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Abstract Conceptually simple and computationally most
efficient polygonal computational grains with voids/inclu-
sions are proposed for the direct numerical simulation of the
micromechanics of piezoelectric composite/porous materi-
als with non-symmetrical arrangement of voids/inclusions.
These are named “Multi-Physics Computational Grains”
(MPCGs) because each “mathematical grain” is geometri-
cally similar to the irregular shapes of the physical grains of
the material in the micro-scale. So each MPCG element rep-
resents a grain of the matrix of the composite and can include
a pore or an inclusion. MPCG is based on assuming inde-
pendent displacements and electric-potentials in each cell.
The trial solutions in each MPCG do not need to satisfy the
governing differential equations, however, they are still com-
plete, and can efficiently model concentration of electric and
mechanical fields. MPCG can be used to model any gener-
ally anisotropic material as well as nonlinear problems. The
essential idea can also be easily applied to accurately solve
other multi-physical problems, such as complex thermal-
electro-magnetic-mechanical materials modeling. Several
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examples are presented to show the capabilities of the pro-
posed MPCGs and their accuracy.
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1 Introduction

Piezoelectric materials, together with the corresponding
sensing and actuating devices, which are featured with the
coupled electromechanical behaviors, have experienced con-
tinuously growing applications within manufacturing, auto-
motive and aerospace engineering, medical instruments,
information and telecommunication, among many other civil
and military industries. In a market report by Acmite Market
Intelligence [1] in 2010, the global demand on piezoelec-
tric devices was valued at approximately US$74.8 billion in
2010, and has been healthily increasing even in the global
economic downturns.

Monolithic piezoelectric ceramics and piezoelectric poly-
mers have their own limitations, such as high brittleness,
low strength, high weight, undesirable acoustic impedance,
etc. Piezoelectric composites have therefore been studied and
developed in the past two decades, by exploring the advan-
tageous behaviors of both functional piezoelectric materials
and load-bearing materials such as ceramics, polymers, met-
als, etc. Light-weight, easily-shaped, and relatively strong
piezoelectric composites have found promising applications
in various sensors, actuators, and other smart devices. There-
fore, a thorough understanding of the global and local behav-
iors of piezoelectric materials and devices, from both top—
down and bottom—up approaches has great practical values
and has attracted much interest from many scholars.
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One of the most basic problems is to determine the electro-
mechanical properties of the composite material, given the
geometry, distribution, volume fraction and electromechan-
ical properties of each constituent material. Besides experi-
mental methods, semi-analytical methods have been devel-
oped in the past two decades to predict the effective material
coefficients, such as: piezoelectric Hashin—Shtrikman type of
bounds [2], and dilute, self-consistent, Mori—Tanaka, Green’s
functions methods [3—6], based on an Eshelby type of solu-
tion in an infinite medium. Several studies have also applied
simple finite element models (FEM) to study the behavior of
a unit-cell of piezoelectric composite in order to predict the
overall material coefficients, see [7-11].

It is also of great interest to understand the local behav-
ior of piezoelectric composite materials and structures. On
one hand, stress concentration in the local scale is one pos-
sible major factor that can cause damage of the material,
especially for the brittle piezoelectric constituents which are
mostly used as fibers or particles buried in polymer matrices.
On the other hand, the local stress and electric-displacement
fields have direct effects on the performance of various
multi-functional smart devices. Among a few studies, Kim
et al. [12] studied the multi-scale response of smart sand-
wich composites and the monitoring capabilities of piezoce-
ramic wafers. Cook and Vel [13] developed a multi-scale
model to study the macro-scale and micro-scale fields of
laminate plates with piezoelectric composite actuators. Keip
and Schroder [14,15] developed a two-scale homogenization
approach and implemented it into a so-called FE2—method
which allows for the computation of macroscopic boundary
value problems in consideration of microscopic representa-
tive volume elements.

All the aforementioned methods are mostly oversimpli-
fied, and difficult to implement. For example, semi-analytical
methods use Eshelby type of solution in an infinite domain,
and cannot account for complex topology of microstructure.
It is also very difficult for semi-analytical methods to study
the local mechanical and electric fields. On the other hand,
although simple FEM can model both the global as well as
the local behaviors of composite materials and structures, it
is very inefficient and requires significantly large times and
resources for computing as well as human-labor in gener-
ating a complex mesh. For this reason, most simple FEM
analyses in the literature use a simple unit-cell with only
one inclusion, which oversimplifies the complicated mater-
ial microstructure.

For pure structural applications, an efficient and highly
accurate tool for modeling the micromechanical behaviors
of porous and composite materials was developed by Dong
and Atluri [16-18] named as Trefftz Computational Grains
(TCGs). Trefftz Computational Grains are featured with a
complete Trefftz trial displacement field in each grain (which
satisfies the governing differential equations a-priori), and a
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polynomial trial function on the grain boundaries. Because
of the complete Trefftz trial functions, TCGs can not only
accurately compute the overall stiffness and strength of the
material, but can also easily compute the local stress/strain
concentrations. The human labor of generating a compatible
very fine FEM mesh is also saved, because each TCG can
represent a grain of the material in the most natural way.

For some special cases of coupled electromechanical
problems, the complete Trefftz trial functions can still be
found. Bishay and Atluri presented Trefftz-Lekhnitsakii
Grains (TLGs) [19] and Multi-region Trefftz Collocation
Grains (MTCGs) [20] for modeling porous and compos-
ite piezoelectric materials using Lekhnitskii’s formulation.
Another example is the complicated general solution of trans-
versely isotropic piezoelectricity, see [21] for details. How-
ever, for general anisotropic electro-mechanical problems,
finding a complete Trefftz trial function, under the condi-
tion of possible body force and charges, initial strains and
electric-fields, as well as inertia, will be very difficult, if
not impossible. In this study, multi-physics computational
grains (MPCGs) are proposed to model the micromechanics
of piezoelectric composites. Similar to TCGs developed in
[16-19], an MPCG element represents a grain of the com-
posite as in Fig. 1, which can include a matrix material, an
inclusion material or a pore. Independent displacements and
electric potentials are also assumed in each grain. Quite dif-
ferently from TCGs, the trial solutions in each MPCG do not
need to satisfy the governing differential equations. However,
the trial solutions in each MPCG are still complete, and can
efficiently model concentration of electric and mechanical
fields. MPCGs are conceptually simpler than TCGs, and can
be used to model any generally anisotropic as well as non-
linear problems. The nonlinear switching phenomena in fer-
roelectric materials were modeled by Bishay and Atluri [22]
using 2D and 3D multi-physics computational grains based
on radial-basis-functions (RBFs). These switching phenom-
ena in grains with embedded inclusions or voids will be
addressed by the authors in a future study. The essential idea
of MPCGs can also be easily applied to accurately solve other
multi-physical problems, such as complex thermal-electro-
magneto-mechanical material modeling.

The paper is organized as follows: the proposed theoret-
ical and algorithmic formulation of MPCGs is presented in
Sects. 2 and 3, numerical results are given in Sect. 4 and a
summary is given in Sect. 5.

2 New hybrid variational principle for heterogeneous
piezoelectricity

Consider a solid piezoelectric body €2 undergoing infinitesi-
mal deformation. Cartesian coordinates x; identify material
particles in the solid. o}, &;;, u; are components of stress
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tensor, strain tensor and displacement vector respectively.
D;, E;, ¢ represent electric displacement, electric field and
electric potential respectively. b; and Q represent body force
and electric charge density in €2. We use () ; to denote par-
tial differentiation with respect to x;. We consider linearized
electromechanical constitutive equations:

oH
[ tj EéjI-I (1)

with the enthalpy defined as:

1 1
H (&ij, —E;) = Ecijklgijskl - EhijEiEj —etijEreij (2)

Thus the governing differential equations can be expressed
in terms of the primitive variables #; and ¢:

oH -
|:8 :| +b;=0inQ 3)
Ui, jyd,;
oH _
|:—] + Q0 =0inQ @)
99, i

where the relations ¢;; = u, j) = %(u,-,j +uj;)and —E; =
@.; were used.

The electromechanical constitutive equation can be writ-
ten as:

0ij = Cijriek — ekij Ek
D; = ejiek + hikEx ©)

or in matrix and vector notation as:

RESIAEE

where C, e and h are the material stiffness tensor written in
matrix form, piezoelectric tensor written in matrix form, and
dielectric matrix respectively. The underline denotes electro-
mechanical (combined mechanical and electrical) fields or
matrices.

We further use iz;, #; to denote the prescribed displacement
at S, and the prescribed traction at S;, respectively. We use
@, o to denote the prescribed electric potential at S, and
the prescribed surface charge density at S,. Moreover, we
consider that the domain €2 is discretized into subdomains (or
grains) ¢ so that 2 = >, Q°. The division of the boundary
of grain e, d2°, according to the boundary conditions leads
to9Q° = S, + 87 +p° = S, + S, + p°, where p¢ represents
the interfaces of subdomains.

Primitive field variational principle, corresponding to the
stationary condition of the following functional, is generally

used to develop primal FEMs:
7T[7 (Mi, (p) = Zﬂ;’
e

w, = / [H (ui ). ¢.) — fiui +GeldQ
Qe

—/f,-ﬁ,-ds+/a)¢ds 7

s¢ S

However, as pointed out in the introduction, simple
FEMs (including those in off-the-shelf commercial pro-
grams) involve extremely large time and resources for com-
putation as well as mesh-generation if we want to model the
microstructure with its embedded inclusions and voids. We
propose to model composite piezoelectric materials using a
new efficient tool named MPCG.

In order to develop MPCGs, we consider independently
assumed complete functions u; and ¢ in each subdomain (or
grain) ¢, and introduce additional inter-grain compatible
fields #; and ¢ which satisfy displacement continuity and
essential boundary conditions a-priori. Then we can derive
the following hybrid variational principle, which is an exten-
sion of the pure mechanical model in Atluri [23]:

7 (uiy @, i, §) = p 7,
e

i Z/[H (i jy» 9.0) = fini + Go)dQ

Qe
—/17,'11,' +/5)¢d5
S7 S&

—/ti(ui—ﬁ,-)dS—{—/w((p—gZ))dS
Qe Q¢

®)

where t; w = —ni% and n; is a unit vector
N

normal to the grain boundary.

Now we consider that an inclusion or a void €2¢ is present
inside each Q¢, which satisfies Q¢ C €, 9Q¢ N IQ° =
). We denote the matrix material as ¢, such that Qf, =
Q6 —Qf, 0Qy, = 0Q° + 0Q¢. Detailed illustration of the
geometry can be found in Fig. 1 (left).

We use u]", ¢ and uy, ¢¢ to denote fields in €25, and €2,
respectively. Linear inter-grain compatible fields i7", ¢™ are
assumed at the outer boundary 9€2¢. Parabolic inter-element
compatible fields i, ¢¢ are assumed at the matrix-inclusion
interface 9€2¢ [(See Fig. 1 (right)]. If the grain contains a void
instead of an inclusion, uf ¢° do not exist.

We deal with this configuration by constructing finite ele-
ment equations for the inclusion material alone as a homo-
geneous (simply-connected) domain with nodes along the
inclusion boundary as shown in Fig. 2 (right), and finite ele-
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Fig. 1 A 2D MPCG containing 4
an inclusion or a void
(independent trial displacement
fields are used)

Fig. 2 MPCG matrix and inclusion domains, boundaries and boundary
nodes

ment equations for the matrix material alone as a doubly-
connected domain with nodes on both outer and inner bound-
aries [(Fig. 2 (left)]. Special trial functions are needed in
dealing with the doubly-connected domain and are presented
in the next section. Figure 2 shows an inclusion with eight
boundary nodes which are also among the nodes of the matrix
material together with the outer element (grain) nodes.

Assembling the matrix element and the inclusion element
in the same way we assemble any two finite elements will
assure the stress and electric displacement reciprocity as well
as the continuity of the primal fields along the inclusion
boundaries and results in an element (a grain) that describe
the composite. If a grain contains a void instead of an inclu-
sion, there is no need for this assembly.

3 Independent trial mechanical and electric fields, and
the formulation of MPCG

It is clear that the boundary fields, uf, ¢, u}", ", should
all be interpolated using node-based polynomial shape func-
tions. On the other hand, the trial mechanical and elec-
trical fields inside the matrix and inclusion materials, i.e.
ul', @™, us, ¢, should be carefully selected. In the follow-
ing discussion, we only focus on displacements because the
electric potential trial functions are selected similarly.
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Q8 =Q° —QF, 80, =0 + QY

We consider a 2D MPCG with an inclusion for example
(see Fig. 1). Because the inclusion is a simply-connected
domain, it is clear that the trial displacement field uf can be
represented as:

u§ = £ (R) g (0)

FE(R) =ap+a1R+arR>...

g€ (0)=PBo+B1cosO+pB;sinbh + B3 cos26 + B4sin26...
)

where (R, 0) are the polar coordinates (see Figs. 1, 2). On the
other hand, because the matrix material is a doubly connected
domain, singular fields are included in the assumption of u!":

ui' = f"(R) g™ (9)

" (R)=y+yR+1»R*.. +y_ 1R +yR 2.

g™ (@)=Ao+ A1 cosO+Aysin@+Azcos20+Aqsin20...
(10

It is obvious that for 3D problems, the displacement field
should be assumed in a form of u; = f (R) g (0)h (¢),
where (R, 6, ¢) are the spherical coordinates. The trial elec-
tric potential can be assumed in a similar fashion.

Using matrix and vector notation, we express the electro-
mechanical displacements as:

i

- u - q <

u” = {q}’"] =N, HQc] = N,qn at 9,
m um . e

u" = o =N, o, in 27,

7C

. [uc - .
i = | o =Nege atd® (11)

and in case there is an inclusion, we also have:

(o uc : e
w=1"_1=NainQ (12)

@

where q and q. are nodal electromechanical displacements
on the outer and inner boundaries respectively, while o, and
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o, are undetermined coefficients. Nm and Nc are shape func-
tions (linear along the outer boundary and parabolic along
the circular void/inclusion boundary), while N,,, and N, are
functions extracted from Eqgs. (10) and (9) respectively.

The secondary fields are derived from the primary fields
and expressed as:

m em : e
g" = = B, o, in Q)
t" = v ]—no’”—nC e" =T,o, at 9Q¢
L o™ - 7= T T=m= T tm¥=m m
C SC : e
& =g [= B.o, in Qf
C tC C C e
t = ol [ = ng“ =nC.e" = T.a, at 982 (13)

where C,, and C,. are the matrices of electromechanical
material properties of the matrix and inclusion respectively,
and

ny0 ny,0 0
n=|0 nyn,0 0
0 0 0 nyn,y

where [n, n,] is the normal unit vector directed away
from boundaries 9€2, or 02¢.

Substituting the trial solutions (11)—(13) into the hybrid
variational principle (8) and ignoring the body force and
the electric charge density, an FEM-type of equation can be
developed for the inclusion as:

1
ﬁmezdém%—dmm+#&%—ﬁ&a®

where

ch/BchchdQ, Gcz/TZchS,

Q¢ e
P, = / TIN.dS, f.= / tN.dS
195 S¢,8¢

Setting the variation of ¢ to zero, we get the FEM equa-
tion as:

57 (S0t 8qc) = dar! [(HC — P, — PNy, + chc]
+8q! (Gla. —£.) =0 (15)
and for arbitrary §o! and 8q!, we get:
a = P +P! —H)"'Geqe = Veqc.
Gloa, =G!'V.q. =K.q. =f. (16)
Similarly for the matrix domain,
oy = (Py +P£ - Hm)_leqm = quma
G = Gy Vil = K@ = £ (17)

where

Hmz/B;gmBmdsz, Gn = / TIN,.dS,
Q¢ 3,

P, = /T};des, f, = / tN,,dS.
9, s¢,8¢

Assembling the matrix and inclusion matrices, we get:

Kot K2 q — f (18)
K,Z;Q Km3 + Kc qc fC
Recognizing that f. = 0, g, can be expressed in terms of
q as:

9 =— K3 +K)'Kl g = Vq (19)

Then we can write the final FEM equation in terms of the
outer boundary nodal electromechanical displacements as:

K1 + Km2V) g =Kq =f (20)

From the development of MPCGs, we can clearly see
that the discretization of the domain requires minimal efforts
since each MPCG can represent a physical grain of mate-
rial (irregular polygon) with an inclusion or a void. For a
typical RVE with a few hundred physical material grains,
the meshing using MPCGs can take only few seconds. On
the other hand, mesh generation using FEM takes enormous
time, which makes the study of composite piezoelectric mate-
rials microstructures with conventional FEM very difficult or
impossible.

4 Numerical examples

The formulation described above is programmed using MAT-
LAB in a 64-bit WINDOWS operating system, and executed
on a PC computer equipped with Intel Q8300 2.5GHz CPU,
and 8GB RAM. The properties of the materials used in this
section are listed in Table 1: PZT-4 from two references:
Wang et al. [24] and Wang et al. [25] denoted PZT-4(1) and
PZT-4(2) respectively, PVDF and SiC from [28].

Simple problems that use grains with no voids or inclu-
sions, such as patch test and bending of a meso-scale piezo-
electric panel, can be easily and accurately modeled using
any number of grains (with no voids or inclusions) to mesh
the problem domain, and the error in the whole structure is
less than 1 %. Patch test with any number of grains contain-
ing inclusions having the same material properties as that of
the matrix can also be passed with error less than 1 %.

In the following, we show some numerical examples using
the proposed MPCGs. In the first two subsections we present
a piezoelectric domain with an impermeable circular void
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Table 1 Material properties used in the numerical examples

Property PZT-4(1) PZT-4(2) PVDF SiC particles
C11(GPa) 139 126 3.8 4837
C12(GPa) 77.8 77.8 1.9 99.1
C13(GPa) 74.3 74.3 1.0 99.1
C2(GPa) 139 126 3.2 483.7
C23(GPa) 74.3 74.3 0.9 99.1
C33(GPa) 113 115 12 483.7
C44(GPa) 25.3 25.6 0.7 192.3
Cs5(GPa) 25.3 25.6 0.9 192.3
Ce6(GPa) 30.6 30.6 0.9 192.3
e31(C/m?) —6.98 —52 0.024 0.0
e3(C/m?) —6.98 -52 0.001 0.0
e33(C/m2) 13.84 15.1 —0.027 0.0
e15(C/m?2) 13.44 12.7 0.0 0.0
hi1 (pC/(Vm)?) 6 6.464 7.4 10.0
hy (pC/(Vm)?) 6 6.464 9.3 10.0
h3 (pC/(Vm)?)  5.47 5.622 7.6 10.0

or inclusion under mechanical loading, followed by evalua-
tion of material properties of porous piezoelectric material as
functions of porosity volume fraction. Material properties of
piezoelectric particulate composite (SiC particles in PVDF
matrix) are also determined as functions of particle volume
fraction in the last subsection. Comparisons with other ana-
lytical and computational results are presented whenever pos-
sible.

4.1 Infinite piezoelectric panel with an impermeable
circular void

Consider an infinite piezoelectric plane with a circular void
subjected to vertical mechanical loading in the far field. For
numerical implementations, the infinite domain is truncated

3 ‘ : :
— —6—MPCG
ol — Analytic
& |
B
0 L
-1}
-2

0 10 20 30 40 50 60 70 80 90
6

1X3
!
[T 11 e
I Poling direction

]

Fig. 3 A Finite rectangular domain with a circular void

into a rectangle with length L and width W, as shown in
Fig. 3. The global coordinate system is denoted X; — X3 and
the poling direction is aligned with the global vertical X3
axis (shown in blue in the figure). The material is PZT-4(1)
whose properties are presented in Table 1 and plane strain
assumption is used in this problem. Here we take L = W =
20a, o, = 1Pa .

The discrete extreme error defined in Eq. (21) is 0.0740.

2n

E¢ = max ( |09 (Xi)—t?e(xf)| |D9 (xi)—Dp (xi) )
X; €0Q Omax ’ Dimax

where 5 (x;) and Dy (x;) are the exact solutions at boundary
points x; along the periphery of the void; jn,x and [)max are
respectively the maximum magnitudes of oy (x;) and Dy(x;).

Figures 4 and 5 show the computed circumferential dis-
tributions of oy, Dy, Ep and E, divided by o, using one
MPCQG. Because of symmetry, the figures show the variables
as 0 goes from 0 to 90 degrees. The analytical solution [26]

0.2
—6—MPCG
0.1 — Analytic |
z
= 0 p
2
o
\b@ -0.1
(m]
-0.2
-0.3

10 20 30 40 50 60 70 80 90

0

Fig. 4 Circumferential stress and electric displacement on the periphery of the void
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W _o.02t |—a—E/o, MPCG
- L
© --=-E Analyti
E“’ 003 r/cso nalytic
-0.04¢ |
(eSS
0.0
0O 10 20 30 40 50 60 70 80 90

0

Fig. 5 Circumferential and radial components of electric field on the
periphery of the void

is also included for comparison. Very good agreement can
be seen.

4.2 Piezoelectric panel with circular inclusion

Now consider replacing the void in the previous example
with an inclusion whose properties are given as: C, = uC,,

"0 10 20 30 40 50 60 70 80 90
0

c\lQ -0.01
£
o 4
L. -002 .
L ::::5::';‘:.:' _}l=05
-0.03 —e—u=0.8
+M=2
-0.04 . ; ; : - y . ;
0O 10 20 30 40 50 60 70 80 90

0

where p is a factor that can be varied. © > 1 is equivalent
to an inclusion material with stronger properties than those
of the matrix material (larger stiffness, dielectric and piezo-
electric material constants), while i < 1 is equivalent to an
inclusion with weaker properties. Figure 6 shows the effect of
wonoy/o,, Dg/o,, Eg/o, and E, /o, along the inclusion
periphery.

It can be seen from the figure that the magnitude of the
maximum circumferential stress, electric displacement and
electric field along the inclusion periphery are significantly
affected by the value of u. Also the location of the maxi-
mum circumferential electric displacement and radial electric
field are affected by the value of . As u increases (stronger
inclusion properties), the peak value of the circumferential
stress is significantly decreased. Hence, we conclude that
controlling the material properties of inclusions can result
in preventing high stress concentrations around inclusions.
Variables like p can be used in optimal design of piezoelec-
tric composite microstructures where stress concentrations
around fibers and inclusions are taken into account. This
was not considered in the optimal design of piezoelectric
microstructures presented in many published research papers
such as [27] for instance where topology optimization was
used.

0.08

=z
~~
o
2

o
RS

[==]
a

0 10 20 30 40 50 60 70 80 90
0

~0.005
) -0.01
O
E o015
bo
\\_
- -0.02

~0.025

003L—o T,

0 10 20 30 40 50 60 70 80 90

6

Fig. 6 The effect of u on oy/0,, Dg/o,, Eg/o, and E, /o, along the inclusion periphery
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Fig. 7 Computational models to evaluate the effective properties of: (left) Cf{f and Cgf , (middle) C;gf and Cf’;f , (right) egj;f , eggf and hg’;f
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Fig. 8 Two representative volume elements (RVEs) used in the simulations

4.3 Evaluation of the effective material properties of porous
piezoelectric materials

In this subsection, we determine the material properties of a
porous PZT-4 ceramic sample as functions of porosity vol-
ume fraction using different MPCG samples. The material
properties of non-porous PZT-4 are listed in Table 1 [(denoted
PZT-4(2)]. Three computational models, shown in Fig. 7, are
assumed t?fcalcu}?te th?feffe}ccjt(ive Jg;opertiesf fof the porous
e e 4 e e e

PZT-4: C}y7, C337, Ci3 , e3) s esy and hsy .

The first model ensures that £33 = 0 and E3 = 0 and is
used to calculate C f{f and C f;f as:

Ceff_ﬂ_ fxlthl.dS/W
1 e11 uy/L ’
eff _ 033 Joy=wpp t3-ds/L
cff =B _asWR T 22)
11 uy/L

The second model ensures that e;; = 0 and E3 = 0 and
is used to calculate C?;f , Cgf as:
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-0.04
0% o 0.05
X
ngf _ o33 _ fX3=V‘:/2 t3.ds/L ’
; €33 us/ W
Ceff _ ﬂ: fxl:Ltl.ds/W 23)
B ey us/ W

Finally, the third model ensures that €11 = ¢33 = 0 and is

used to calculate egf , ef];f and h?;f as:

eff = 038 _ Joymwpp t3-ds/L
33 i o ’
gff = o _ Jum /W
13 £ o
off _ D3 Juzwpp Qds/L
Es o/W

Two types of representative volume element (RVE) are
used here as shown in Fig. 8 (the figure shows the case
of VF=20 %): (a) a unit cell grain with a circular void,
(b) five MPCG grains with random circular voids. A con-
straint was used in this mesh in order to prevent the radius
of the void in any grain from exceeding 80% of the distance
between the center of the void and the closest point to it on
the grain’s outer boundary. Plane strain assumption is used
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Fig. 9 Predictions of the effective piezoelectric material properties of PZT-4 as functions of porosity volume fraction (m is the number of grains

used in the simulation)

in this study and the direction of polarization is assumed ver-
tically upward in all grains. The results are compared with
the predictions of Mori-Tanaka’s model [4] presented in [25]
for PZT-4.

Figure 9 shows the predictions of the effective properties
of PZT-4 as functions of porosity volume fraction. The figure
shows very good agreement with the predictions of Mori-
Tanaka’s analytical model.

It should be noted that, with the same number of grains, the
results slightly change as the irregular mesh changes because
the stiffness matrices depend on grain shapes. Increasing the
number of grains and the number of nodes per side in each
grain (i.e., using more than two nodes per side) generally has
the effect of decreasing this effect.

4.4 Evaluation of the effective material properties of
piezoelectric composite material

The effective properties of SiC/PVDF particulate compos-
ite is determined here and compared with other analytical
and computational models. PVDF is an orthotropic, semi-

crystalline polymer which exhibits piezoelectric effects if
subjected to electric field along the X3-axis. The PVDF
polymer is reinforced with spherical SiC particles. Typical
electromechanical properties of PVDF (supplied by NASA
Langley Research Center) and SiC taken from [28] are given
in Table 1. The numerical models used in the previous exam-
ple are also used here to determine the effective mater-
ial properties as functions of particle volume fraction. One
MPCG grain polarized in the vertical direction is used in this
simulation.

Since the particles are spherical, all effective material
properties can be determined using 2D models. Consider-
ing the x; — x3 plane, we can determine the properties:
Ci1, Ci3, C33, €31, €33, h11,and h33, considering the xo) —x3
plane, we can determine the properties: Coz, C23, C33, €32,
e33, hoo, and h33, while considering the x; — x> plane, only
the properties: Ci1, C12, C22, h11, and hyy can be deter-
mined. Note that specifying the electric field in the horizontal
direction, E1, is equivalent to specifying ¢ on the right side
of the model instead of the upper side [(see Fig. 7 (left)]. The
three Young’s moduli Y1, Y», and Y3 can be obtained from
the stiffness matrix constants C;;.

@ Springer
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Fig. 10 Predictions of the effective properties of SiC/PVDF piezoelectric composite as functions of particle volume fraction

Figure 10 presents the predictions of the different effective
material constants as functions of particle volume fraction
and compared with Mori—Tanaka (MT), self consistent (SC),
Finite Element models using ANSYS (with large number
of elements) and Odegard’s proposed models, all presented
in [28].

It can be seen that, using only one MPCG grain, the pro-
posed model gives very accurate predictions compared to
Mori-Tanaka’s analytical model. It is known that the self-
consistent model deviates from Mori—-Tanaka’s model and
gives unrealistic predictions as the volume fraction increases
The proposed grains are much more computationally efficient
as well as numerically more accurate, than the simple finite
element models using ANSYS, and can be used to model
piezo-composites even if the arrangement of particles is not
symmetrical which is the main assumption used with all the
previously mentioned analytical models.

5 Summary and conclusion

A new tool, which is not only mathematically highly accu-
rate but also computationally very efficient, named MPCGs is

@ Springer

proposed to study the micro-electro-mechanical behavior of
composite piezoelectric materials. This method is based on a
new hybrid variational principle, and independently assumed
displacements and electric potentials in each MPCG. Each
MPCG can efficiently model a single physical grain of the
composite material, thus saving a significant time of generat-
ing a complex FEM meshes. MPCGs can also model porous
and composite piezoelectric materials even if the distribution
of voids/inclusions is not symmetrical (which is assumption
used with all unit cell models). Because the trial solutions
are complete but do not satisfy the governing differential
equations a-priori, the formulation is very simple, and can
account for local field concentrations efficiently and accu-
rately. This was illustrated using different examples where
the fields along the void/inclusion periphery were calculated,
and the effective material properties of porous and compos-
ite materials were predicted, and compared with other ana-
lytical and computational models. The proposed MPCGs is
expected to become a very powerful tool for direct numerical
simulations (DNS) of the micro/meso mechanics of compos-
ite piezoelectric materials, and can possibly lead to efficient
multi-scale modeling of piezoelectric devices. The extension
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of the current MPCGs to nonlinear ferroelectric grains with
embedded inclusions/voids to model the temporal evolution
of the microscopic fields in ferroelectric composites will be
pursued in our future study.
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