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Abstract: A new class of hybrid/mixed finite elements, denoted “HMFEM-C”,
has been developed for modeling magneto-electro-elastic (MEE) materials. These
elements are based on assuming independent strain-fields, electric and magnetic
fields, and collocating them with the strain-fields, electric and magnetic fields de-
rived from the primal variables (mechanical displacements, electric and magnetic
potentials) at some cleverly chosen points inside each element. The newly de-
veloped elements show significantly higher accuracy than the primal elements for
the electric, magnetic as well as the mechanical variables. HMFEM-C is invariant
through the use of the element-fixed local orthogonal base vectors, and is stable
since it is not derived from a multi-field variational principle; hence it completely
avoids LBB conditions that govern the stability of hybrid/mixed elements. In this
paper, node-wise material properties are used in order to better simulate the spa-
tial material grading of the functionally graded materials (FGM). A computer code
was developed, validated and used to calculate the three magnetoelectric (ME) volt-
age coefficients for piezoelectric-piezomagnetic (PE-PM) composites, namely, the
out-of-plane, transverse and in-plane ME voltage coefficients. The effects of the
piezoelectric phase volume fraction as well as the mechanical boundary conditions
and loadings on the ME voltage coefficients are investigated. Also, the effects of
grading functions in PE-PM composites with functionally graded layers, as well as
single-layered functionally graded magneto-electro-elastic materials, on the three
ME voltage coefficients are presented.
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1 Introduction

Bringing ferroelectricity and magnetism together in one material proved to be a
difficult problem, as these phenomena turned out to be mutually exclusive [Schmid
(1994); Hill (2000); Khomskii (2001); Lines and Glass (2001); Van Aken et al.

(2004); Eerenstein et al. (2006)]. Furthermore, it was found that the simultaneous
presence of electric and magnetic dipoles does not guarantee strong coupling be-
tween the two, as microscopic mechanisms of ferroelectricity and magnetism are
quite different and do not strongly interfere with each other [Cheong and Mostovoy
(2007)]. However, designing composites made up of pure piezoelectric and pure
piezomagnetic phases can lead to higher magnetoelectric (ME) coupling in the
whole structure. Hence, the strong magnetoelectric effect is a byproduct prop-
erty of the composite structure, which is absent in the individual phases [Ryu et

al. (2002)]. Remarkably larger magnetoelectric effect is observed for compos-
ites than for either composite constituents in [Nan (1994); Feng and Su (2006)]
and higher piezoelectric strain modulus d31 is found in piezo-composites than in
the constituents [Smith and Shaulov (1985) and Shaulov et al. (1989)]. Also, the
numerical results by Dunn (1993) showed that the effective thermal expansion co-
efficients of composites could significantly exceed those of the matrix and the fiber
phases.

Strong megnetoelectric coupling can be utilized in energy conversion between the
magnetic and electric fields and smart sensors and transducers [Wang et al. (2005)].
Due to the hysteretic nature of the ME effect, the multiferroic composites may find
applications in ME memory elements and memory devices. Further applications
include magnetic field sensors and magnetically controlled opto-electronic devices.
The transduction properties of the ME effect can also be employed in ME recording
heads and electromagnetic pick-ups. Historical perspectives, status and future of
multiferroic magnetoelectric composites are given in a review paper [Nan et al.

(2008)].

Magnetoelectric coupling can be greatly enhanced by using laminated double, triple
or multilayer piezoelectric-piezomagnetic composites. The magnetoelectric (ME)
coefficients are defined as the ratio between the electrical (magnetic) field output
over the magnetic (electrical) field input. For a bi-layer piezoelectric-piezomagnetic
(PE-PM) composite, an applied magnetic field induces strain in the piezomagnetic
constituent which is passed on to the piezoelectric constituent, where it induces
an electric polarization. In turn, an applied magnetic field induces polarization via
the mechanical coupling between the constituents. A strong ME effect has been
recently observed by [Pan and Wang (2009)] in artificially fabricated multiferroic
composites. It has been shown that the ME response of the laminated composites is
determined by four major aspects: (i) the magnetic, electrical and mechanical co-
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efficients of the constituents; (ii) the respective thickness and number of the piezo-
electric and magnetostrictive layers; (iii) the type of boundary constituents; (iv) the
orientation of the constituents and of the applied electric or magnetic fields. The
influence of the thickness ratio for piezomagnetic and piezoelectric layers hm/he on
the ME effect was investigated in other papers too [Shastry et al. (2004); Laletin
et al. (2008); Zhai et al. (2004)]. The two-dimensional behavior of laminated
magneto-electro-elastic plates is investigated by Heyliger et al. (2004) for two
specific geometries: laminates under conditions of cylindrical bending and homo-
geneous plates under traction-free conditions. Sladek et al. (2012 a, b) used the
MLPG method to analyze the effects of boundary conditions and layer thickness
on multiferroic composites and functionally graded multiferroic composites. In
functionally graded materials (FGMs) the volume fraction of constituents varies in
a predominant direction [Miyamoto et al. (1999)]. Due to their grading feature,
FGMs could have many interesting applications in various piezoelectric devices
[Carbonari et al. (2007), (2009), (2010)].

Solving the governing equations of piezoelectricity and magneto-electro-elasticity
analytically is only limited to few simple problems such as simply-supported beams
and plates. Modeling piezoelectric materials using the finite element method was
one of the most active research topics in the last two decades. Benjeddou (2000)
presented a survey for all the elements developed to model piezoelectric materi-
als until year 2000. He presented the approximation method and the degrees of
freedom for all the developed element types for the different structural members.
Taking the mechanical displacements and electric potential only as the independent
variables, irreducible finite elements are developed (irreducible in the sense that the
number of field variables cannot be further reduced). Irreducible elements for the
different structural members were developed. For example, Irreducible 2D piezo-
electric solid elements were presented by Kagawa and Yarnahuchi (1974) and by
Naillon et al. (1983); while irreducible 3D piezoelectric solid elements were pre-
sented by Lerch (1990) and by Hossack and Hayward (1991). Piezoelectric plate
elements and laminated composites with embedded piezoelectric plates were de-
veloped by Hwang and Park (1993), Heyliger et al. (1994), Kim et al. (1997) and
by Saravanos et al. (1997). Tzou and Tseng (1990) also developed piezoelectric
plate element by adding incompatible modes to the 3D hexahedron solid element.
Piezoelectric shell elements and laminated shells can be found in [Tzou (1993);
Tzou and Ye (1996)].

However, since the irreducible piezoelectric elements are similar to the displacement-
based structural elements in being too stiff, very sensitive to mesh distortion and
aspect ratio, and suffer from the locking phenomena, hybrid/mixed piezoelectric
elements were developed to overcome these disadvantages. Not only the mechan-
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ical displacements and the electric potential are the independent variables in the
hybrid/mixed elements, but also other fields such as the stress field or the elec-
tric displacement are independently assumed. In [Ghandi, and Hagood (1997)],
the additionally assumed field was the electric displacement while in [Sze and Pan
(1999)], it was the mechanical stress. Both elements were superior to the irre-
ducible elements. Also the bubble/incompatible displacement modes method was
used to improve the performance of the irreducible elements in [Tzou and Tseng
(1990); Tzou (1993) and others].

In this paper, hybrid/mixed finite elements are used to model piezoelectric-piezo-
magnetic (PE-PM) composites and functionally graded magneto-electro-elastic-
(MEE) composites. The HMFEM elements used here, are denoted “HMFEM-C”,
since it is based on independently assuming the secondary fields (strain, electric
and magnetic fields) and enforcing the compatibility between these fields and the
secondary fields derived from the primal fields (mechanical displacements, electric
and magnetic potentials) by a method of collocation at cleverly chosen points. The
“HMFEM-C” elements are the extension of the HMFEM-2 elements presented in
[Dong and Atluri (2011); Bishay and Atluri (2012)] for elasticity problems, and
which proved to be superior in performance over the primal elements especially
when the structure is loaded in bending or shear.

The current work uses nodal-defined material properties which are more suitable to
deal with FGM as they provide smooth grading of the material properties and pre-
vent jumps in the material properties between elements that are encountered when
using element-wise material properties. The advantage of using these nodal-defined
material properties can be more significant in the case of higher-order elements
which are able to model quadratic variations especially when the grading function
is non-linear. We investigate PE-PM composites with functionally graded layers
as well as single-layer functionally graded MEE material with pure piezomagnetic
properties on its bottom surface and pure piezoelectric properties on its top sur-
face. Along the thickness of the functionally graded layer the material properties
are continuously varying. Both pure constituents have a vanishing ME coefficient.
The influences of various mechanical boundary conditions and loadings as well as
volume ratio of piezoelectric and piezomagnetic constituents on the ME coefficient
are investigated in several numerical experiments.

The rest of the paper is organized as follows; in section 2, the governing equations
of magneto-electro-elasticity will be introduced, with the finite element formula-
tions for the primal elements and the new hybrid/mixed elements being presented
in section 3 together with the nodal-defined material properties technique. Section
4 is devoted for defining the three ME voltage coefficients and the magnetic and
electric BCs used to model these three modes. Section 5 begins with the computer
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code validation through the patch test and cantilevered MEE beam problem with
end shear load, then analysis of bi-layered PE-PM composites, bi-layered PE-PM
composites with functionally graded layers and single-layer functionally graded
magneto-electro-elastic material are presented. The influence of the boundary con-
ditions, loadings, and grading is illustrated. Conclusions are summarized in section
6.

2 Governing equations

Adopting matrix and vector notation and denoting u, εεε and σσσ as the vectors of
the mechanical displacement, strain and stress fields, ϕ , E and D as the electric
potential, intensity of electric field and electric displacement vectors, and ψ , H and
B as the magnetic potential, intensity of magnetic field and magnetic induction (or
flux density) vectors, we have:

Stress equilibrium equations:

∂∂∂ T
u σσσ +b= 0 ; σσσ === σσσT in Ω (1)

Charge conservation (Maxwell’s) equation:

∂∂∂ T
e D−ρ f = 0 in Ω (2)

Maxwell’s equation for magnetism:

∂∂∂ T
mB = 0 in Ω (3)

where Ω is the problem domain, b is the body force, and ρ f is the electric free
charge density. Note that the right hand-side of eq. (3) is zero because magnetic
free charges do not exist in nature.

Strain-displacement equations:

εεε = ∂∂∂ uu (4)

Electric field- electric potential equations:

E =−∂∂∂ eϕ (5)

Magnetic field- magnetic potential equations:

H =−∂∂∂ mψ (6)
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where

∂∂∂ u =

⎡
⎢⎣

∂
∂x1

0 0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0
0 0 ∂

∂x3
0 ∂

∂x2

∂
∂x1

⎤
⎥⎦

T

∂∂∂ e = ∂∂∂ m =
[

∂
∂x1

∂
∂x2

∂
∂x3

]T

This representation of electric and magnetic fields (eqs. (5) and (6)), as gradients
of the electric and magnetic potentials respectively, guarantees the satisfaction of
the other two Maxwell’s equations (∇×E = 0 and ∇×H = 0).

Constitutive laws for magneto-electro-elastic materials:⎧⎨
⎩

σσσ
D
B

⎫⎬
⎭=

⎡
⎣C eT dT

e −h −gT

d −g −μμμ

⎤
⎦
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭ (7)

where C is the elastic stiffness, h and μμμ are the dielectric and magnetic permeability
coefficients, respectively, and e, d and g are the piezoelectric, piezomagnetic and
magnetoelectric material coefficients, respectively.

A pure piezoelectric or piezomagnetic material can be considered as a special case
of the general magneto-electro-elastic material described by eq. (7). For a layered
PE/PM composite where each layer is either piezoelectric (PE) or piezomagnetic
(PM), the constitutive law is reduced to:⎧⎨
⎩

σσσ
D
B

⎫⎬
⎭=

⎡
⎣C eT 0

e −h 0
0 0 −μμμ

⎤
⎦
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭ for PE layers; (8)

⎧⎨
⎩

σσσ
D
B

⎫⎬
⎭=

⎡
⎣C 0 dT

0 −h 0
d 0 −μμμ

⎤
⎦
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭ for PM layers. (9)

The SI units of the mentioned fields are as follows: stress σσσ (Pa or N/m2), strain εεε
(no unit or m/m), electric displacement D (C/m2), intensity of electric field E (V/m
or N/C), magnetic induction B (N/Am) and intensity of magnetic field H (A/m).
The SI units of the material matrices are: material elastic stiffness matrix C (Pa or
N/m2), piezoelectric matrix e (C/m2), piezomagnetic matrix d (N/Am), dielectric
matrix h (C/Vm), magnetoelectric matrix g (Ns/VC), and magnetic permeability
matrix μμμ (Ns2/C2).

The boundary conditions are:

Mechanical natural (traction) boundary conditions:

nσσσ σσσ = t̄ at St (10)
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Mechanical essential (displacement) boundary conditions:

u = ū at Su, (11)

Electric natural boundary conditions:

neD = Q̄ at SQ (12)

Electric essential boundary conditions:

ϕ = ϕ̄ at Sϕ , (13)

Magnetic natural boundary conditions:

nmB = 0 at SB (14)

Magnetic essential boundary conditions:

ψ = ψ̄ at Sψ , (15)

where nσσσ =

⎡
⎣nx 0 0 ny 0 nz

0 ny 0 nx nz 0
0 0 nz 0 ny nx

⎤
⎦ and ne = nm =

[
nx ny nz

]
,

and t̄ is the boundary traction vector, Q̄ is the specified surface density of free
charge. nx, ny and nz, the three components of nσσσ , ne and nm, are the components of
the unit outward normal to the boundaries St , SQ or SB. ū is the specified mechanical
displacement vector at the boundary Su, ϕ̄ is the specified electric potential at the
boundary Sϕ , and ψ̄ is the specified magnetic potential at the boundary Sψ .

When dividing the whole domain of the body into subdomains, the following con-
ditions should also be satisfied at each subdomain interface Sm:

Mechanical (displacement) compatibility at each inter-subdomain boundary:

u+ = u− at Sm (16)

Mechanical (traction) reciprocity condition at each inter-subdomain boundary:

(nσσσ σσσ)+ +(nσσσ σσσ)− = 0 at Sm (17)

Electric potential compatibility at each inter-subdomain boundary:

ϕ+ = ϕ− at Sm (18)
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Electric reciprocity condition at each inter-subdomain boundary:

(neD)+ +(neD)− = 0 at Sm (19)

Magnetic potential compatibility at each inter-subdomain boundary:

ψ+ = ψ− at Sm (20)

Magnetic reciprocity condition at each inter-subdomain boundary:

(nmB)+ +(nmB)− = 0 at Sm (21)

2.1 Constitutive law with plane stress and plane strain assumptions

Eq. (7) for hexagonal crystal poled in the 3-direction can be expanded as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
σ4
σ5
σ6
D1
D2
D3
B1
B2
B3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0 0 0 −e31 0 0 −d31
C12 C11 C13 0 0 0 0 0 −e31 0 0 −d31
C13 C13 C33 0 0 0 0 0 −e33 0 0 −d33

0 0 0 C44 0 0 0 −e15 0 0 −d15 0
0 0 0 0 C44 0 −e15 0 0 −d15 0 0
0 0 0 0 0 C66 0 0 0 0 0 0
0 0 0 0 e15 0 h11 0 0 g11 0 0
0 0 0 e15 0 0 0 h11 0 0 g11 0

e31 e31 e33 0 0 0 0 0 h33 0 0 g33
0 0 0 0 d15 0 g11 0 0 μ11 0 0
0 0 0 d15 0 0 0 g11 0 0 μ11 0

d31 d31 d33 0 0 0 0 0 g33 0 0 μ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
ε4
ε5
ε6
E1
E2
E3
H1
H2
H3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(22)

with C66 = C11−C12
2 .

If the considered body is very thin in the 2-direction (plane stress case), we can use
the following assumptions:

σ2 = σ4 = σ6 = 0 , D2 = B2 = 0 (23)

Using σ2 = 0 assumption, we can express ε2 as:

ε2 =
−C12ε1 −C13ε3 + e31E3 +d31H3

C11
(24)

Substituting this into eq. (22) we get the constitutive equation for plane stress
problems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1
σ3
σ5
D1
D3
B1
B3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̄11 C̄13 0 0 −ē31 0 −d̄31
C̄13 C̄33 0 0 −ē33 0 −d̄33
0 0 C̄44 −ē15 0 −d̄15 0
0 0 ē15 h̄11 0 ḡ11 0

ē31 ē33 0 0 h̄33 0 ḡ33
0 0 d̄15 ḡ11 0 μ̄11 0

d̄31 d̄33 0 0 ḡ33 0 μ̄33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1
ε3
ε5
E1
E3
H1
H3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)
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where

C̄11 =
C2

11 −C2
12

C11
, C̄13 =

C13 (C11 −C12)
C11

, C̄33 =
C11C33 −C2

13
C11

, C̄44 = C44,

ē31 =
e31 (C11 −C12)

C11
, ē33 =

C11e33 −C13e31

C11
, ē15 = e15,

d̄31 =
d31 (C11 −C12)

C11
, d̄33 =

C11d33 −C13d31

C11
, d̄15 = d15,

h̄11 = h11, h̄33 =
C11h33 + e2

31
C11

,

μ̄11 = μ11, μ̄33 =
C11μ33 +d2

31
C11

, ḡ11 = g11, ḡ33 =
C11g33 + e31d31

C11

If the body is very long (infinite) in the 2 - direction (plane strain case), then we
have the assumptions:

ε2 = ε4 = ε6 = 0 , E2 = H2 = 0 (26)

Substituting this directly into eq. (22) we get the constitutive equation for plane
strain problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1
σ3
σ5
D1
D3
B1
B3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C13 0 0 −e31 0 −d31
C13 C33 0 0 −e33 0 −d33
0 0 C44 −e15 0 −d15 0
0 0 e15 h11 0 g11 0

e31 e33 0 0 h33 0 g33
0 0 d15 g11 0 μ11 0

d31 d33 0 0 g33 0 μ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1
ε3
ε5
E1
E3
H1
H3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

3 Finite element modeling of Magneto-Electro-Elastic (MEE) materials

The formulation derived in this section for magneto-electro-elasticity can be di-
rectly reduced to piezoelectricity or piezomagnetism by dropping the magnetic or
the electric variables, respectively.

The most general variational principle that includes all the nine assumed field vari-
ables (stress, strain, displacements, electric displacement, intensity of electric field,
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electric potential, magnetic induction, intensity of magnetic field and magnetic po-
tential) for magneto-electro-elastic materials has the form:

Π(σσσ ,D,B,εεε,E,H,u,ϕ,ψ) =

∫
Ω

⎡
⎢⎣1

2

⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭

T ⎡
⎣C eT dT

e −h −gT

d −g −μμμ

⎤
⎦
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭

−
⎧⎨
⎩

σσσ
D
B

⎫⎬
⎭

T ⎛
⎝
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭−

⎧⎨
⎩

∂uu
∂eϕ
∂mψ

⎫⎬
⎭
⎞
⎠− b̄T u+ρ f ϕ

⎤
⎥⎦dΩ

−
∫
St

t̄T uds−
∫
SQ

Q̄ϕds−
∫
Su

(nσσσ σσσ)T (u− ū)ds−
∫
Sϕ

(neD)T (ϕ − ϕ̄)ds

−
∫
Sψ

(nmB)T (ψ − ψ̄)ds (28)

This is the extension of Hu-Washizu principle used in elasticity [see Atluri (1975);
Atluri et al. (1983); Tang et al. (1984)].

The variation of the functional Π gives:

δΠ =
∫
Ω

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎨
⎩

δεεε
−δE
−δH

⎫⎬
⎭

T
⎛
⎜⎝
⎡
⎣C eT dT

e −h −gT

d −g −μμμ

⎤
⎦
⎧⎨
⎩

δεεε
−δE
−δH

⎫⎬
⎭−

⎧⎨
⎩

σσσ
D
B

⎫⎬
⎭

T
⎞
⎟⎠

−
⎧⎨
⎩

δσσσ
δD
δB

⎫⎬
⎭

T ⎛
⎝
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭−

⎧⎨
⎩

∂uu
∂eϕ
∂mψ

⎫⎬
⎭
⎞
⎠−

⎧⎨
⎩

δu
δϕ
δψ

⎫⎬
⎭

T ⎧⎨
⎩

∂ T
u σσσ + b̄

∂ T
e D−ρ f

∂ T
mB

⎫⎬
⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dΩ

−∫
St

(nσσσ σσσ − t̄)T δuds− ∫
SQ

(neD− Q̄)δϕds− ∫
SB

(nmB)δψds

− ∫
Su

(nσσσ δσσσ)T (u− ū)ds− ∫
Sϕ

(neδD)T (ϕ − ϕ̄)ds− ∫
Sψ

(nmδB)T (ψ − ψ̄)ds

(29)

where we used the divergence theorem:∫
Ω

σσσT ∂u (δu)dΩ+
∫
Ω

δuT ∂ T
u σσσdΩ =

∫
St

(nσσσ σσσ)T δuds∫
Ω

DT ∂e (δϕ)dΩ+
∫
Ω

δϕ ∂ T
e DdΩ =

∫
SQ

(neD)T δϕds∫
Ω

BT ∂m (δψ)dΩ+
∫
Ω

δψ ∂ T
mBdΩ =

∫
SB

(nmB)T δψds

(30)
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to replace
∫
Ω

σσσT ∂u (δu)dΩ by
∫
St

(nσσσ σσσ)T δuds−
∫
Ω

δuT ∂ T
u σσσdΩ,

∫
Ω

DT ∂e (δϕ)dΩ by
∫
SQ

(neD)T δϕds−
∫
Ω

δϕ ∂ T
e DdΩ

and∫
Ω

BT ∂m (δψ)dΩ by
∫
SB

(nmB)T δψds−
∫
Ω

δψ ∂ T
mBdΩ.

Euler-Lagrange equations of this variational principle are the seven governing equa-
tions and six boundary conditions for magneto-electro-elasticity (eqs. (1) to (7) and
eqs. (10) to (15)).

When the domain is composed of N sub-domains or finite elements (Ω =
N

∑
i=1

Ωi),

the compatibility equations (eqs. (16), (18) and (20)) as well as the reciprocity
equations (eqs. (17), (19) and (21)) should be satisfied on the sub-domain bound-
aries. Hence, the functional Π takes the form:

Π(σσσ ,D,B,εεε,E,H,u,ϕ,ψ) =
N

∑
i=1

Πi(σσσ i,Di,Bi,εεε i,Ei,Hi,ui,ϕ i,ψ i)

Π =
N

∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
Ωi

⎡
⎢⎣1

2

⎧⎨
⎩

εεε i

−Ei

−Hi

⎫⎬
⎭

T ⎡
⎣Ci eiT diT

ei −hi −giT

di −gi −μμμ i

⎤
⎦
⎧⎨
⎩

εεε i

−Ei

−Hi

⎫⎬
⎭

−
⎧⎨
⎩

σσσ i

Di

Bi

⎫⎬
⎭

T ⎛
⎝
⎧⎨
⎩

εεε i

−Ei

−Hi

⎫⎬
⎭−

⎧⎨
⎩

∂uui

∂eϕ i

∂mψ i

⎫⎬
⎭
⎞
⎠− b̄T ui +ρ f ϕ i

⎤
⎥⎦dΩ

−∫
Si

t

t̄T uids− ∫
Si

Q

Q̄ϕ ids− ∫
Si

u

(ni
σσσ σσσ i)T (ui − ū)ds

− ∫
Si

ϕ

(ni
eDi)T (ϕ i − ϕ̄)ds− ∫

Si
ψ

(nmB)T (ψ − ψ̄)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

and its variation gives

δΠ(σσσ ,D,B,εεε,E,H,u,ϕ,ψ) =
N

∑
i=1

δΠi(σσσ i,Di,Bi,εεε i,Ei,Hi,ui,ϕ i,ψ i)
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δΠ =
N

∑
i=1⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
Ωi

⎡
⎢⎣
⎧⎨
⎩

δεεε i

−δEi

−δHi

⎫⎬
⎭

T
⎛
⎜⎝
⎡
⎣Ci eiT diT

ei −hi −giT

di −gi −μμμ i

⎤
⎦
⎧⎨
⎩

εεε i

−Ei

−Hi

⎫⎬
⎭−

⎧⎨
⎩

σσσ i

Di

Bi

⎫⎬
⎭

T
⎞
⎟⎠

−
⎧⎨
⎩

δσσσ i

δDi

δBi

⎫⎬
⎭

T ⎛
⎝
⎧⎨
⎩

εεε i

−Ei

−Hi

⎫⎬
⎭−

⎧⎨
⎩

∂uui

∂eϕ i

∂mψ i

⎫⎬
⎭
⎞
⎠−

⎧⎨
⎩

δui

δϕ i

δψ i

⎫⎬
⎭

T ⎧⎨
⎩

∂ T
u σσσ i + b̄

∂ T
e Di −ρ f

∂ T
mBi

⎫⎬
⎭
⎤
⎥⎦dΩ

−∫
Si

t

(ni
σσσ σσσ i − t̄)T δuids− ∫

Si
Q

(ni
eDi − Q̄)δϕ ids− ∫

Si
B

(ni
mBi)δψds

− ∫
Si

u

(ni
σσσ δσσσ i)T (ui − ū)ds− ∫

Si
ϕ

(ni
eδDi)T (ϕ i − ϕ̄)ds− ∫

Si
ψ

(ni
mδBi)T (ψ i − ψ̄)ds

− ∫
Si

m

[
(ni

σσσ σσσ i)T δui +(ni
eDi)δϕ i +(ni

mBi)δψ i
]

ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(32)

The three compatibility conditions (on displacement, electric potential and mag-
netic potential, eqs. (16), (18) and (20)), can be written now as:

ui = u j, ϕ i = ϕ j and ψ i = ψ j at Si j
m (33)

where S
i j
m is the boundary between subdomain i and subdomain j. Then,

δui = δu j , δϕ i = δϕ j and δψ i = δψ j at Si j
m (34)

Hence, when we sum δΠi and δΠ j in equation (32), the last term gives:

∫
Si j

m

[
(ni

σσσ σσσ i +n j
σσσ σσσ j)T δui +(ni

eDi +n j
eD j)δϕ i +(ni

mBi +n j
mB j)δψ i

]
ds

and the reciprocity conditions (eqs. (17), (19) and (21)) are also satisfied by the
variational principle.

By selecting the mechanical displacements, electric potential and magnetic poten-
tial as the nodal variables in the finite element analysis, the essential boundary con-
ditions (eqs. (11), (13) and (15)) can be easily enforced, and also the compatibility
conditions (zeroth order continuity) of the displacements and electric and magnetic
potentials (eq. (33)) are automatically satisfied a priori. Hence, the functional Π
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can be simplified to:

Π = ∑

⎛
⎜⎝∫

Ωi

⎡
⎢⎣1

2

⎧⎨
⎩

εεε i

−Ei

−Hi

⎫⎬
⎭

T ⎡
⎣Ci eiT diT

ei −hi −giT

di −gi −μμμ i

⎤
⎦
⎤
⎥⎦
⎧⎨
⎩

εεε i

−Ei

−Hi

⎫⎬
⎭

−
⎧⎨
⎩

σσσ i

Di

Bi

⎫⎬
⎭

T ⎛
⎝
⎧⎨
⎩

εεε i

−Ei

−Hi

⎫⎬
⎭−

⎧⎨
⎩

∂uui

∂eϕ i

∂mψ i

⎫⎬
⎭
⎞
⎠− b̄T ui +ρ f ϕ i

⎤
⎥⎦dΩ

−
∫
Si

t

t̄T uids−
∫
Si

Q

Q̄ϕ ids

)
(35)

3.1 Primal finite elements

Expressing the strains using the strain-displacement eq. (4), the electric field inten-
sity using the electric field- electric potential eq. (5) and the magnetic field intensity
using the magnetic field- magnetic potential eq. (6), we get Π1, a simplified version
of the functional Π:

Π1(ui,ϕ i,ψ i) =
N

∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

∫
Ωi

⎡
⎢⎣1

2

⎧⎨
⎩

∂uui

∂eϕ i

∂mψ i

⎫⎬
⎭

T ⎡
⎣Ci eiT diT

ei −hi −giT

di −gi −μμμ i

⎤
⎦
⎧⎨
⎩

∂uui

∂eϕ i

∂mψ i

⎫⎬
⎭

−b̄T ui +ρ f ϕ i
]

dΩ− ∫
Si

t

t̄T uids− ∫
Si

Q

Q̄ϕ ids

⎞
⎟⎟⎟⎟⎟⎠ (36)

This functional requires only the displacements ui, electric potential ϕ i, and mag-
netic potential ψ i to be assumed in each element, and is known as the primal or
irreducible formulation for magneto-electro-elasticity (irreducible in the sense that
the number of field variables cannot be further reduced). The superscript i will be
dropped from now on, for simplicity, i.e., u,ϕ , ψ will be used instead of ui,ϕ i, ψ i

to express the primal variables in each element.

In the primal finite element analysis, the mechanical displacements, electric and
magnetic potentials in each element are assumed in terms of the nodal values of the
displacements, electric and magnetic potentials respectively through the use of the
isoparametric shape (interpolation) functions as:

u = Nu(ξ γ)qu ϕ = Nϕϕϕ(ξ γ)qϕϕϕ ψ = Nψψψ(ξ γ)qψψψ (37)

where ξ γ , γ = 1,2 are the element-fixed local non-dimensional curvilinear coor-
dinates, Nu(ξ γ), Nϕϕϕ(ξ γ) and Nψψψ(ξ γ) are the displacement, electric and magnetic
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potentials shape functions respectively, and qu, qϕϕϕ and qψψψ are the vectors of ele-
ment nodal displacements, electric and magnetic potentials respectively.

The strain-field, intensity of electric and magnetic fields derived from the primal
variables are then expressed as:

εεεP = ∂∂∂ uu = ∂∂∂ u(Nu(ξ γ)qu) = Bu(ξ γ)qu
−EP = ∂∂∂ eϕ=∂∂∂ e(Nϕϕϕ(ξ γ)qϕϕϕ) = Bϕϕϕ(ξ γ)qϕϕϕ
−HP=∂∂∂ mψ=∂∂∂ m(Nψψψ(ξ γ)qψψψ) = Bψψψ(ξ γ)qψψψ

(38)

where Bu(ξ γ) = ∂∂∂ uNu(ξ γ),Bϕϕϕ(ξ γ)=∂∂∂ eNϕϕϕ(ξ γ) and Bψψψ(ξ γ)=∂∂∂ mNψψψ(ξ γ).
Substituting this into the functional Π1, and dropping (ξ γ)for simplicity, we get:

Π1 = ∑⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

⎧⎨
⎩

qu
qϕϕϕ
qψψψ

⎫⎬
⎭

T

⎡
⎢⎢⎢⎣
∫
Ω

BT
u CBudΩ

∫
Ω

BT
u eT BϕϕϕdΩ

∫
Ω

BT
u dT BψψψdΩ∫

Ω
BT

ϕϕϕeBudΩ −∫
Ω

BT
ϕϕϕhBϕϕϕdΩ −∫

Ω
BT

ϕϕϕgT BψψψdΩ∫
Ω

BT
ψψψdBudΩ −∫

Ω
BT

ψψψgBϕϕϕdΩ −∫
Ω

BT
ψψψ μBψψψdΩ

⎤
⎥⎥⎥⎦
⎧⎨
⎩

qu
qϕϕϕ
qψψψ

⎫⎬
⎭

−
(∫

Ω
b̄T NudΩ

)
qu +

(∫
Ω

ρ f NϕϕϕdΩ
)

qϕϕϕ −
(∫

St

t̄T Nuds

)
qu −

(∫
SQ

Q̄Nϕϕϕds

)
qϕϕϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(39)

Equating its variation to zero gives the finite element equation:

Kq = F (40)

where q =
{

qu qϕϕϕ qψψψ
}T and

K =

⎡
⎣Kuu Kuuuϕϕϕ Kuuuψψψ

KT
uuuϕϕϕ −Kϕϕϕϕϕϕ −Kϕψϕψϕψ

KT
uuuψψψ −KT

ϕϕϕψψψ −Kψψψψψψ

⎤
⎦

=

⎡
⎢⎢⎢⎣
∫
Ω

BT
u CBudΩ

∫
Ω

BT
u eT BϕϕϕdΩ

∫
Ω

BT
u dT BψψψdΩ∫

Ω
BT

ϕϕϕeBudΩ −∫
Ω

BT
ϕϕϕhBϕϕϕdΩ −∫

Ω
BT

ϕϕϕgT BψψψdΩ∫
Ω

BT
ψψψdBudΩ −∫

Ω
BT

ψψψgBϕϕϕdΩ −∫
Ω

BT
ψψψ μμμBψψψdΩ

⎤
⎥⎥⎥⎦

(41)

F =

⎧⎨
⎩

Fu
Fϕϕϕ
0

⎫⎬
⎭=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

b̄T NudΩ+
∫
St

t̄T Nuds

−∫
Ω

ρ f NϕϕϕdΩ+
∫

SQ

Q̄Nϕϕϕds

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(42)
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We call this element “Primal finite element” (“PFEM”) for magneto-electro-elastic
(MEE) materials. Finite elements based on the irreducible formulation for magneto-
electro-elasticity are similar to the displacement based finite elements for elasticity.
They suffer from having high stiffness, very sensitive to mesh distortion and aspect
ratio and that the shear and normal strains are “locked” together. The various hy-
brid/mixed elements for piezoelectricity in the literature use multi-field variational
principles.

3.2 Hybrid/mixed finite elements for magneto-electro-elastic materials using
independently assumed strain, electric and magnetic fields

3.2.1 Local orthogonal base vectors

In order to assume an independent strain field (which is a second order tensor) as
well as electric and magnetic field intensities (which are vectors), we have to de-
fine the components of these fields as well as their base vectors. The components
of these fields will be assumed in the element-fixed local non-dimensional curvi-
linear coordinates ξ 1 − ξ 3, as shown in Figure 1 for the simple case of four-node
quadrilateral element. As for the base vectors, we cannot use the covariant base
vectors g1 − g3 in the directions of the local non-dimensional curvilinear coordi-
nates ξ 1−ξ 3 since they are not orthogonal. It is required to define an element-fixed
local orthogonal base vectors so that the element properties, such as the eigenvalues
of the stiffness matrix, are not changed according to the orientation of the global
Cartesian coordinate system, or the observer’s point of view. Whatever the rota-
tion of the global Cartesian coordinate system x1 − x2 − x3, the element-fixed local
curvilinear coordinates ξ 1 −ξ 3, as well as the element-fixed local orthogonal base
vectors, denoted ĝ1 − ĝ3, are kept invariant. These element-fixed local orthogonal
base vectors, ĝ1 − ĝ3, are defined as follows: ĝ1 is in the same direction of the co-
variant base vector g1 evaluated at the center (0, 0), and ĝ3 is obtained by rotating
ĝ1 around −e2 counterclockwise by 90o.

Using the isoparametric representation:

xi = ∑
n

x
(n)
i N(n)(ξ γ) (43)

where xi are the global Cartesian coordinates, x
(n)
i are the Cartesian coordinates of

the element nodes, and from the position vector R = x1e1 +x3e3 , g1 can be obtained
through the relation:

g1 =
∂R
∂ξ 1 =

∂x1

∂ξ 1 e1 +
∂x3

∂ξ 1 e3 = ∑
n

(
∂N(n)(ξ 1,ξ 3)

∂ξ 1 x
(n)
1 e1 +

∂N(n)(ξ 1,ξ 3)
∂ξ 1 x

(n)
2 e3

)
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Figure 1: Global Cartesian coordinates x1 − x2 − x3, curvilinear coordinates
ξ 1 −ξ 3, and element-fixed local orthogonal base vectors ĝ1 − ĝ3 for the four-node
quadrilateral finite element

(44)

Then, ĝ1 and ĝ3 can be written as:

ĝ1 = g1(0,0) = ∑
n

(
∂N(n)

∂ξ 1 (0,0)x(n)
1 e1 +

∂N(n)

∂ξ 1 (0,0)x(n)
3 e3

)
(45)

ĝ3 = −e2 × ĝ1 = ∑
n

(
−∂N(n)

∂ξ 1 (0,0)x(n)
3 e1 +

∂N(n)

∂ξ 1 (0,0)x(n)
1 e3

)
(46)

Figure 1 shows the four-node quadrilateral element in global Cartesian coordinates
x1−x2−x3 in the direction of the orthogonal base vectors e1−e2−e3, the element-
fixed local curvilinear coordinates ξ 1−ξ 3 and the covariant base vectors g1−g3 in
their directions, and the element-fixed local orthogonal base vectors ĝ1 − ĝ3. The
isoparametric mapping transforms the regular element in the non-dimensional co-
ordinates ξ 1−ξ 3 that varies from -1 to 1 into the irregular element in the Cartesian
x1 − x3 coordinates.

With the base vectors being defined, the strain tensor and the electric and magnetic
fields vectors can be expressed in any coordinate system and its associated base
vectors:

εεε = εi jeiej = ε̂kl ĝkĝl, E = Eiei = Êkĝk, H = Hiei = Ĥkĝk (47)
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The transformation of the strain components from the element-fixed local orthogo-
nal coordinates to the global Cartesian coordinates follows this relation;

εi j = ε̂kl(ĝk.ei)(ĝl.ej) (48)

Using the fact that εi j = ε ji and ε̂kl = ε̂ lk, eq. (48) can be written as:⎧⎨
⎩

ε1
ε3
2ε5

⎫⎬
⎭=

⎡
⎣ (ĝ1.e1)2 (ĝ3.e1)2 (ĝ1.e1)(ĝ3.e1)

(ĝ1.e3)2 (ĝ3.e3)2 (ĝ1.e3)(ĝ3.e3)
2(ĝ1.e1)(ĝ1.e3) 2(ĝ3.e1)(ĝ3.e3) (ĝ1.e1)(ĝ3.e3)+(ĝ3.e1)(ĝ1.e3)

⎤
⎦
⎧⎨
⎩

ε̂1

ε̂3

2ε̂5

⎫⎬
⎭
(49)

or, εεε = Tεεε ε̂εε .

Note that in εi j, i j = 11, 33, 13 corresponds to εk, k = 1, 3, 5.

Similarly, the transformation of the components of the electric and magnetic fields
from the element-fixed local orthogonal coordinates to the global Cartesian coordi-
nates follows:{

E1
E3

}
=
[
(ĝ1.e1)2 (ĝ3.e1)2

(ĝ1.e3)2 (ĝ3.e3)2

]{
Ê1

Ê3

}
or, E = TEÊ

(50)

{
H1
H3

}
=
[
(ĝ1.e1)2 (ĝ3.e1)2

(ĝ1.e3)2 (ĝ3.e3)2

]{
Ĥ1

Ĥ3

}
or, H = THĤ

(51)

where Tεεε , TE and TH are the transformation matrices that relate the components of
strain, electric and magnetic fields, respectively, in the Cartesian coordinate system
to that of the local orthogonal coordinate system. Note that these transformation
matrices reduce to the identity matrix for rectangular shaped elements because in
this case, ĝ1 is in the direction of e1 and ĝ3 is in the direction of e3. So if the
elements are of a rectangular shape, there is no need to use the transformation
matrices.

3.2.2 Independently assumed strain, electric and magnetic fields

Now since we defined covariant base vectors, the contravariant components of
the independently assumed strain, electric and magnetic fields in the local non-
dimensional curvilinear coordinates ξ 1 −ξ 3 can be written as:

ε̂εε In = Aεεε(ξ γ)ααα − ÊIn = AE(ξ γ)βββ − ĤIn = AH(ξ γ)γγγ (52)
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where ααα, βββ and γγγ are undetermined parameters.

For 2D four-node quadrilateral element, the normal strain in the 1-direction is as-
sumed as:

ε̂ In1 = α1 +α2ξ 1 +α3ξ 3 +α4ξ 1ξ 3 = Aεεε111(ξ γ)αααI (53)

where Aεεε1(ξ γ) =
[
1 ξ 1 ξ 3 ξ 1ξ 3

]
and αααI =

[
α1 α2 α3 α4

]T .

Similarly the normal strain in the 3- direction and the shear strain:

ε̂ In3 = Aε3ε3ε3(ξ γ)αααII, ε In5 = Aε5ε5ε5(ξ γ)αααIII (54)

where Aε3(ξ γ) =
[
1 ξ 1 ξ 3 ξ 1ξ 3

]
, Aε5(ξ γ) = 1, αααII =

[
α5 α6 α7 α8

]T ,
and αααIII = α9.

The independent electric field can also be assumed as:

−ÊIn1 = AE1(ξ γ)βββ I, −ÊIn3 = AE3(ξ γ)βββ II (55)

where AE1(ξ γ) = AE3(ξ γ) =
[
1 ξ 1 ξ 3 ξ 1ξ 3

]
, βββ I =

[
β1 β2 β3 β4

]T and

βββ II =
[
β5 β6 β7 β8

]T .

and the independent magnetic field as:

−ĤIn1 = AH1(ξ γ)γγγI − ĤIn2 = AH2(ξ γ)γγγII (56)

where AH1(ξ γ) = AH2(ξ γ) =
[
1 ξ 1 ξ 3 ξ 1ξ 3

]
, γγγI =

[
γ1 γ2 γ3 γ4

]T and

γγγII =
[
γ5 γ6 γ7 γ8

]T .

3.2.3 HMFEM using Atluri’s variational principle

The stress, electric displacement and magnetic induction fields can be eliminated
from the functional Π in eq. (35) using the constitutive law to get:

Π2(εεε,E,H,u,ϕ,ψ) =

∫
Ω

⎡
⎢⎣1

2

⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭

T ⎡
⎣C eT dT

e −h −gT

d −g −μμμ

⎤
⎦
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭

−
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭

T ⎡
⎣C eT dT

e −h −gT

d −g −μμμ

⎤
⎦

T ⎛
⎝
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭−

⎧⎨
⎩

∂uu
∂eϕ
∂mψ

⎫⎬
⎭
⎞
⎠

−b̄T u+ρ f ϕ
]

dΩ−
∫
St

t̄T uds−
∫
SQ

Q̄ϕds (57)
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This can be seen as the extension of “Atluri’s variational principle” [see Atluri
(1975)] and can be written as:

Π2(εεε,E,H,u,ϕ,ψ) =

∫
Ω

⎡
⎢⎣−1

2

⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭

T ⎡
⎣C eT dT

e −h −gT

d −g −μμμ

⎤
⎦
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭+

⎧⎨
⎩

∂uu
∂eϕ
∂mψ

⎫⎬
⎭

T ⎡
⎣C eT dT

e −h −gT

d −g −μμμ

⎤
⎦
⎧⎨
⎩

εεε
−E
−H

⎫⎬
⎭

−b̄T u+ρ f ϕ
]

dΩ−
∫
St

t̄T uds−
∫
SQ

Q̄ϕds (58)

Beside using the mechanical displacement, the electric and magnetic potential rep-
resentation as in eq. (37), we also use the independently assumed strain, electric
and magnetic fields in eqs. (52). If the element shape is not rectangular, these inde-
pendently assumed fields should be transformed to the Cartesian coordinate system
first (using the transformation matrices defined in subsection 3.2.1) in order to be
used in the variational principle:

εεε In = Tεεε ε̂εε In = TεεεAεεε(ξ γ)ααα
−HIn = −THĤIn = THAH(ξ γ)γγγ
−EIn = −TEÊIn = TEAE(ξ γ)βββ

(59)

The functional Π2 in eq. (58) becomes:

Π2(εεε,E,H,u,ϕ,ψ) = −1
2

⎧⎨
⎩

ααα
βββ
γγγ

⎫⎬
⎭

T

H

⎧⎨
⎩

ααα
βββ
γγγ

⎫⎬
⎭+

⎧⎨
⎩

qu
qϕϕϕ
qψψψ

⎫⎬
⎭

T

GT

⎧⎨
⎩

ααα
βββ
γγγ

⎫⎬
⎭−

⎧⎨
⎩

qu
qϕϕϕ
qψψψ

⎫⎬
⎭

T

F

(60)

where

H =
∫
Ω

⎡
⎣AT

εεε (ξ γ)CAεεε(ξ γ) AT
εεε (ξ γ)eT AE(ξ γ) AT

εεε (ξ γ)dT AH(ξ γ)
AT

E(ξ γ)eAεεε(ξ γ) −AT
E(ξ γ)hAE(ξ γ) −AT

E(ξ γ)gT AH(ξ γ)
AT

H(ξ γ)dAεεε(ξ γ) −AT
H(ξ γ)gAE(ξ γ) −AT

H(ξ γ)μAH(ξ γ)

⎤
⎦dΩ (61)

G =
∫
Ω

⎡
⎣AT

εεε (ξ γ)TT
εεε CBu(ξ γ) AT

εεε (ξ γ)TT
εεε eT Bϕϕϕ(ξ γ) AT

εεε (ξ γ)TT
εεε dT Bψψψ(ξ γ)

AT
E(ξ γ)TT

EeBu(ξ γ) −AT
E(ξ γ)TT

EhT Bϕϕϕ(ξ γ) −AT
E(ξ γ)TT

EgT Bψψψ(ξ γ)
AT

H(ξ γ)TT
HdBu(ξ γ) −AT

H(ξ γ)TT
HgBϕϕϕ(ξ γ) −AT

H(ξ γ)TT
HμBψψψ(ξ γ)

⎤
⎦dΩ

(62)
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and F is defined in eq. (42).

In eq. (61) we used the identities:

TT
εεε CTεεε = C, TT

EeTεεε = e, TT
EhTE = h etc. (63)

The variation of this functional Π2 is:

δΠ2(δααα,δβββ ,δγγγ,δqu,δqϕϕϕ ,δqψψψ) =

−
⎧⎨
⎩

δααα
δβββ
δγγγ

⎫⎬
⎭

T

H

⎧⎨
⎩

ααα
βββ
γγγ

⎫⎬
⎭+

⎧⎨
⎩

δααα
δβββ
δγγγ

⎫⎬
⎭

T

G

⎧⎨
⎩

qu
qϕϕϕ
qψψψ

⎫⎬
⎭+

⎧⎨
⎩

δqu
δqϕϕϕ
δqψψψ

⎫⎬
⎭

T

GT

⎧⎨
⎩

ααα
βββ
γγγ

⎫⎬
⎭−

⎧⎨
⎩

δqu
δqϕϕϕ
δqψψψ

⎫⎬
⎭

T

F

(64)

For an arbitrary
{

δααα δβββ δγγγ
}

, we have H

⎧⎨
⎩

ααα
βββ
γγγ

⎫⎬
⎭= G

⎧⎨
⎩

qu
qϕϕϕ
qψψψ

⎫⎬
⎭, hence

⎧⎨
⎩

ααα
βββ
γγγ

⎫⎬
⎭= H−1G

⎧⎨
⎩

qu
qϕϕϕ
qψψψ

⎫⎬
⎭ (65)

and for an arbitrary
{

δqu δqϕϕϕ δqψψψ
}

, we have:

GT

⎧⎨
⎩

ααα
βββ
γγγ

⎫⎬
⎭= F (66)

Substituting eq. (65) into eq. (66) we get:

GT H−1G

⎧⎨
⎩

qu
qϕϕϕ
qψψψ

⎫⎬
⎭= K

⎧⎨
⎩

qu
qϕϕϕ
qψψψ

⎫⎬
⎭= F (67)

The element stiffness matrix then has the form:

K =

⎡
⎣Kuu Kuuuϕϕϕ Kuuuψψψ

KT
uuuϕϕϕ −Kϕϕϕϕϕϕ −Kϕϕϕψψψ

KT
uuuψψψ −KT

ϕϕϕψψψ −Kψψψψψψ

⎤
⎦= GT H−1G (68)

We call this element “Hybrid/mixed finite element based on Atluri’s variational
principle” (“HMFEM-AVP”) for MEE materials. Note that the compatibility be-
tween the independently assumed strain, electric and magnetic fields and those
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derived from the primal variables is enforced by the variational principle of the
functional Π2. Since this element is based on multi-field variational principle and
involves Lagrangian multipliers, it is plagued by LBB conditions (discussed in sub-
section 3.2.5), and its solvability, convergence and stability are not guaranteed.
Also the element requires evaluation of two matrices (H and G) and inversion of
the matrix H. Hence, it is computationally inefficient and expensive.

3.2.4 HMFEM using collocation method

Assuming independent strain, electric and magnetic fields, written in terms of un-
determined parameters (ααα,βββ and γγγ) as in eq. (52), the compatibility between these
independently assumed fields and the strain, electric and magnetic fields derived
from the displacement, electric and magnetic potential fields (the primal variables),
as in eq. (38), can be enforced using several ways; for example, collocation at some
cleverly chosen points. Because the collocation of these fields should be done in
the local orthogonal coordinate system, if the shape of the element is not rectangu-
lar, we should first transform the components of the strain, electric and magnetic
field vectors, derived from the primal fields, from the Cartesian coordinate system
to the local orthogonal coordinate system according to eqs. (49), (50) and (51):

ε̂P = T−1
εεε εεεP = T−1

εεε Bu(ξ γ)qu = B̂u(ξ γ)qu
−ÊP = −T−1

E EP = T−1
E Bϕϕϕ(ξ γ)qϕϕϕ = B̂ϕϕϕ(ξ γ)qϕϕϕ

−ĤP = −T−1
H HP = T−1

E Bψψψ(ξ γ)qψψψ = B̂ψψψ(ξ γ)qψψψ

(69)

[Dong and Atluri (2011)] proved that in order for these elements to pass the patch
test, the collocation should be done at Gauss quadrature points so that the compati-
bility is enforced in a weak sense. It is not necessary to collocate all the components
at the same points. Which component is collocated at which points in the element,
can be based on the judiciously chosen physical behavior of the element.

Now, for the 2D four-node quadrilateral element as illustrated in Figure 1, we collo-
cate each of the normal strain field components at the 4 points of the 2 × 2 Gaussian
points (points 5-8 in Figure 1), while collocate the shear strain at the center point
(point 0 in Figure 1) to get:

ε̂ In
i (ξ γk,ααα i) = ε̂P

i (ξ γk,qu)
G1αααI = M1qu, G2αααII = M2qu, G3αIII = M3qu

(70)

where ξ γk are the collocation points. Similarly, we collocate the components of the
electric and magnetic fields at the 4 points of the 2 × 2 Gaussian points to get:

ÊIn
i (ξ γk,βββ i) = ÊP

i (ξ γk,qϕϕϕ)
G4βββ I = M4qϕϕϕ , G5βII = M5qϕϕϕ

(71)
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ĤIn
i (ξ γk,γγγ i) = ĤP

i (ξ γk,qψψψ)
G6γγγI = M6qψψψ , G7γII = M7qψψψ

(72)

So the independently assumed strain, electric and magnetic fields are:

ε̂εε In =

⎧⎨
⎩

ε̂ In1

ε̂ In3

ε̂ In5

⎫⎬
⎭=

⎡
⎣Aεεε111(ξ γ) 0 0

0 Aεεε333(ξ γ) 0
0 0 Aεεε555(ξ γ)

⎤
⎦
⎡
⎣L1

L2
L3

⎤
⎦qu = Aεεε(ξ γ)Lqu (73)

−ÊIn =
{−ÊIn1

−ÊIn3

}
=
[

AE1(ξ γ) 0
0 AE3(ξ γ)

][
J1
J2

]
qϕ = AE(ξ γ)Jqϕ (74)

−ĤIn =
{−ĤIn1

−ĤIn3

}
=
[

AH1(ξ γ) 0
0 AH3(ξ γ)

][
V1
V2

]
qψ = AH(ξ γ)Jqψ (75)

where

L1 = G−1
1 M1, L2 = G−1

2 M2, L3 = G−1
3 M3,

J1 = G−1
4 M4, J2 = G−1

5 M5, V1 = G−1
6 M6, V2 = G−1

7 M7

Then we have to transform the strain, electric and magnetic field components from
the local orthogonal coordinate system into the Cartesian coordinate system (only
if the shape of the element is not rectangular):

εεε In = Tεεε ε̂ In = TεεεAεεε(ξ γ)Lqu = B∗
εεεqu

−EIn = −TEÊIn = TEAE(ξ γ)Jqϕϕϕ = B∗
Eqϕϕϕ

−HIn = −THĤIn = THAH(ξ γ)Vqψψψ = B∗
Hqψψψ

(76)

where

B∗
εεε = TεεεAεεε(ξ γ)L, B∗

E = TEAE(ξ γ)J, B∗
H = THAH(ξ γ)V (77)

Using Π1, the functional used to derive the irreducible or the primal element, we
get the following after dropping the superscript i for simplicity:

Π1 = ∑

⎛
⎜⎝∫

Ω

⎡
⎢⎣1

2

⎧⎨
⎩

εεε In

−EIn

−HIn

⎫⎬
⎭

T ⎡
⎣C eT dT

e −h −gT

d −g −μμμ

⎤
⎦
⎧⎨
⎩

εεε In

−EIn

−HIn

⎫⎬
⎭− b̄T u+ρ f ϕ

⎤
⎥⎦dΩ

−
∫
St

t̄T uds−
∫

SQ

Q̄ϕds

⎞
⎠ (78)
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Equating the variation of the functional Π1 to zero gives the finite element equation
as in eq. (40), where the load vector F is exactly as expressed in eq. (42), while the
stiffness matrix is defined as:

K =

⎡
⎣Kuu Kuuuϕϕϕ Kuuuψψψ

KT
uuuϕϕϕ −Kϕϕϕϕϕϕ −Kϕϕϕψψψ

KT
uuuψψψ −KT

ϕϕϕψψψ −Kψψψψψψ

⎤
⎦

=

⎡
⎢⎢⎢⎣

LT

(∫
Ω

AT
εεε (ξ γ )CAεεε (ξ γ )dΩ

)
L LT

(∫
Ω

AT
εεε (ξ γ )eT AE(ξ γ )dΩ

)
J LT

(∫
Ω

AT
εεε (ξ γ )dT AH(ξ γ )dΩ

)
V

JT

(∫
Ω

AT
E(ξ γ )eAεεε (ξ γ )dΩ

)
L −JT

(∫
Ω

AT
E(ξ γ )hAE(ξ γ )dΩ

)
J −JT

(∫
Ω

AT
E(ξ γ )gT AH(ξ γ )dΩ

)
V

VT

(∫
Ω

AT
H(ξ γ )dAεεε (ξ γ )dΩ

)
L −VT

(∫
Ω

AT
H(ξ γ )gAE(ξ γ )dΩ

)
J −VT

(∫
Ω

AT
H(ξ γ )μμμAAAH(ξ γ )dΩ

)
V

⎤
⎥⎥⎥⎦
(79)

where we used the identities in eq. (63).

We will call this element “Hybrid/mixed finite element with collocation” (“HMFEM-
C”). The unlocked nature of this HMFEM-C element that improved the accuracy
of the mechanical displacements in [Dong and Atluri (2011); Bishay and Atluri
(2012)] is expected to improve the accuracy of the electric and magnetic potentials
as well because of the electro-elastic and magneto-elastic couplings of the MEE
materials nature. Note that in developing this element we only used the simple ir-
reducible version of the variational principle used commonly with the primal finite
elements not the multi-field variational principle that always result in the presence
of Lagrangian multiplier which plague the LBB conditions.

3.2.5 On LBB conditions

The hybrid/mixed elements that are based on multi-field variational principles, such
as “HMFEM-AVP”, always involove Lagrangian multipliers (the term

{
σσσ D B

}
in eq. (28)). Babuska (1973) and Brezzi (1974) studied general saddle-point prob-
lems or problems involving Lagrangian multipliers, and established the so-called
LBB conditions. Inability to satisfy LBB conditions in general would plague the
solvability and stability of hybrid/mixed finite element equations. These LBB con-
ditions exist only when using multi-field variational principles, where Lagrangian
multipliers are involved.

The solvability and stability of HMFEM-AVP is thus governed by the LBB condi-
tions. The LBB conditions consists of two conditions, the first is always satisfied
if we have a positive-definite material properties. The second condition is thus the
key condition governing the performance of hybrid/mixed finite element method.
This condition has the following strong physical meaning: “for every non-rigid
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body displacement mode in each element, there should be at least one indepen-
dently assumed strain mode, so that the derived ‘mixed strain energy’ is positive”.
For MEE materials, by “displacement”, we mean the primal variables “displace-
ments and electric and magnetic potentials”, and by “strain”, we mean “strain,
electric and magnetic fields”. This condition is frequently considered as free of
zero-energy/kinematic/spurious modes in a mechanics point of view. An equiva-
lent condition to the second LBB condition is the condition of rank-sufficiency:

rank(G) = ndo f − r (80)

where G is defined as in eq. (62), ndo f is the number of degrees of freedom and r

is the number of rigid-body modes. The necessary condition of selecting at least
ndo f − r independent strain modes and ensure eq. (80) beforehand in the element
formulation level is difficult. Atluri and his co-workers in [Punch and Atluri (1984);
Rubinstein et al. (1984)] used a sophisticated group theory to develop guidelines
for selecting least-order stress interpolations, from which stable and invariant finite
elements satisfying LBB conditions can be formulated. It was the first time for the
symmetric group theory to be utilized to prevent element rank deficiency. How-
ever its application in engineering is limited by the mathematical sophistication
and complexity of group theory. [Pian and Chen (1983)] also proposed to choose
stress interpolations by matching each stress/strain mode to each of the stress/strain
modes derived from non-rigid-body displacement modes to suppress zero-energy
modes, but they did not consider the invariance of the derived elements. No matter
which method one chooses to use, we see that because of LBB conditions, the inde-
pendent fields cannot be arbitrarily chosen. Careful and complicated analysis has
to be conducted in order to ensure the stability of the solution, which is especially
complicated for three-dimensional and higher-order elements.

The new H/M element (“HMFEM-C”) presented here uses the primitive field vari-
ational principle; hence do not involve Lagrangian multipliers, and avoids the LBB
conditions completely. So for the numerical examples to be presented in section 5
of this paper, we will only consider “HMFEM-C” elements.

3.3 Node-wise material properties

When dealing with functionally graded materials, nodal-defined material proper-
ties can be used to provide smooth variation of the material properties as required
by the grading function, and avoid jumps in the material properties between the
elements. Hence, the material properties in each element can be written using the
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shape function representation that allows specifying nodal material properties:

Ci j = ∑
n

C
(n)
i j N

(n)
C (ξ γ), ei j = ∑

n
e
(n)
i j N

(n)
e (ξ γ) , di j = ∑

n
d

(n)
i j N

(n)
d (ξ γ)

hi j = ∑
n

h
(n)
i j N

(n)
h (ξ γ), μi j = ∑

n
μ(n)

i j N
(n)
μ (ξ γ), gi j = ∑

n
g

(n)
i j N

(n)
g (ξ γ)

(81)

In vector and matrix notation:

C = NC(ξ γ)QC, e = Ne(ξ γ)Qe, d = Nd(ξ γ)Qd
h = Nh(ξ γ)Qh, μμμ = Nμμμ(ξ γ)Qμμμ , g = Ng(ξ γ)Qg

(82)

where QC, Qe, Qd, Qh,Qμμμ and Qg are the nodal elastic stiffness, piezoelectric,
piezomagnetic, dielectric, magnetic permeability and magnetoelectric material ma-
trices, and NC(ξ γ), Ne(ξ γ), Nd(ξ γ), Nh(ξ γ), Nμμμ(ξ γ), and Ng(ξ γ) are the associ-
ated shape functions. This representation allows each node in a single element
to have its own material properties and is to be used in the stiffness matrices for
“PFEM”, “HMFEM-AVP” and “HMFEM-C” (eqs. (41), (68) and (79) respec-
tively) when dealing with functionally-graded materials.

3.4 Conditioning of system matrices

The finite element global system of equations to be solved using any of the pre-
viously presented elements is ill-conditioned because the stiffness matrix contains
the material elastic stiffness matrix C in the Kuu part and also contains the dielec-
tric material matrix h in the Kϕϕϕϕϕϕ part. The numerical values of the components of
C are as large as 1010, and that of h are as small as 10−9. Hence the ratio is as large
as 1019, and this makes the global stiffness matrix ill-conditioned. To improve the
conditioning we can use the following matrix instead of that of eq. (7):

⎧⎨
⎩

σ̂
D̂
B̂

⎫⎬
⎭=

⎡
⎣Ĉ êT d̂T

ê −ĥ −ĝT

d̂ −ĝ −μ̂μμ

⎤
⎦
⎧⎨
⎩

εεε
−Ê
−Ĥ

⎫⎬
⎭ (83)

where σ̂i = σi

c̃
, D̂i = Di

ẽ
, B̂i = Bi

d̃
, Êi = Eiẽ

c̃
, Ĥi = Hid̃

c̃
and Ĉi j = Ci j

c̃
,

êi j = ei j

ẽ
, ĥi j = hi j c̃

ẽ2 , d̂i j = di j

d̃
, ĝi j = gi j c̃

ẽd̃
, μ̂i j = μi j c̃

d̃2 .

From eqs. (5) and (6), we also have ϕ̂ = ϕ ẽ

c̃
, ψ̂ = ψ d̃

c̃
.

Here we can select c̃ = C11, ẽ = e33 and d̃ = d33.
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Hence, the stiffness matrix for PFEM, for example, will have the form:

K̂ =

⎡
⎣K̂uu K̂uuuϕϕϕ K̂uuuψψψ

K̂T
uuuϕϕϕ −K̂ϕϕϕϕϕϕ −K̂ϕϕϕψψψ

K̂T
uuuψψψ −K̂T

ϕϕϕψψψ −K̂ψψψψψψ

⎤
⎦

=

⎡
⎢⎢⎢⎣
∫
Ω

BT
u ĈBudΩ

∫
Ω

BT
u êT BϕϕϕdΩ

∫
Ω

BT
u d̂T BψψψdΩ∫

Ω
BT

ϕϕϕ êBudΩ −∫
Ω

BT
ϕϕϕ ĥBϕϕϕdΩ −∫

Ω
BT

ϕϕϕ ĝT BψψψdΩ∫
Ω

BT
ψψψ d̂BudΩ −∫

Ω
BT

ψψψ ĝBϕϕϕdΩ −∫
Ω

BT
ψψψ μ̂BψψψdΩ

⎤
⎥⎥⎥⎦

(84)

And the system to be solved will be:

K̂q̂ = F̂ (85)

where

F̂ =

⎧⎨
⎩

F̂u
F̂ϕϕϕ
0

⎫⎬
⎭ , F̂u =

Fu

c̃
, F̂ϕϕϕ =

Fϕϕϕ

ẽ
(86)

q̂ =
{

qu q̂ϕϕϕ q̂ψψψ
}T and q̂ϕϕϕ = qϕϕϕ ẽ

c̃
, q̂ψψψ = qψψψ d̃

c̃
.

So, we solve the system (85) for q̂ from which we get qu, qϕϕϕ = q̂ϕϕϕ c̃

ẽ
and qψψψ = q̂ψψψ c̃

d̃
.

4 Magnetoelectric (ME) voltage coefficients

A general 2D computer code was developed to deal with magneto-electro-elastic
materials or pure PE and PM layers using the previously presented elements and the
node-wise material properties for functionally graded piezoelectric-piezomagnetic
(PE-PM) composites. In this paper, the main application of the developed finite
element model is to investigate the effect of the layers’ thicknesses (or the volume
fraction of the PE phase, to be defined in eq. (94)) and the mechanical bound-
ary conditions on the magnetoelectric coupling in PE-PM composites. Hence, we
define three configurations or modes for measuring the ME voltage coefficients:

1. Longitudinal or out-of-plane mode: Both the poling direction Pe in the PE
layer and the magnetic bias direction Pm in the PM layer are vertically up-
ward (through the layer thickness) and the applied magnetic field in the PM
layer as well as the measured electric field in the PE layer is directed verti-
cally through the thickness.
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2. Transverse mode: the magnetic bias direction Pm in the PM layer is parallel
to the layer plan, and so is the applied magnetic field. While the poling
direction Pe in the PE layer as well as the measured electric field is vertically
through the thickness.

3. In-plane mode: the magnetic bias direction Pm in the PM layer and the ap-
plied magnetic field as well as the poling direction Pe in the PE layer, and
the measured electric field are all directed in-plane.

These three modes are shown in Figure 2.

Accordingly, we have three ME voltage coefficients, one for each mode. Here
we have to clarify the difference between the ME voltage coefficient and the ho-
mogenized ME voltage coefficient [Chang and Carman (2008)]. The ME voltage
coefficient is defined as:

α ′
i j =

Ēi

H̄ j

(87)

where H̄j is the average applied magnetic field in the piezomagnetic phase while Ēi

is the average electric field in the piezoelectric phase only.

However, in order to compare the ME voltage coefficients with the monolithic sys-
tems, homogenized ME voltage coefficient is used where Ēi is the measured electric
field in the whole sample rather than just the piezoelectric layer. In this study, we
use the homogenized ME voltage coefficient for the out-of plane and transverse
modes where the electric field is measured vertically in the thickness direction.
This is consistent with previous presentations [Bichurin et al. (2003); Chang and
Carman (2008); Pan and Wang (2009); Sladek et al. (2012 a, b)].

The average intensity of the electric field Ēi is defined for the composite plate as:

Ēi =
1
S

∫
S

Ei(x1,x3)dS (88)

where S is the surface of the two-layered composite in the x1 − x3 plane. The
average magnetic field intensity vector is defined similarly. We will either specify a
value for the electric potential on the bottom surface of the composite or on the left
surface of the PE layer. This value is taken as zero here to set these surfaces as the
electric ground of the composite. In the considered samples with te + tm = t � L,
the average electric fields can be assessed as:

Ē3 = ϕ̄low−ϕ̄up

te+tm
= − ϕ̄up

t
V / m,

Ē1 = ϕ̄le f t−ϕ̄right

L
= − ϕ̄right

L
V / m

(89)
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Figure 2: (upper): Longitudinal or out-of-plane mode, (middle): Transverse mode,
(lower): In-plane mode. (polling and magnetic bias directions are indicated by the
red arrows beside each layer)

where ϕ̄low and ϕ̄le f t are the specified electric potential at the bottom surface of the
whole composite and on the left surface of the PE layer only, while ϕ̄up and ϕ̄right

are the average electric potential at the top surface of the whole composite and
on the right surface of the PE layer only. te, tm and L are the PE and PM layer
thicknesses, and the length of the composite. t = te + tm is the total thickness of the
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composite. ϕ̄low = ϕ̄le f t = 0.

For a constant magnetic field, H̄3, applied vertically in the PM layer, the homoge-
nized out-of-plane magnetoelectric (ME) voltage coefficient is defined as:

α ′
33 =

Ē3

H̄3
= − ϕ̄up

H̄3t
V / A (90)

For a constant magnetic field, H̄1, applied horizontally in the PM layer, the homog-
enized transverse magnetoelectric (ME) voltage coefficient is defined as:

α ′
31 =

Ē3

H̄1
= − ϕ̄up

H̄1t
V / A (91)

and finally, the in-plane magnetoelectric (ME) voltage coefficient is written as:

α ′
11 = − Ē1

H̄1
=

ϕ̄right

H̄1L
V / A (92)

(The negative sign is used to keep α ′
11 positive).

In order to check the effect of the layers’ thicknesses on the ME voltage coeffi-
cients, we define Vf , the volume fraction of the piezoelectric phase in the PE-PM
composite as:

Vf =
te

te + tm
=

te

t
(93)

In the numerical examples to be presented in the next section, the total thickness
of composite, t = te + tm, is kept constant, while the volume fraction Vf is changed
from 0 (pure piezomagnetic phase; α ′

33 = α ′
31 = α ′

11 = 0 in this case) to 1 (pure
piezoelectric phase; α ′

33 = α ′
31 = α ′

11 = 0 in this case as well) and the three ME
voltage coefficients are calculated.

To apply constant magnetic field, H̄3, in the PM layer, we specify a value for the
magnetic potential on the bottom surface of the composite, ψ̄low, and we take the
top surface of the composite to be the magnetic ground (ψ̄up = 0). Using the defi-
nition of the average vertical magnetic field:

H̄3 =
ψ̄low − ψ̄up

tm
=

ψ̄low

tm
A / m, (94)

we get the prescribed magnetic potential on the lower boundary, for a fixed value
of H̄3, as a function of Vf :

ψ̄low = H̄3t (1−Vf ) A (95)
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Similarly, to apply constant magnetic field, H̄1, in the PM layer, we specify a value
for the magnetic potential on the left surface of the composite, ψ̄le f t , and we take
the right surface of the composite to be the magnetic ground (ψ̄right = 0). Then the
average horizontal magnetic field is:

H̄1 =
ψ̄le f t − ψ̄right

L
=

ψ̄le f t

L
A / m (96)

The prescribed magnetic potential on the right boundary, ψ̄le f t , is not a function of
Vf and can be obtained directly from eq. (96).

The electric and magnetic essential BCs for the three modes of the ME voltage
coefficient (out-of-plane, transverse and in-plane) are shown in Figure 3. The top
surface of the PM layer and the bottom surface of the PE layer are perfectly bonded
and both magnetic flux and electrical displacements are unknown there.

5 Numerical experiments and results

Since the HMFEM-AVP element is plagued by LBB conditions and less efficient
than HMFEM-C, the latter only will be used in the numerical experiments. These
HMFEM-C elements proved superior performance over the primal elements espe-
cially when the structure is loaded in bending or shear.

In this section, in order to validate our developed computer code and check the
performance of the new magneto-electro-elastic hybrid/mixed finite elements, we
consider the patch test first, and then we compare the accuracy of the developed
HMFEM-C element with that of the PFEM in a problem of a cantilevered MEE
beam subjected to end shear load. In these experiments, we calculate the error rel-
ative to the results of the analytical solutions in [Jiang and Ding (2004)]. Using
the developed and validated code, we present some numerical experiments on bi-
layered piezoelectric-piezomangetic composites with/without functionally graded
layers, and single-layer functionally graded magneto-electro-elastic material with
pure piezomangetic properties at its bottom surface and pure piezoelectric proper-
ties at its top surface. Several mechanical boundary conditions will be considered.
Magnetic as well as mechanical loads are applied. The effect of the volume frac-
tion of the piezoelectric phase on the various magnetoelectric (ME) voltage coeffi-
cients is investigated as well as the effect of the grading functions in the function-
ally graded composites. The material used in the code validation examples is the
magneto-electro-elastic material considered in the paper of [Jiang and Ding (2004)]
whose properties are shown in Table 1 with plane stress assumption. While in the
other numerical experiments, the piezoelectric material used is PZT-5A while the
piezomagnetic material is CoFe2O4. The material constants for both, with plane
strain assumption, are presented in Table 1 as well.
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Figure 3: The considered electric and magnetic BCs for the three modes of the ME
voltage coefficient: (upper) out-of-plane, (middle) transverse, (lower) in-plane

5.1 Code validation

5.1.1 Patch test

Consider a patch of a rectangular shape as shown in Figure 4. The body is fixed at
its left edge and a uniformly distributed load of magnitude P is applied on its right
edge. The middle point in the left edge is considered as the electric and magnetic
ground. Plane stress assumption is used. The material properties are that presented
in Table 1 as MEE (Jiang). Here we select L = 0.3 m, W = 0.15 m, and P = 500 Pa.

We compare the finite element results at point “A” (the middle point on the upper
edge) with that of the analytical solution presented in [Jiang and Ding (2004)]. The
analytical solution at point “A” is: u1 = 0.6016 × 10−8m, u3 =−0.1130 × 10−8m,
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Table 1: Material constants for PZT-5A piezoelectric material (plane strain),
CoFe2O4 piezomagnetic material (plane strain) and MEE material (plane stress)
used by Jaing and Ding (2004) [Ci j in 109 Pa, ei j in C/m2, di j in N/Am, hi j in 10−8

C/Vm, gi j in 10−12 Ns/VC, and μi j in 10−4 Ns2/C2]

Material C11 C13 C33 C44 e15 e31 e33 h11

PZT-5A 99.2 50.778 86.859 21.1 12.332 -7.209 15.118 1.53
CoFe2O4 286 170.5 269.5 45.3 0 0 0 -

MEE (Jiang) 130.28 41.819 125.35 43 11.6 -2.359 20.6675 1.12
Material h33 d15 d31 d33 μ11 μ33 g11 g33

PZT-5A 1.5 0 0 0 - - 0 0
CoFe2O4 - 550 580.3 699.7 5.90 1.57 0 0

MEE (Jiang) 1.2717 550 311.125 427.029 0.05 0.1 5 -1.5378

Figure 4: The considered patch test

ϕ = −2.5082V, and ψ = 0.0604 A. The finite element mesh considered here is 2
× 4 distorted elements as shown in the figure. The percentage error in the different
variables for the two considered element types is presented in Table 2.

Table 2: Error percent for the different variables at point “A” in the constant stress
patch test

u1 u3 ϕ ψ
PFEM -0.1237 × 10−12 0 -0.0531 × 10−12 -0.3676 × 10−12

HMFEM-C 0.0784 × 10−11 0.3805 × 10−11 0.0691 × 10−11 -0.0356 × 10−11
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The error at all of the nodes defined by:

Error % =
‖q−qexact‖
‖qexact‖ ×100 (97)

for the two considered element types is: 1.7948 × 10−13 for PFEM and 5.2639
× 10−13 for HMFEM-C. It is clear that the error is very small for both elements;
hence both element types pass the constant stress patch test.

5.1.2 Cantilever beam with end shear load

Jiang and Ding (2004) presented the analytical solutions of 2D magneto-electro-
elastic beams with different loading and boundary conditions by expressing all the
variables in terms of four harmonic displacement functions. Here we consider the
problem of a cantilever beam subjected to end shear as shown in Figure 5. The
electric and magnetic grounds are selected to be the middle point of the left edge.
The geometric properties of the beam are: length L = 0.3 m, width W = 0.02 m,
while the material properties are that presented in Table 1 as MEE (Jiang). Plane
stress assumption is used. The applied shear load P = 50 N.

Figure 5: Cantilever beam subjected to end shear force

The analytical solution at point “A” is: u1 = −2.0281 × 10−7m, u3 = 1.6934 ×
10−6m, ϕ = 7.1244V, and ψ = 0.2665 A, Meshing the body using 2 × 4, 4 × 8
and 6 × 12 elements, we get the results shown in Table 3 for the error percentage
in primal variables at point “A” for the PFEM and HMFEM-C.

It is very clear that HMFEM-C is much more accurate than PFEM, not only in
the mechanical displacements, but also in the electric and magnetic potentials. For
HMFEM-C, with 4 elements in the width direction, it is only 8 elements required
in the length direction to get error percent less than 1 %. However for the PFEM
elements, even with 60 elements in the length direction, we cannot get this low
error percentage.
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Table 3: Error percentage at point “A”

Mesh 2 × 4 4 × 8 6 × 12

PFEM

u1 82.9209 54.8028 34.9779
u3 83.1705 54.9311 35.0154
ϕ 43.0648 28.5710 18.2948
ψ 27.8488 18.2948 12.2599

HMFEM-C

u1 1.0306 0.1462 0.0323
u3 3.4236 0.6413 0.1145
ϕ 3.1727 0.5268 0.1583
ψ 1.9288 0.0917 0.0549

5.2 Bi-layered piezoelectric-piezomangetic composites

In dealing with PE-PM and functionally graded PE-PM composites in this section
and the next two sections, four mechanical boundary condition cases are consid-
ered. These BC cases are shown in Figure 6. BC1 is a composite with its bottom
surface totally clamped, while in BC2 the bottom surface is fixed only in the vertical
direction (the horizontal displacement is zero only at the lower left edge). BC3 is a
composite with its left surface fixed only in the horizontal direction, while BC4 has
the lower left edge totally fixed, and the upper left edge is allowed to move in the
vertical direction only (so the mechanical rigid body motions are prevented). All
other surfaces are traction free with vanishing electric displacement and magnetic
induction.

The effect of applying mechanical loads in addition to the applied magnetic field
will also be investigated. The considered load cases are as follows: for all BCs,
a uniformly distributed stress applied on the top surface of the composite is con-
sidered, while only for BC3 and BC4, a uniformly distributed stress, concentrated
shear and concentrated moment applied on the right surface are also considered.
All these cases are shown in Figure 7.

The following geometrical values for the two-layered composite are considered in
the numerical analysis: lengthL = 16 mm, and total thickness of t = te +tm = 2mm.
For the upper layer with pure piezoelectric properties we have considered PZT-5A
material, while the lower layer is a pure piezomagnetic layer having the properties
of CoFe2O4 material. The material properties are shown in Table 1.

A magnetic field, H̄3 = −100 A / m, is applied in the PM layer for the out-of-plane
mode, hence; the specified magnetic potential at the bottom surface is calculated
through equation (95), ψ̄ = ψ̄low = H̄3t (1−Vf ) = −0.2(1−Vf ) A. Similarly, for
the transverse and in-plane modes, a magnetic field, H̄1 = −100 A / m, is applied
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Figure 6: The considered mechanical BCs: (upper left) BC1: Clamped lower sur-
face, (upper right) BC2: fixed lower surface, (lower left) BC3: fixed left surface,
(lower right) BC4: only 2 points fixed on the left surface

in the PM layer and hence the prescribed magnetic potential at the right surface is
calculated through equation (96), ψ̄ = ψ̄le f t = H̄1L = −1.6 A.

A finite element mesh of 8 HMFEM-C elements in the thickness direction and 96
elements in the length direction is used. The results are verified with the results
presented in [Sladek et al. (2012 a,b)]. The average electric potential on the upper
surface of the PE layer, ϕ̄up, is calculated for the out-of-plane and transverse modes,
and on the right surface of the PE layer, ϕ̄right , for the in-plane mode. Then, the
three ME voltage coefficients are calculated using eqs. (90) to (92).

When only magnetic loading is applied in the PM layer without any mechanical
loads, the variation of the three ME voltage coefficients as a function of the volume
fraction of the piezoelectric phase is shown in Figure 8 for the four considered
boundary conditions (illustrated in Figure 6).
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Figure 7: The considered applied mechanical loads: (upper) uniformly distributed
load on the top surface for all BCs, (lower) uniformly distributed load, concentrated
shear and concentrated moment on the right surface, only for BCs 3 and 4

It can be seen that: (1) for all the considered BCs, the in-plane ME voltage coeffi-
cient α ′

11 is the largest, followed by the transverse, α ′
31, then the out-of-plane ME

voltage coefficient, α ′
33, (2) all the three ME voltage coefficients for BC2 (fixed

bottom surface) are significantly larger than that of BC1 (clamped bottom surface),
and the transverse and in-plane coefficients for BC3 are slightly higher than that of
BC4, (3) For BC1, the peak of all the coefficients occurs when the volume fraction
is approximately 0.7, while it is at approximately 0.4 for BC2, (4) double-humped
curve appears for BC3 and BC4 where there is traction-free or near traction-free
BCs; this was also predicted in the analytical model of [Petrov and Srinivasan
(2008)] and the FE model of [Pan and Wang (2009)]. The double-humped curve
is due to the fact that the strain produced consists of two components: longitudinal
and flexural. In the absence of flexural strain, the maximum ME coefficient occurs
at V f ≈ 0.4. Since the flexural strain is of opposite sign relative to the longitudinal
strain, the two types of strains combine to produce suppression of the ME voltage
coefficients at V f ≈ 0.4, and double maximum in the ME coefficients at V f ≈ 0.15,
0.75.

When the magnetic loading is combined with uniformly distributed mechanical
stress on the upper surface as in Figure 7 (upper), we define a non-dimensional
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Figure 8: The three ME voltage coefficient as a function of the volume fraction for:
BC1 (upper left), BC2 (upper right), BC3 (lower left), and BC4 (lower right).

quantity χm:

χm =
σ0

d̃H̃
(98)

where d̃ = d33 and H̃ =

{
|H̄3| forout - of - plane mode
|H̄1| for transverse and in - plane modes

.

Using V f = 0.5, we calculate the three ME voltage coefficients as a function of χm.
Since the magnetic field, H̃, is constant, increasing χm is equivalent to increasing
the applied load. Applying uniformly distributed stress on the top surface, the effect
of varying the non-dimensional parameter χm on the three ME voltage coefficients
for BC1 and BC2 cases is shown in Figure 9, while Figure 10 shows the effect
of varying χm on the three ME voltage coefficients for BC3 and BC4 cases with
uniformly distributed stress applied on the right surface.

It can be seen that the applied mechanical stress enhances all the ME voltage coef-
ficients. Also note that when the stress is applied on the upper surface for BC1 and
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Figure 9: Effect of the non-dimensional parameter χm on the three ME voltage
coefficients for uniformly distributed stress on the top surface with Vf = 0.5: (left):
BC1, (right): BC2

Figure 10: Effect of the non-dimensional parameter χm on the three ME voltage
coefficients for uniformly distributed stress on the right surface with Vf = 0.5: (left):
BC3, (right): BC4

BC2, the out-of-plane and the transverse ME coefficients are enhanced more than
the in-plane coefficient (since they have larger slope) and at some values of χm ,
or equivalently σ0, the values of the out-of-plane and transverse ME coefficients
exceeds that of the in-plane coefficient. This is expected since the load is applied
out-of-plane. However, with BC3 and BC4, when the uniform stress is applied on
the right surface, the in-plane ME coefficient is enhanced more than the other two
ME voltage coefficients. This is also expected since the load is applied in-plane.

Now we investigate the effect of subjecting the composite to bending-like loads;
this is not presented in any published article. We will only consider BC3 and BC4
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for these calculations. The non-dimensional parameter χm is defined here as:

χm =

⎧⎪⎨
⎪⎩

σ0
d̃H̃

×102 for σ0 in thehorizontaldirection
P

d̃H̃t
×10 for P appliedontherightsurface

M

d̃H̃tL
×102 for M appliedontherightsurface

(99)

Figure 11: Effect of the non-dimensional parameter χm on the three ME voltage
coefficients for uniformly distributed stress on the top surface with Vf = 0.5: (left):
BC3, (right): BC4

Figure 12: Effect of the non-dimensional parameter χm on the three ME voltage
coefficients with Vf = 0.5 for BC3 with (left): end shear load, (right): end moment
load on the right surface

Figure 11 shows the effect of varying χm on the ME voltage coefficients with V f =
0.5 and uniformly distributed stress directed upwards applied on the upper surface
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of the composite, while Figure 12 shows the cases of vertically upward concen-
trated shear force and anticlockwise bending moment applied on the right surface.
Figure 12 is only for BC3 since the results of BC4 are very similar to that of BC3
for these cases.

The applied bending mechanical loads, which are calculated from eq. (99), highly
enhance the ME voltage coefficients even more than the tensile loads in Figure 9
and Figure 10 (note the factors 10 and 102 in calculating the applied bending loads
in eq. (99) to recognize that Figure 11 and Figure 12 show the trend for only small
applied bending loads). It can also be seen that the in-plane ME voltage coefficient
increases with larger slope.

In all the previous calculations, care was taken not to allow the generated stresses in
the composite exceed the material yield strength (which is in the range of 32MPa
for PZT-5A). No Experimental results are published with combined mechanical
and magnetic loadings. Experimental testing is required to verify these results.

5.3 Bi-layered piezoelectric-piezomagnetic composites with functionally-graded
layers

In this set of computational experiments we make one of the two layers function-
ally graded and show the effect of the different grading functions on the ME voltage
coefficients. The functions used to grade all the material properties of the piezo-
electric and piezomagnetic layers in x3-direction are:

fi j(x) = f 0
i j exp

[
nE

(
x3−x3l(PE)

te

)]
for the PE layer

fi j(x) = f 0
i j exp

[
nM

(
x3−x3l(PM)

tm

)]
for the PM layer

(100)

where fi j(x) is the material property at point x, f 0
i j is the material properties of

PZT-5A or CoFe2O4, x3l(PE) and x3l(PM) are the x3-coordinates of the lower surface
of the PE and PM layers respectively. In our analysis, we use different values of
the exponents nE and nM. Note that if nE or nM is positive, then the values of the
material properties are getting larger as we go from the lower to the upper surfaces
of the PE or PM layer (the values at the upper surface is 2.7183 times that at the
lower surface when nE or nM= 1), while if nE or nM is negative, then the material is
getting softer as we go from the lower to the upper surfaces.

For the clamped BC case (BC1), and equal thicknesses of both layers (V f = 0.5),
the effect of nE and nM on the three ME voltage coefficients is shown in Figure 13.

It can be seen that as nE decreases, and nM increases, the out-of-plane and trans-
verse ME coefficients increase. The largest value of α ′

33 is obtained when nE = −1
and nM = 1. This corresponds to the case where the PE material has lower strength
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at the top surface of the PE layer, with the material properties at the top surface
equal to 0.3679 times that at the bottom surface, and the PM material has higher
strength at the top surface of the PM layer, with the material properties at the top
surface equal to 2.7183 times that at the bottom surface. The in-plane ME coeffi-
cient increases as both nE and nM increase. However the improvement in all of the
ME coefficients is not highly significant.

Figure 13: Clamped BC (BC1) case with Vf = 0.5: the effect of the exponents nE

and nM on the ME voltage coefficients (upper left) α ′
33, (upper right): α ′

31, (lower)
α ′

11

The results of BC2 are presented in Figure 14. The same trends can be observed
but all the ME coefficients are higher as was discussed in the previous section.

5.4 Single-layer functionally graded magneto-electro-elastic material

In this set of numerical experiments we consider only one functionally graded layer
whose properties are changed from pure piezomagnetic at the bottom surface to
pure piezoelectric at the top surface. Figure 15 shows the electric and magnetic
BCs used to simulate these three modes of the ME voltage coefficients for this type
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Figure 14: BC2 case with Vf = 0.5: the effect of the exponents nE and nM on the
ME voltage coefficients (upper left) α ′

33, (upper right): α ′
31, (lower) α ′

11

of composites. ψ̄low in eq. (95) is calculated as: ψ̄low = H̄3t A. The thickness of
the composite to be used in the numerical simulations is 2 mm while the length is
still 16 mm. Magnetic field of -100 A/m is to be applied.

The material properties are graded in x3-direction according to the following rela-
tion:

fi j(x) = f B
i j +( f T

i j − f B
i j)
(

x3 − x3l

t

)n

(101)

where fi j(x) is the material property at the point x, f B
i j , f T

i j are the material prop-
erties of CoFe2O4 and PZT-5A respectively, x3l is the x3-coordinate of the lower
surface of the composite.

The effect of varying the exponent n on the out-of-plane and transverse ME voltage
coefficients for BC1 and BC2 is presented in Figure 16.

One can observe that the maximum ME voltage coefficient values are at the expo-
nent value of about 0.5. The transverse ME coefficient α ′

31 is significantly larger
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Figure 15: The electric and magnetic BCs for the three modes of the ME voltage
coefficient in the single layer functionally graded magneto-electro-elastic material:
(upper) out-of-plane, (middle) transverse, (lower) in-plane

than the out-of-plane ME coefficient α ′
33 (about 5 times). We can also see that

different mechanical boundary conditions on the bottom surface of the FGM plate
have only slight influence on the homogenized ME coefficients. The peak value of
the out-of-plane ME coefficient is slightly larger for the clamped condition (BC1)
than in the fixed BC case (BC2).

Similar to the case of the bi-layered PE-PM composites with pure constituents pre-
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Figure 16: Effect of the exponent n on the out-of-plane and transverse ME voltage
coefficients for the clamped BC1 case (left) and fixed BC2 case (right)

sented in subsection 5.2, combining mechanical loads with the applied magnetic
loads enhances the ME voltage coefficients of PE-PM composites with function-
ally graded layers and single-layered functionally graded MEE materials.

6 Conclusions

HMFEM-C element developed in this paper based on the primal variational princi-
ple for modeling MEE materials proved to be significantly more accurate than the
primal finite element. Using a validated computer code for modeling MEE materi-
als, bi-layer PE-PM composites are analyzed and it was shown that: (1) for all the
considered BCs, the in-plane ME voltage coefficient α ′

11 is the largest, followed
by the transverse, α ′

31, then the out-of-plane ME voltage coefficient, α ′
33, (2) all the

three ME voltage coefficients for BC2 (bottom surface fixed in the vertical direction
only) are significantly larger than that of BC1 (totally clamped bottom surface), (3)
for BC1, the peak of all the coefficients occurs when the volume fraction is ap-
proximately 0.7, while it is at approximately 0.4 for BC2. Double-humped curve
appears for BC3 and BC4 where there is traction-free or near traction-free BCs, (4)
combining the applied magnetic loads with mechanical loads generally enhances
the ME voltage coefficients, (5) bending loads can highly enhance the ME voltage
coefficients even more than tensile loads.

Using node-wise material properties in the finite element is more suitable in mod-
eling FGM than the element-wise material properties used with the conventional
finite elements. Analyzing bi-layered PE-PM composites with the material prop-
erties, of one or both of the layers, graded exponentially, it was concluded that
grading the PE layer so that its properties are weaker on its top surface while grad-
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ing the PM layer so that its properties are stronger on its top surface enhances the
out-of-plane and transverse modes, while we need stronger properties on the top
surface of the PE and PM layers in order to get the highest in-plane ME voltage
coefficient.

It follows from the numerical analyses of single-layer functionally graded magneto-
electro-elastic material that optimal gradation is for exponent n = 0.5 in power-law
gradient composites with ferromagnetic and ferroelectric phases. It corresponds to
the case where there is a significant material gradation close to the bottom surface
with pure piezomagnetic properties.

The electric potential in the PE layer is induced by the magnetic potential in the
PM layer. The induced electric field is not uniform on the top surface of the PE
layer. Therefore, the magnetoelectric coefficient is also not uniform. The presented
ME voltage coefficients correspond to the average value of the induced electric
potential at the top of the PE layer. Some results considered in the paper need to be
experimentally verified.
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