJQYWdlOzI3MDY2ODE3ODtBUzoxODQzNDQ3NjUyODAyNTZAMTQyMDk2MjYyNTMyMg==
https://www.researchgate.net/publication/243365977_An_adaptive_beam_model_and_dynamic_characteristics_of_magnetorheological_materials_J_Sound_Vib?el=1_x_8&enrichId=rgreq-30220006-771d-4cb4-b72a-42faa7e2e5f5&enrichSource=Y292ZXJQYWdlOzI3MDY2ODE3ODtBUzoxODQzNDQ3NjUyODAyNTZAMTQyMDk2MjYyNTMyMg==
https://www.researchgate.net/publication/243365431_Spectral-element-based_solutions_for_wave_propagation_analysis_of_multiply_connected_unsymmetric_laminated_composite_beams?el=1_x_8&enrichId=rgreq-30220006-771d-4cb4-b72a-42faa7e2e5f5&enrichSource=Y292ZXJQYWdlOzI3MDY2ODE3ODtBUzoxODQzNDQ3NjUyODAyNTZAMTQyMDk2MjYyNTMyMg==
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In the earlier studies, the MR pre-yield regime was modeled by a linear viscoelastic 

model, and the post-yield regime was modeled by the Bingham plastic model. Li et al 

‎[8] verified, through step-strain experiments, that the MR pre-yield behavior is linearly 

viscoelastic up to 0.1% shear strain, and nonlinear above the 0.1% shear strain.  

In the three-layered sandwich beam configuration, the MR materials experience shear 

stress and shear strain that is confined in the pre-yield regime. Yalcintas ‎[9] determined 

that the shear strain experienced by the MR layer is then below 0.1%. Therefore, the 

linear viscoelastic theory is valid for MR adaptive structures.  

 

2. Finite Element and Spectral Element Modeling of the Three-Layer sandwich 

beam: 

 

In the following analysis we shall use Mead and Markus (MM) assumptions: 

 The transverse displacement (w) is the same for all the three layers. 

 Rotary inertia and shear deformations in the upper and lower elastic layer beams 

are negligible. 

 The Core layer has negligible bending stiffness and is subjected only to shear 

given by     
  

  
 

  

  
 

 Linear theories of elasticity and viscoelasticity are valid. 

 No slip occurs between the layers, and there is perfect continuity at the interface. 

 All displacements are small. 

 

Figure (3): The undeformed (dashed line) and the deformed (Solid line) configurations 

of a three-layer sandwich beam under lateral loading 

The beam deformations are shown in Figure (3). A fundamental assumption of the 

approach is that line B-C in the core layer remains straight after deformation, as shown 
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by line   -   in Figure (3). This, in effect, defines the axial deformation of any material 

position (x) inside the core as a linear interpolation of the displacements   
   and   

   on 

the surfaces of the face-sheets. 

It can be proved that the axial displacement and the shear strain of the MR layer are 

given by‎[10]: 

   
      

 
 

      

 
 

  

  
                 (1) 

    
      

  
 

 

  

  

  
              (2) 

where   
  

 
     

  

 
 is the distance between the reference lines of the undeformed 

face-sheets. 

Since the beam is assumed not subjected to longitudinal loading, the resultant of the 

longitudinal normal force must vanish, i.e., 

    
   

  
     

   

  
            (3) 

Integrating with respect to x and expressing u3 in terms of u1, we have 

       ,          where        
    

       (4) 

Hence,  

    
     

 
   

       

 

  

  
    (5) 

and      
     

  
   

 

  
 
  

  
   (6) 

For‎simplicity,‎we‎will‎use‎“ ”‎instead‎of‎“  ”. 
 

2.1 Development of the equations of motion: 
 

The equations of motion in this investigation are developed using Hamilton’s‎principle: 

            
  

  
                          (7) 

where T is the kinetic energy, U is the strain energy, and V is the work done by external 

forces. 

By taking the first variation, then integrating by parts with respect to time (t1 and t2 are 

arbitrary),‎we‎get‎the‎weak‎form‎of‎Hamilton’s‎principle,‎which‎is‎used‎for‎deriving‎the‎

finite element equations of the system. 

For the core layer, we may write: 

   
 

 
        

   
 

 
                        (8) 

   
 

 
      

   

  
 
 
  

 

 
 

 

 
      

  

  
 
 
  

 

 
   (9) 

where G2 is the complex shear modulus and γzx is the shear strain. From the above, we 

may write: 
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Using this, we may write the total energy as: 
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2.2 Finite Element Shape Functions 
 

In this paper, different beam models are used with different numbers of nodes. Also, the 

interpolation functions used are regular polynomials and exponential functions for the 

spectral element. 

 
Figure (4): The proposed 2-node, 3-node, and 4-node sandwich beam elements with 

three degrees-of-freedom per node 

The polynomial shape function for the longitudinal displacement      and the 

transverse deflection      are: 

         
  

                                                 (14) 

         
   

                                       (15) 

where n  is the number of nodes in the element.  

For the spectral element model, the longitudinal displacement      and the transverse 

displacement      shape functions are: 

        
        

                                                                  (16) 

        
       

        
        

                                      
(17) 

where    
 

 
  and     

    

 
 

 

 
 are the wave numbers, ω is the frequency,    

 

 
  is 

the longitudinal wave speed and D is the flexural rigidity of the beam. For the case of 
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Sandwich beam    
  

  
    ,              and     

                  

 
 

 

 
   

 

2.3 Finite element model 
 

According to the normal procedure of the finite element method that could be found in 

any finite element textbook, we can rewrite the shape functions in the form: 

               (18) 

               (19) 

where                  

and                     
  

Thus the element matrices may be written as: 

   
 

 
             (20) 

where                    , 

                             
 

 
  , 

                      
      

 
 

 
  , 

                   
 

 
    

  
 

 
              (21) 

where                    

                           
 

 
    

                              
 

 
  , 

                  
 

 
    

Finally, the element equation of motion becomes: 

                       (22) 

    is the external load vector, and will be set to zero during the frequency response 

analysis. 

A general MATLAB code for any-order element was developed to calculate the global 

mass and stiffness matrices for the MR sandwich beam, and hence calculate the natural 

frequencies and the loss factors for the MR sandwich beam for various beam boundary 

conditions. Another MATLAB code for the Spectral element was developed too. 

 

3. Numerical Validation 
 

The above developed mass and stiffness matrices for the sandwich beam elements with 

MRF core layer were used to calculate the natural frequencies and loss factors of an 

example beam Simply Supported from both ends with main dimensions and 
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characteristics as in the paper of Yalcintas ‎[3] for the sake of comparison with the 

analytical model and results found in this reference paper.  

The main dimensions and properties of the MRF sandwich beam in ‎[3] are: 

Beam length: L = 393.7 mm, Beam width: b = 25.4 mm, 

Elastic Layers properties: Material: Aluminum,  

Elastic modulus: E = 70 GPa, Density:‎ρ‎=‎2700‎Kg/m
3
,  

Thickness: h1 = h3 = 0.7353 mm 

MR layer properties: G
*
 = G'(B) + G"(B) i  

where: G'(B) = 3.11 * 10
-7

 B
2
 + 3.56 * 10

-4
 B + 5.78 * 10

-1
, 

G"(B) = 3.47 * 10
-9

 B
2
 + 3.85 * 10

-6
 B + 6.31 * 10

-3
, (for‎Sun’s‎model‎[4]) 

Or, G*(B) = (1.25 × 10
3
 + i1.375 × 10

1
)B. 

The value of G* with no applied magnetic field was assumed as:    

 G*(0)‎=‎(0.6125‎+‎i0.0067375)‎‎MPa‎(for‎Yalcintas’‎model‎‎[3]). 

where B (Oersted) is the value of magnetic induction.    

Density:‎ρ‎=‎3500‎Kg/m
3
, Thickness: h2 = 0.7353 mm 

 
Figure (5): Effect of magnetic field on the natural frequencies of the MR sandwich beam 

for various Mode numbers 

 
Figure (6): Effect of magnetic field on the loss factors of the MR sandwich beam for 

various Mode numbers 
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Figure (7): Effect of magnetic field on the Frequency response of the SS-SS MR 

sandwich beam 

Figure (5) and Figure (6) show the effect of the magnetic field on the natural 

frequencies and loss factors of the SS-SS beam respectively up to the sixth mode. As 

can be seen from the figures, the natural frequencies shift to higher frequencies as the 

applied magnetic field increases. The loss factor decreases at the first mode and 

increases at higher modes as the magnetic field strength increases. 

Figure 7 shows the effect of the magnetic field on the vibration amplitude of the MR 

sandwich beam. As the magnetic field strength increases, the vibration amplitude of 

each mode decreases, and the natural frequencies shift to higher frequencies. These 

variations are observed more significantly at higher frequencies. The actuation location 

is 218.4 mm from the left side of the beam, while the sensing location is at a point 

78.7mm from the right side of the beam. 

This type of response of MR adaptive beams is a strong evidence of the control 

capabilities of MR materials in adaptive structures. 

These results were computed using 5 elements and then using 10 elements for the two-

node, three-node and four-node elements’‎ models‎ in‎ addition‎ to‎ the‎ spectral‎ element‎

model. The results validate the correctness of the equations, matrices and computer 

codes of the suggested MR sandwich beam finite element and spectral element models. 

The results also show that the four-node element model gives very accurate results for 

natural frequencies and loss factors of the MR sandwich beam with error less than 1% 

with a smaller number of elements (3-5 elements). The three-node element model 

follows in accuracy, and then the two-node element model; which could require 10-15 

elements to give accurate results with error less than 1%. The spectral element model in 

the sandwich beam application unexpectedly gave accuracy slightly more than that of 

the 2-node FE, but less than that of the higher order FE models. 
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4. Applications of the FEM and SEM on the MR sandwich beams with several 

Boundary condition types: 
 

The presence of the Finite Element model or the Spectral Element model for the MR 

sandwich beam made it possible and easy to consider other beam boundary conditions 

beside the Simply Supported beam which was the only available case for the analytical 

model developed previously by Yalcintas ‎[3] and Sun ‎[4]. The presence of the Finite 

Element model or the Spectral Element model made it possible to activate any portion 

of the MR sandwich beam with magnetic field. 

A MATLAB code has been developed to calculate the natural frequencies and loss 

factors for any-order-FE model or SE model for four kinds of MR sandwich beam 

boundary conditions which are: SS- SS, Fixed- Free, Fixed-SS, and Fixed- Fixed. 

Application (1), given below, presents the natural frequencies and loss factors of the 

MR sandwich beam with several boundary conditions. 

Application (2) deals with certain effective portions of SS-SS and Fixed-Fixed beams. 

The MR sandwich beam dimensions and properties used in these applications are 

similar‎to‎found‎in‎Sun’s‎paper‎‎[4].  

 

Application (1): 

In this application we calculate the natural frequencies and loss factors for the first five 

modes of several kinds of beam boundary conditions at different magnetic field levels. 

These‎results‎can’t‎all‎be‎obtained‎using‎the‎analytical‎model‎derived‎in‎the papers of 

Yalcintas ‎[3] and Sun ‎[4]. For the sake of high accuracy, we used 20 elements of the 

three-node type.   

 

Table (1): Numerical results of the first three natural frequencies and loss factors of the 

MR sandwich beam with several kinds of boundary conditions at various magnetic field 

levels 

B.C. type 

Mag. 

Field 

(Oe) 

Natural Frequencies (Hz) Loss Factor 

Mode 1  Mode 2  Mode 3  Mode 1 Mode 2 Mode 3 

SS-SS 

0 239..02 3.91090 1199929. 393392 393300 393320 

1000 239.202 0390.32 1019.330 393330 393330 393300 

2000 03930 099100. 13391.33 393300 393392 393330 

Fixed-

Free 

0 .90003 0093.09 0093002 393300 393309 393309 

1000 119010. 0390090 131939.3 393309 393331 393300 

2000 1290020 3092012 12390011 393323 393332 393333 

Fixed-SS 0 2992.30 9.9390 10290930 393332 393303 393322 
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1000 02933.0 0390311 10092030 39333. 39333 393300 

2000 00992.0 .993390 19.9.020 393339 39333. 393331 

Fixed-

Fixed 

0 0091.03 019000. 13390031 393302 393320 393310 

1000 0.90922 .19..00 19093092 393333 393302 393302 

2000 0099.39 13093000 1099303. 39339 393330 393309 

 

Table (1) presents the values of the first three natural frequencies and loss factors for 

various MR sandwich beam boundary conditions at several magnetic field levels. 

It is clear from the previous table that the effect of the magnetic field on the natural 

frequencies of the MR sandwich beam becomes more significant as the boundaries of 

the beam become more rigid i.e. the effect on the Fixed-Fixed natural frequencies is 

more than that on the Fixed-SS, Fixed-Free, and SS-SS natural frequencies. It is also 

clear that the effect of the magnetic field on the natural frequencies of the MR sandwich 

beam is more significant at higher modes. 

 

Application (2): 

From the above equations, it is clear that the shear strain of the MR layer depends on 

two factors: the relative axial displacement between the upper and lower layers, and the 

slope of the transverse displacement. Hence, for each beam boundary condition, each 

mode shape has some portions of the beam span that have more curvature than other 

portions. If these portions only are activated with the magnetic field, they will give 

almost the same targeted natural frequency as that of the totally activated MR sandwich 

beam. To illustrate this, we use a SS-SS MR sandwich beam made up of 30 elements. 

For‎the‎sake‎of‎accuracy‎the‎elements’‎model‎will‎be‎of‎the‎three-node type. The applied 

magnetic field on the beam is 2000 Oe. Targeting the first three natural frequencies, we 

will use three activation configurations as shown in Figure (8). 

 

 
Figure (8): The proposed activation configurations to target the first three modes of the 

SS-SS MR sandwich beam 

Table (2), Table (3) and Table (4) compares the natural frequencies of the fully 

activated and fully deactivated beams with the three proposed activation configurations 

for the SS-SS MR sandwich beam with several lengths of the activated portions. In this 

table,‎“A”‎refers‎to‎the‎activated‎length,‎while‎“D”‎refers‎to‎the‎deactivated‎length.‎Note‎

that the activation pattern is symmetrical about the beam mid-span. 
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Table (2):  Comparison of the first activation configuration with its different cases with 

the fully activated SS-SS MR sandwich beam 

 Mode 1 (Hz) % from fully 

activated 1
st
 

natural freq. 

Mode 2 (Hz) Mode 3 (Hz) 

Fully Activated 03930 099100. 13391.32 

Case A D % Active  

1 0.33L 0.33L 66 % 039101. 98.70 % 9.90309 10199.0 

2 0.3L 0.4L 60 % 2.90101 97.64 % 9092030 109903.3 

3 0.27L 0.46L 54 % 2.903.0 96.13 % 9090000 1019.000 

4 0.23L 0.54L 46 % 209091 94.17 % 999.01. 12.91030 

5 0.2L 0.6L 40 % 2093029 91.79 % 999.119 12090390 

Fully Deactivated 239..02  3.91090 1199929. 

 

It can be seen from Table (2) that with deactivation of almost half the beam length, the 

fundamental natural frequency is decreased by only 5% from the case of the fully 

activated MR sandwich beam (case 3 or 4). 

Note that even in the first case where the deactivated portion is only one third of the 

total beam length and where the fundamental natural frequency is 98.7 % from that of 

the fully activated one, the second natural frequency of this case is far from that of the 

fully activated one. This is because the proposed configuration is targeting the first 

mode only. 
 

Table (3): Comparison of the second activation configuration with its different cases 

with the fully activated SS-SS MR sandwich beam 

 Mode 1 (Hz) Mode 2 (Hz) % from fully 

activated 2
nd

  

natural freq. 

Mode 3 (Hz) 

Fully Activated 03930 099100. 13391.32 

Case A1 D A2 % Active  

1 0.13L 0.2L 0.33L 60 % 2091303 0090002 97.17 % 10190390 

2 0.17L 0.2L 0.27L 60 % 2090323 0090002 97.17 % 10993.32 

3 0.13L 0.23L 0.27L 53 % 29900.3 0290320 96 % 1099309 

4 0.2L 0.2L 0.2L 60 % 2092900 0190099 95 % 10293300 

Fully Deactivated 239..02 3.91090  1199929. 

 

It can be seen from Table (3) that with deactivation of almost 40% of the beam length, 

the second natural frequency is decreased by only 2.8% from the case of the fully 

activated MR sandwich beam (case 1 or 2), and with deactivation of almost 47% of the 

beam length, the second natural frequency is decreased by only 4% from the case of the 

fully activated MR sandwich beam (case 3).   

Note that from the four cases of this configuration, the fourth case was the worst with 

respect to the second natural frequency, but it is the best with respect to the fundamental 

frequency, this is because this case is similar to the fifth case in the first configuration 
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which was targeting the fundamental natural frequency with 0.2L activated portion near 

each SS end. 

Note also that even in the first case where the deactivated portion is only 40% of the 

total beam length and where the second natural frequency is 97.17 % from that of the 

fully activated one, the third natural frequency of this case is far from that of the fully 

activated one. This is because the proposed configuration is targeting the second mode 

only. 
 

Table (4): Comparison of the third activation configuration with its different cases with 

the fully activated SS-SS MR sandwich beam 

 Mode 1 Mode 2 Mode 3 % from fully 

activated 2nd  

natural freq. Fully Activated 03930 099100. 13391.32 

Case A1 D1 A2 D2 % Active  

1 0.13L 0.07L 0.23L 0.13L 73 % 2090030 019021 1309090 99 % 

2 0.13L 0.1L 0.2L 0.13L 67 % 2090100 0090309 13290201 98.4 % 

3 0.13L 0.13L 0.2L 0.07L 67 % 2091029 019200. 13191001 97.4 % 

4 0.13L 0.13L 0.17L 0.13L 60 % 2091220 0090011 13392002 96.8 % 

5 0.13L 0.17L 0.13L 0.13L 53 % 209300 0099001 10993101 94.08 % 

Fully Deactivated 239..02 3.91090 1199929.  

 

It can be seen from Table (4) that with deactivation of almost 40% of the beam length, 

the third natural frequency is decreased by only 3.2% from the case of the fully 

activated MR sandwich beam (case 4), and with deactivation of almost 46% of the beam 

length, the third natural frequency is decreased by only 6% (case 5).   

As a final conclusion, with only 60% activated beam span we can target any mode by 

placing the activated portions in the proper places to get the effect of the fully activated 

MR sandwich beam at this mode. 

 

5. Conclusion 

In this paper we have developed a spectral and a higher order finite element models for 

the MR sandwich beam. The proposed models were used to perform modal analysis and 

calculate frequencies and loss factors of a MR sandwich beam, and the results were 

compared with the analytical model results published previously. It was shown that the 

4-node element model gives the highest accuracy with a small number of elements. 

Then we used the developed models in two applications, the first was investigating the 

dynamic characteristics of different MR sandwich beam boundary conditions that were 

unavailable in the previous analytical models. The second was investigating the critical 

portions to be activated on the beam span to get the natural frequencies of the fully 

activated MR sandwich beam. In these applications we have proposed several activation 

configurations in targeting the first, second and third modes of a SS-SS sandwich beam. 
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We have shown that we can get the same effect of the fully activated MR sandwich 

beam by activating only 60 % of the beam span at the proper portions regarding the 

targeted mode and the required boundary conditions. 
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