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Influenced by the need for composites with stronger magneto-electric coupling, we present a novel
numerical method called “Computational Piezo-Grains” (CPGs) for modeling different types of piezo-
electric/piezomagnetic composites in the microscale. The advantage of this method is that the matrix
and the inclusion of a grain can be modeled using only one element in a finite element sense. The
geometric shapes of these computational grains mimic the shapes of grains in the microscale and each
grain may contain an embedded micro-void or micro-inclusion. The material of the matrix or the in-
clusion in any grain could be elastic with no couplings, piezoelectric, or piezomagnetic; thus allowing for
modeling different configurations of piezo-composites. Lekhnitskii formulation is extended to model any
of these composites and is used in the development of these computational grains to express the fields in
the matrix and the inclusion of each computational grain.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

Natural multiferroic single-phase compounds are rare, and their
magnetoelectric (ME) responses are either relatively weak or occur
at temperatures too low for practical applications (Cheong and
Mostovoy, 2007). In contrast, multiferroic composites, which
incorporate ferroelectric and ferri-/ferromagnetic phases, typically
yield giant magnetoelectric coupling response above room tem-
perature, which makes them ready for technological applications
(Ryu et al., 2002). In such composites, the ME coupling effect is a
byproduct property of the composite structure, which is absent in
the individual phases. An electric polarization is induced by a weak
AC magnetic field oscillating in the presence of a DC bias field (this
is called the direct ME effect), and/or a magnetization polarization
appears upon applying an electric field (this is called the converse
ME effect). When a magnetic field is applied to a composite, the
magnetic phase changes its shape magnetostrictively. The strain is
then passed along to the piezoelectric phase, resulting in an electric
polarization. Thus, the ME effect in these composites is extrinsic,
depending on the composite microstructure and coupling
served.
interaction across magneticepiezoelectric interfaces. Microwave
devices, magnetic field sensors, magnetically controlled opto-
electronic devices, spintronics, ME multiple-state memory ele-
ments, heterogeneous read/write memory devices, ME recording
heads and electromagnetic pick-ups are among the suggested
technological applications of the magnetoelectric composites (Nan
et al., 2008). Historical perspectives, status and future of multi-
ferroic magnetoelectric composites are given in a review paper
(Nan et al., 2008).

ME composites could have various connectivity schemes, but
the common connectivity schemes are 0-3etype particulate com-
posites of piezoelectric and magnetic oxide grains, 2-2etype
laminate ceramic composites consisting of piezoelectric and mag-
netic oxide layers, and 1-3etype fiber composites with fibers of one
phase embedded in the matrix of another phase. The effective ME
coefficient depends on details of the composite microstructures,
i.e., component phase properties, volume fraction, grain shape,
phase connectivity, etc.

Remarkable ME effect of particulate multiferroic composites
could be achieved theoretically in composites with a high con-
centration of particulatemagnetic phase, which is well dispersed in
large grains of piezoelectric phase. However, there are some diffi-
culties in designing such ME particle composites that lower the ME
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coefficients compared to the theoretical values, such as (1) forma-
tion of unwanted phases by chemical reaction during the high
temperature sintering process, (2) large thermal expansion
mismatch between piezoelectric and ferrite phases that leads to the
formation of microcracks, (3) porosity that would decrease the ME
effect of bulk composite ceramics (Petrov et al., 2007). (4) Forma-
tion of percolation paths because of the not-well-dispersed
conductive ferrite phase in the piezoelectric phase. This causes
the charges developed in the piezoelectric phase to leak through
this conductive path and hence the polarization of the composite
will be difficult, and the ME properties will be reduced. Actually the
volume fraction of the alloy grains in the piezoelectric matrix is
limited by the percolation problem (Nan et al., 2003).

For accurate and reliable modeling of these multiferroic com-
posites, simple unit cell models will not be useful because the
microstructure could have microcracks, voids and other unwanted
phases, and is sensitive to the distribution of the ferrite phases in the
piezoelectric matrix. Computational methods that can simulate the
whole microstructure with internal details (microcracks, voids,
unwanted inclusions, percolation paths) in a direct numerical
simulation are required. Modeling domains with defects (holes,
inclusions or cracks) using the ordinary finite element method
needs mesh refinement around defects in order to achieve accept-
able results for the gradients offields; hence it is very complex, time-
consuming, and costly. Thus, special methods should be used to
model defects. Trefftz methodswere used tomodelmicrostructures
with defects, using multi-source-point Trefftz method in (Dong and
Atluri, 2012a) for plane elasticity, and Trefftz boundary collocation
method for plane piezoelectricity macromechanics developed by
Sheng et al. (2006), and micromechanics by Bishay et al. (2014a)
based on Lekhnitskii formalism. The boundary element method
was also used by Xu and Rajapakse (1998) to analyze piezoelectric
materials with elliptical holes. Finite elements with elliptical holes,
inclusions or cracks in elastic materials were developed by Zhang
and Katsube (1997), Piltner (1985), and Wang and Qin (2012).
Hybrid-stress elements were also developed by Ghosh and his co-
workers (Ghosh 2011). For piezoelectric materials, Wang et al.
(2004) developed a hybrid finite element with a hole based on
Lekhnitskii formalism, while Cao et al. (2013) developed a hybrid
finite element with defects based on the extended Stroh formalism.
Computational cells or grains for direct numerical micromechanical
simulation (DNMS) of micro/meso structures were developed by
Dong and Atluri (2012b, 2012c, 2012d) for heterogeneous and
functionally graded isotropic elastic composite and porous mate-
rials, and by (Bishay and Atluri, 2014; Bishay et al., 2014b) for
composite and porous piezoelectric materials. In these methods,
each cell models an entire grain of the material, with elastic/rigid
inclusions or voids. Symmetric Galarkin Boundary Element Method
(SGBEM) (Dong and Atluri, 2012e; Dong and Atluri, 2013) was used
for micromechanical modeling of voids, inclusions and cracks in
heterogeneous elasticmaterials. Polygonal and Polyhedral elements
(2D and 3D Voronoi cells) for coupled electro-mechanical problems
without defects were developed by (Ghosh, 2011), by Jayabal and
Menzel (2011, 2012a, 2012b) based on Pian's hybrid stress formu-
lation (Pian, 1964), and by Bishay and Atluri (2012) based on Radial
Basis Functions (RBF). Switching phenomena in ferroelectric mate-
rials were also modeled using these elements in (Sze and Sheng,
2005) and (Bishay and Atluri, 2013).

This paper presents an attempt to micromechanically model
piezoelectric-piezomagnetic composites using a new type of effi-
cient finite elements named “Computational Piezo-Grains” (CPGs).
Each Computational Piezo-Grain (CPG) is composed of a matrix
with/without a void or an inclusion. The shape of each grain is an
irregular polygon to mimic the shapes of grains in the micro-scale.
The material of the matrix and the inclusion could be elastic,
piezoelectric or piezomagnetic. Piezomagnetism, a phenomenon
observed in some antiferromagnetic crystals, is the linear magneto-
mechanical effect analogous to the linear electromechanical effect
of piezoelectricity. It is characterized by a linear coupling between
the system's magnetic polarization and mechanical strain. Piezo-
magnetism differs from its related property of magnetostriction; if
an applied magnetic field is reversed in direction, the produced
strain changes its sign. Additionally, a non-zero piezomagnetic
moment can be produced by mechanical strain alone at zero field.
This is not true of magnetostriction (Cullity, 1971). Magnetostric-
tion and electrostriction are analogous second-order effects. These
higher-order effects can be represented effectively as first-order
when variations in the system parameters are small compared to
the initial values of the parameters (IEEE Std 319-1990, 1991).

Since the sources of magnetic anisotropy (McCaig, 1977) are
different from those of electrical and mechanical anisotropies, in
the proposed formulation we allow the magnetic bias direction to
be different from the poling direction or the axis normal to the
plane of isotropy in transversely isotropic materials. In (Zhai et al.,
2004) the direction of the applied magnetizing field on the ferrite
particles was made different from the poling direction of the
piezoelectric matrix. Actually, in the proposed 2D analysis, any kind
of anisotropy in material properties can be considered.

The paper is organized as follows: Section 2 introduces the
governing equations for piezo-materials, while Section 3 presents
Trefftz-Lekhnitskii formulation for grains with/without elliptical
voids/inclusions. Constructing different types of Computational
Piezo-Grains using different methods is given in Section 4 and
numerical examples are given in Section 5 to verify the formulation
and illustrate the effectiveness of CPGs. Summary and conclusions
are provided in Section 6.
2. Governing equations for magneto-electro-elastic (MEE)
composites

Consider a domain U filled with a general magnetoelectroelastic
(MEE) material with piezoelectric, piezomagnetic and magneto-
electric couplings. On the boundary of the domain, denoted vU, we
can specify mechanical displacements on Su or tractions on St (not
both at any point). Similarly we can specify electric potential on S4
or electric charge per unit area (electric displacement) on SQ. We
can also specify magnetic potential on Sj or magnetic flux density
(magnetic induction) on SB. The whole domain U can be divided
into N regions or grains U ¼PN

e¼1U
e (where each region may

represent a grain in the material). The intersection between the
boundary of grain e, denoted vUe, and Su,St,S4,SQ,Sj and SB are
Seu; S

e
t ; S

e
4; S

e
Q ; S

e
j and SeB, while the intersection with the boundaries

of neighboring grains is denoted Seg . The following relations exist for
these aforementioned boundaries:

vU ¼ Su∪St ¼ S4∪SQ ¼ Sj∪SB
Su∩St ¼ ∅; S4∩SQ ¼ ∅; Sj∩SB ¼ ∅
Seu ¼ Su∩vUe; Set ¼ St∩vUe; etc:

vUe ¼ Seu∪S
e
t∪S

e
g ¼ Se4∪S

e
Q∪S

e
g ¼ Sej∪S

e
B∪S

e
g

(1)

Each grain domain, Ue, may contain a void or an inclusion filling
the domain Ue

c and has a boundary vUe
c such that Ue

c3Ue and
vUe

c∩vU
e ¼ ∅. In this case, the region outside the void/inclusion

domain in grain e is called the matrix domain Ue
m ¼ Ue � Ue

c . Fig. 1
shows one grain (irregular polygonal region in the 2D case) with an
arbitrary void/inclusion. The figure also shows the matrix poling
direction (left) and thematrix magnetic bias direction (right), while
Fig. 2 shows the inclusion poling and magnetic bias directions in
case the inclusion material is piezoelectric or piezomagnetic,



Fig. 1. 2D irregular polygon (grain) with an elliptical void and its local coordinates (x1 � x3) as well as the global (X1 � X3), grain local ðbx1 � bx3Þ Cartesian coordinate systems, matrix
electric poling direction ðx03Þ, and matrix magnetic bias direction ðx00

3Þ.
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respectively. Magnetic bias direction and poling direction are
generally allowed to be different. The inclusions and the matrix are
assumed to be perfectly bonded, without any sliding on their
interfaces.

Adopting matrix and vector notation, and denoting by ua (m), εa

(m/m) and sa (Pa or N/m2), respectively, the mechanical displace-
ment vector, strain and stress tensors written in vector form, by 4a

(V), Ea (V/m or N/C) and Da (C/m2), respectively, the scalar electric
potential, and electric field & electric displacement vectors; and by
ja (A or C/s), Ha (A/m or C/ms) and Ba (N/Am or Vs/m2), respec-
tively, the scalar magnetic potential, and magnetic field&magnetic
induction (magnetic flux density) vectors respectively, where the
superscript a ¼ m or c (for matrix or inclusion), the following
equations should be satisfied in the non-conducting matrix and
inclusion domains (Ue

m andUe
c):

1 Stress equilibrium and the electric and magnetic forms of
Gauss's equations:

vTus
aþb

a

f ¼0; sa ¼ðsaÞT ; vTeD
a�raf ¼ 0; vTeB

a ¼0 (2)
where b
a

f is the body force vector, and raf is the electric free charge

density (which is approximately zero for dielectric and piezoelec-
tric materials). Note that the right hand-side of the third equation
in eq. (2) is zero because magnetic free charges do not exist in
nature.

2 The strain-displacement (for infinitesimal deformations), elec-
tric field-electric potential, and magnetic field-magnetic po-
tential relations, respectively:
Fig. 2. 2D irregular polygon (grain) with an elliptical inclusion and its local coordinates (x1 �
inclusion electric poling direction ðx0c3Þ, and inclusion magnetic bias direction ðx00

c3Þ.
ε
a ¼ vuua; Ea ¼ �ve4

a; Ha ¼ �vej
a (3)

Where for 2D: vu ¼

26664
v
vx1 0 v

vx3

0 v
vx3

v
vx1

37775
T

ve ¼
�

v
vx1

v
vx3

�T
This representation of electric and magnetic fields (eq. (3)), as

gradients of electric and magnetic scalar potentials, includes the
assumption that Faraday's equation (V� Ea ¼ �vBa=vt ¼ 0) and
Ampere's law with Maxwell's correction (V�Ha ¼ Ja þ vDa=

vt ¼ 0, where Ja is the electric current density) are satisfied for
electrostatics and magnetostatics.

We assume that the materials are electrically non-conducting.
Piezoelectric ceramics are good dielectrics so they are normally
non-conductors, while piezomagnetic (or magnetostrictive) mate-
rials may be insulators (like NiFe2O4 (Zhai et al., 2004) and
Mn1�xZnxFe2O4 (Kamentsev et al., 2006)) and may be conductors
(like CoFeV and Terfenol-D (Laletsin et al., 2004)). So when dealing
with piezoelectric-piezomagnetic fiber or particle composites
subjected to electric loadings, we only consider electrically insu-
lating piezomagnetic materials. Hence we assume, Ja ¼ Japiezo
¼ Jamagneto ¼ 0. Actually without this assumption, the analogy be-
tween piezoelectric and piezomagnetic materials breaks down
because in this case they are physically different and cannot be
modeled with the same set of differential equations (Blackburn
et al., 2008).
x3) as well as the global (X1 � X3), grain local ðbx1 � bx3Þ Cartesian coordinate systems,
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3 Constitutive laws:

8><>:
sa

Da

Ba

9>=>; ¼

264Ca eaT daT

ea �ha �naT

da �na �ma

375
8><>:

ε
a

�Ea

�Ha

9>=>; Or;

8><>:
ε
a

�Ea

�Ha

9>=>; ¼

264 Sa gaT baT

ga �ba �kaT

ba �ka �ya

375
8><>:

sa

Da

Ba

9>=>;
(4)

where Ca (Pa or N/m2), ha (C/Vm), ma (N/A2), Sa (m2/N), ba (Vm/C)
and ya (A2/N) are, respectively, the elastic stiffness, dielectric
permittivity, magnetic permeability, elastic compliance, inverse of
the permittivity and reluctivity tensors written in matrix form (all
are positive definite). ea (C/m2) and ga (m2/C) are piezoelectric
tensors, da (N/Am) and ba (Am/N) are piezomagnetic tensors, and
na (N/AV) and ka (AV/N) are electromagnetic tensors, all written in
matrix form.

If the material of the matrix or the inclusion is not piezoelectric,
then the coupling piezoelectric matrices vanish ea ¼ ga ¼ 0 in eq.
(4) and if the material is not piezomagnetic, then da ¼ ba ¼ 0.
Commercially available monolithic piezoelectric and piezo-
magnetic materials have very small or no electromagnetic coupling,
hence na ¼ ka ¼ 0.
2.1. Matrix boundary conditions

Mechanical natural (traction) and essential (displacement)
boundary conditions:

nss
m ¼ t at St or Set ; um ¼ u at Su or Seu; (5)

Electric natural and essential boundary conditions:

neDm ¼ Q at SQ or SeQ ; 4m ¼ 4 at S4 or Se4; (6)

Magnetic natural and essential boundary conditions:

neBm ¼ QM at SB or SeB; jm ¼ j at Sj or Sej; (7)

Where for2D ns ¼
�
n1 0 n3
0 n3 n1

�
; and ne ¼ ½n1 n3 �; (8)

t is the specified boundary traction vector, Q is the specified
surface charge density (or electric displacement) and QM is the
specified surface magnetic flux density (or magnetic induction). n1,
n2 and n3, the three components present in ns and ne, are the
components of the unit outward normal to the boundaries Set , S

e
Q , or

SeB respectively. u, 4 and j are the specified mechanical displace-
ment vector, electric and magnetic potentials at the boundaries Se4,
Sej and Seu respectively.

The following conditions should also be satisfied at each inter-
grain boundaries Seg:

1 Mechanical displacement, electric and magnetic potential
compatibility conditions:

umþ ¼ um�; 4mþ ¼ 4m�; jmþ ¼ jm� (9)
2 Mechanical traction, electric and magnetic reciprocity
conditions:

ðnss
mÞþ þ ðnss

mÞ� ¼ 0; ðneDmÞþ þ ðneDmÞ� ¼ 0;

ðn BmÞþ þ ðn BmÞ� ¼ 0
(10)
e e

where superscript “þ” indicates variables calculated from grain e
and directed toward the outward normal direction from its
boundaries, while superscript “e” indicates those calculated from
the neighboring grains and directed toward grain e.
2.2. Inclusion and impermeable void boundary conditions

We have the following conditions along the inclusion boundary,
vUe

c:

1 Mechanical displacements, electric and magnetic potential
continuity conditions:

um ¼ uc; 4m ¼ 4c; jm ¼ jc (11)
2 Traction reciprocity and continuities of normal electric
displacement and magnetic induction:

�nss
m þ nss

c ¼ 0; neDm ¼ neDc; neBm ¼ neBc (12)
The impermeability assumption treats the void as being fully
insulated from electromagnetic field (as a result, the electromag-
netic field inside the void is always zero). The electric permittivity
of piezoelectric materials is three orders of magnitude higher than
that of air or vacuum inside the void, while the magnetic perme-
ability of piezomagnetic materials (for example CoFe2O4) is about
two orders of magnitude higher than that of air or vacuum. Hence,
the electromagnetic impermeability assumption can be adopted.
We then have traction-free and vanishing surface charge density and
magnetic flux density conditions along the void boundary, vUe

c:

tm ¼ nss
m ¼ 0; Qm ¼ neDm ¼ 0; Qm

M ¼ neBm ¼ 0 (13)

If the magnetic permeability of a porous piezomagnetic material
is close to that of air, vacuum or the fluid inside the void, then the
void domain should be treated magnetically as an inclusion. This
will not be covered in this study.
3. Trefftz-Lekhnitskii formulation

3.1. Basic formulation

The following 2D formulation is suitable for three types of
materials: piezoelectric, piezomagnetic and elastic (with no
coupling). The formulation can also be used for external domains
(matrix), or internal domains (inclusions). As mentioned previ-
ously, themagnetic bias direction in thematrix or in the inclusion is
allowed to be different from the poling direction or the axis normal
to the plane of isotropy in transversely isotropic materials.

Let ðx0
a1; x

0
a3Þ be the principal material (crystallographic) co-

ordinates in the matrix (a¼m) or in the inclusion (a¼c), x0
a3 be the

poling direction (for piezoelectric or dielectric materials) in the
matrix or in the inclusion, and x

00
a3 be the magnetic bias direction in

the matrix or in the inclusion (see Figs. 1 and 2). (x1, x3) coordinates
are obtained by rotating ðx0

a1; x
0
a3Þ through an anti-clockwise

rotationza, or by rotating ðx00
a1; x

00
a3Þ through an anti-clockwise

rotationzMa, as shown in Fig. 3. In the rest of this section, the
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subscript,a, that indicates whether we are talking about the matrix
(a¼m) or the inclusion (a¼c) is omitted for simplicity.

Using Lekhnitskii formalism (Lekhnitskii, 1968, 1981), Xu and
Rajapakse (1999) derived the general solution of plane piezo-
electricity with respect to (x1, x3) coordinate system. Because
Lekhnitskii's solution for piezoelectric materials breaks down if
there is no coupling between the mechanical and the electrical
variables, this study presents this solution in a general form that
can be used for coupled as well as uncoupled materials. The
formulation is also extended here by including the magnetic var-
iables. Hence, the matrix and the inclusion materials can be
piezoelectric, piezomagnetic or elastic (with no couplings) to
allow modeling the different types of piezoelectric-piezomagnetic
composites in 2D.

The constitutive equation with respect to (x1, x3) coordinate
system for plane stress and plane strain problems, with stress,
electric displacement and magnetic induction as the independent
variables of the equations, can be written as:

8>>>>>>>>>>><>>>>>>>>>>>:

ε1

ε3

ε5

E1
E3
H1

H3

9>>>>>>>>>>>=>>>>>>>>>>>;
¼

2666666666664

S11 S13 S15 g11 g31 b11 b31
S13 S33 S35 g13 g33 b13 b33
S15 S35 S55 g15 g35 b15 b35
�g11 �g13 �g15 b11 b13 k11 k13

�g31 �g33 �g35 b13 b33 k13 k33

�b11 �b13 �b15 k11 k13 y11 y13

�b31 �b33 �b35 k13 k33 y13 y33

3777777777775

8>>>>>>>>>>><>>>>>>>>>>>:

s1

s3

s5

D1

D3

B1
B3

9>>>>>>>>>>>=>>>>>>>>>>>;
or

8><>:
ε

E
H

9>=>;¼

264 S gT bT

�g b k

�b k y

375
8><>:

s

D
B

9>=>;
(14)

where superscripts of the material matrices in eq. (4) are omitted
for simplicity. Tensor transformation rules can be used to express
the material properties in (x1, x3) coordinate system in terms of
those in the crystallographic coordinate systemðx01; x03Þ, such as
S0;g0;b0 and k0, or in terms of those in the ðx00

1; x
00
3Þ coordinate system,

such as y
00
;b

00
:

S ¼ TT2S
0T2; g ¼ TT1g

0T2; b ¼ TT1b
0T1; k ¼ TT1k

0T1

b ¼ TTM1b
00
TM2; y ¼ TTM1y

00
TM1

(15)

In the above equations,
Fig. 3. Elliptical void/inclusion with its local coordinate system (x1 � x3) as well as the
poling direction (left), and magnetic bias direction (right).
T1 ¼
�
cos z �sin z

sin z cos z

�
and

T2 ¼

264 cos2 z sin2
z �2 sin z cos z

sin2
z cos2 z 2 sin z cos z

sin z cos z �sin z cos z cos2 z� sin2
z

375 (16)

TM1 and TM2 have the same form of T1 and T2 respectively in eq.
(16) after replacing z by zM. It can be seen that the coefficients S,
g,b,y,b and k are functions of the anglesz and zM . Piezoelectric
materials have no magneto-mechanical and electromagnetic cou-
plings, so b ¼ k ¼ 0; piezomagnetic materials have no electrome-
chanical and electromagnetic couplings, hence g ¼ k ¼ 0; while
elastic dielectric materials have no couplings at all, so g¼ b¼ k¼ 0.

In the absence of body force and free-charge density
ðbf ¼ 0 ; rf ¼ 0Þ, the balance laws in eq. (2), the strain compati-
bility ðv2ε1=vx23 þ v2ε3=vx21 � v2ε5=vx1vx3 ¼ 0Þ, Faraday's ðvE1=vx3
�vE3=vx1 ¼ 0Þ and Ampere's ðvH1=vx3 � vH3=vx1 ¼ 0Þ equations
for 2D electrostatics and magnetostatics as well as the relations in
eq. (3) and the constitutive laws in eq. (4) are satisfied using
Lekhnitskii's formulation when extended to the case of magneto-
electro-elasticity as detailed in Appendix A.

The general expressions for mechanical displacements, electric
and magnetic potentials, stress, electric displacement, magnetic
induction, strain, electric field and magnetic field components for
any type of material can be obtained in terms of the complex po-
tential functions uk(zk) as:8>><>>:

u1
u3
4

j

9>>=>>; ¼ 2Re
X4
k¼1

8>><>>:
pk

qk=mk
sk
hk

9>>=>>;ukðzkÞ (17)

8<:s1
s3
s5

9=;¼2Re
P4
k¼1

8<: gkm
2
k

gk
�gkmk

9=;u0
kðzkÞ;

8<:ε1
ε3
ε5

9=;¼2Re
X4
k¼1

8<:pk
qk
rk

9=;u0
kðzkÞ;�

D1
D3

�
¼2Re

P4
k¼1

�
lkmk
�lk

�
u0
kðzkÞ;

�
E1
E3

�
¼�2Re

X4
k¼1

�
sk
tk

�
u0
kðzkÞ;�

B1
B3

�
¼2Re

P4
k¼1

�
Dkmk
�Dk

�
u0
kðzkÞ;

�
H1
H3

�
¼�2Re

X4
k¼1

�
hk
lk

�
u0
kðzkÞ

(18)

where the prime (0) denotes derivative with respect to the complex
variable zk ¼ x1 þ mkx3. The other parameters in eqs. 17 and 18 can
be found in Appendix A.

3.2. Basic solution set

For an elliptical void/inclusion as shown in Fig. 3, the following
conformal mapping can be used to transform the ellipse in zk-plane
into a unit circle in xk-plane (Lekhnitskii, 1981):

xk ¼
zk±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2k �

�
a2o þ m2kb

2
o

�r
ao � imkbo

; k ¼ 1;2;3;4 (19)

where ao and bo are the half lengths of the void/inclusion axes as
shown in Fig. 3, and the sign of the square root (±) is chosen in such
a way that jxkj � 1. The inverse mapping has the form:

zk ¼
ao � imkbo

2
xk þ

ao þ imkbo
2

x�1
k ; k ¼ 1;2;3;4 (20)
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Using the general solution, the plane magneto-electro-
mechanical problem has been reduced to the one of solving the
complex potential functions uk. For simply connected domains, uk

can be represented by Taylor series (Domingues et al., 1999), i.e.

ukðzkÞ ¼
X∞
n¼0

�
aðnÞk þ ibðnÞk

�
znk for k ¼ 1;2;3;4 (21)

For a domain which is exterior to an elliptical void, uk can be
represented by Laurent series in terms of xk instead of zk as
(Domingues et al., 1999):

ukðxkÞ¼
X∞
n¼0

�
aðnÞk þibðnÞk

�
xnkþ

X∞
n¼1

�
að�nÞ
k þibð�nÞ

k

�
x�n
k fork¼1;2;3;4

(22)

where að±nÞk and bð±nÞk (k ¼ 1,2,3,4 and n ¼ 1,2,3, …) are real co-
efficients. Along the void/inclusion boundary which is a unit circle
in the xk-plane, we have: jxkj ¼ 1 or xk ¼ eiQ whereQ2½�p;p�. Note
that xnk ¼ x�n

k on the unit circle.
In this case, uk(zk) and u0

kðzkÞ are replaced by ukðxkÞ and
u0
kðxkÞ=z0kðxkÞ in eqs. (17) and (18), where z0k ¼ A� Bx�2

k ,
A ¼ ao � imkbo=2; B ¼ ao þ imkbo=2 and the prime (0) now denotes
derivative with respect to xk. Hence, in the coming equations, the
following will be used:

Zk ¼
�
zk for simply connected domains
xk for ellipse� exterior domains

Yn�1
k ¼

8>>><>>>:
zn�1
k for simply� connected domains

xn�1
k

A� Bx�2
k

for ellipse� exterior domains

By substituting uk in eq. (21) or (22) into eqs. (17) and (18), the
basic set of Trefftz functions for magneto-electro-mechanical dis-
placements u ¼ fu1; u3; 4; jgT , magneto-electro-mechanical
stresses and strains s ¼ fs1 s3 s5 D1 D3 B1 B3 gT ,
ε ¼ f ε1 ε3 ε5 E1 E3 H1 H3 gT , for interior or exterior
domain problems can be obtained as:

u ¼ 2
XM
n¼Ms

X4
k¼1

h	
ReðDkÞRe

	
Znk

� ImðDkÞIm

	
Znk



aðnÞk

� 	ReðDkÞIm
	
Znk

þ ImðDkÞRe

	
Znk



bðnÞk

i
(23)

s¼2
XM
n¼Ms

X4
k¼1

h�
ReðGkÞRe

�
nYn�1

k

�
� ImðGkÞIm

�
nYn�1

k

��
aðnÞk

�
�
ReðGkÞIm

�
nYn�1

k

�
þ ImðGkÞRe

�
nYn�1

k

��
bðnÞk

i
(24)

ε¼2
XM
n¼Ms

X4
k¼1

h�
ReðHkÞRe

�
nYn�1

k

�
� ImðHkÞIm

�
nYn�1

k

��
aðnÞk

�
�
ReðHkÞIm

�
nYn�1

k

�
þ ImðHkÞRe

�
nYn�1

k

��
bðnÞk

i
(25)

In the above: Dk¼fpk;qk=mk;sk;hkgT ; Gk¼fgkm
2
k ;gk;�gkmk;

lkmk;�lk;Dkmk;�DkgT ;
Hk ¼ fpk ; qk; rk ;�sk;�tk;�hk;�lkgT

and the upper limit of n (themaximumorder of Zk used in Trefftz
functions) is taken to beM for numerical implementation, while the
lower limit Ms is taken as:

Ms ¼
�

0 for interior domains
�M for exterior domains

(26)

For interior/exterior solutions, when n is increased by one, eight/
sixteen Trefftz functions with their corresponding undetermined
real coefficients fað±nÞ1 ; bð±nÞ1 ; að±nÞ2 ; bð±nÞ2 ; að±nÞ3 ; bð±nÞ3 ; að±nÞ4 ;bð±nÞ4 g are
added to the solution. So the number of Trefftz functionsmT (or the
number of undetermined real coefficients) is:

mT ¼
�

8ðM þ 1Þ for interior domain solution
8ð2M þ 1Þ for exterior domain solution

(27)

Note that when n ¼ 0, the associated eight Trefftz functions
correspond to rigid-body and constant potentials modes with
vanishing stress, strain, electric displacement, electric field, mag-

netic induction&magnetic field:s ¼ 0; ε ¼ 0, u ¼ 2
P4

k¼1½ReðDkÞ
að0Þk � ImðDkÞbð0Þk �.

Generally, it is impossible to find a closed form solution for
uk(Zk) for arbitrary boundary conditions. For the case of electro-
magnetically impermeable elliptical voids, a special solution set can
be found as presented in the next subsection.
3.3. A special solution set for an impermeable elliptical void

The Trefftz special solution set accounts for the homogeneous
boundary conditions of voids, cracks etc. Wang et al. (2004) con-
structed a special solution set of Trefftz functions for electrically
impermeable elliptical voids with axes parallel/perpendicular to
poling direction. Sheng et al. (2006) extended this to the case of
arbitrarily oriented electrically impermeable elliptical voids. Here
we extend this special solution set to the case of electromagneti-
cally impermeable elliptical voids.

For traction-free and vanishing normal electric displacement and
magnetic induction boundary conditions along the void surface, the
following conditions should be satisfied:

Re
P4
k¼1

gkukðxkÞ ¼ 0; Re
X4
k¼1

gkmkukðxkÞ ¼ 0;

Re
P4
k¼1

lkukðxkÞ ¼ 0; Re
X4
k¼1

DkukðxkÞ ¼ 0 for jxkj ¼ 1

(28)

which can be written in matrix form as,

8>><>>:
u1
u2
u3
u4

9>>=>>; ¼

2664
E11 E12 E13 E14
E21 E22 E23 E24
E31 E32 E33 E34
E41 E42 E43 E44

3775
8>><>>:

u1
u2
u3
u4

9>>=>>; for jxkj ¼ 1 (29)

Where the overbar here indicates complex conjugate and



2664
E11 E12 E13 E14
E21 E22 E23 E24
E31 E32 E33 E34
E41 E42 E43 E44

3775 ¼ �

2664
g1 g2 g3 g4

g1m1 g2m2 g3m3 g4m4
l1 l2 l3 l4
D1 D2 D3 D4

3775
�12664

g1 g2 g3 g4
g1m1 g2m2 g3m3 g4m4
l1 l2 l3 l4
D1 D2 D3 D4

3775
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Assuming ukðxkÞ in a form similar to that of eq. (22) and
substituting it into eq. (29) yields eight constraint equations on the

sixteen real coefficients aðnÞk ; bðnÞk ; að�nÞ
k and bð�nÞ

k (k¼1,2,3,4). By

expressing að�nÞ
k and bð�nÞ

k in terms of aðnÞk and bðnÞk , we get:

að�nÞ
k ¼

X4
j¼1

h
Re
�
Ekj
�
aðnÞj � Im

�
Ekj
�
bðnÞj

i
;

bð�nÞ
k ¼ �

X4
j¼1

h
Im
�
Ekj
�
aðnÞj þ Re

�
Ekj
�
bðnÞj

i (30)

So the number of Trefftz functions mT (or the number of unde-
termined real coefficients) is reduced tomT¼ 8(Mþ 1). Substituting
eq. (30) into eqs. 23e25 yields the following special set of Trefftz
functions:

uvoid ¼
X∞
n¼0

X4
k¼1

h
F
ðnÞ
ak a

ðnÞ
k þ F

ðnÞ
bk

bðnÞk

i
;

svoid ¼
X∞
n¼0

X4
k¼1

h
J

ðnÞ
ak a

ðnÞ
k þJ

ðnÞ
bk

bðnÞk

i
εvoid ¼

X∞
n¼0

X4
k¼1

h
G
ðnÞ
ak a

ðnÞ
k þ G

ðnÞ
bk

bðnÞk

i
(31)

where:
F
ðnÞ
ak ¼ c

ðnÞ
ak þ

X4
j¼1

h
Re
�
Ejk
�
c
ð�nÞ
aj � Im

�
Ejk
�
c
ð�nÞ
bj

i
; F

ðnÞ
bk

¼ c
ðnÞ
bk

�
X4
j¼1

h
Im
�
Ejk
�
c
ð�nÞ
aj þ Re

�
Ejk
�
c
ð�nÞ
bj

i
J

ðnÞ
ak ¼ S

ðnÞ
ak þ

X4
j¼1

h
Re
�
Ejk
�
S
ð�nÞ
aj � Im

�
Ejk
�
S
ð�nÞ
bj

i
; J

ðnÞ
bk

¼ S
ðnÞ
bk

�
X4
j¼1

h
Im
�
Ejk
�
S
ð�nÞ
aj þ Re

�
Ejk
�
S
ð�nÞ
bj

i
G
ðnÞ
ak ¼ Y

ðnÞ
ak þ

X4
j¼1

h
Re
�
Ejk
�
Y
ð�nÞ
aj � Im

�
Ejk
�
Y
ð�nÞ
bj

i
; G

ðnÞ
bk

¼ Y
ðnÞ
bk

�
X4
j¼1

h
Im
�
Ejk
�
Y
ð�nÞ
aj þ Re

�
Ejk
�
Y
ð�nÞ
bj

i
(32)
and in (32):

c
ð±nÞ
ak ¼ 2ReðDkÞRe

�
x±nk

�
� 2ImðDkÞIm

�
x±nk

�
;

c
ð±nÞ
bk

¼ �2ReðDkÞIm
�
x±nk

�
� 2ImðDkÞRe

�
x±nk

�
;

S
ð±nÞ
ak ¼ ±2n

"
ReðGkÞRe

 
x±n�1
k
z0k

!
� ImðGkÞIm

 
x±n�1
k
z0k

!#
;

S
ð±nÞ
bk

¼ H2n

"
ReðGkÞIm

 
x±n�1
k
z0k

!
þ ImðGkÞRe

 
x±n�1
k
z0k

!#
;

Y
ð±nÞ
ak ¼ ±2n

"
ReðHkÞRe

 
x±n�1
k
z0k

!
� ImðHkÞIm

 
x±n�1
k
z0k

!#
;

Y
ð±nÞ
bk

¼ H2n

"
ReðHkÞIm

 
x±n�1
k
z0k

!
þ ImðHkÞRe

 
x±n�1
k
z0k

!#

All variables should be expressed in the grain's Cartesian local
coordinate system (bx1 � bx3 is Fig. 1 or Fig. 2), hence tensor trans-
formation rule can be used again to do this rotation by an angle
�ðza þ waÞ.
4. Formulation of Computational Piezo-Grains (CPGs) for
piezoelectric/piezomagnetic materials with/without voids/
inclusions

In this section, Computational Piezo-Grains (CPGs) are devel-
oped for the Direct Numerical Simulation (DNS) of the micro-
mechanics of piezoelectric-piezomagnetic composites and porous
materials where each computational grain has an arbitrarily
polygonal shape, and may or may not include a circular or an
arbitrarily oriented elliptical void or inclusion. The advantage of
using CPGs is that each CPG may represent a single grain in the
material that has its own electric poling and magnetic bias di-
rections. The Dirichlet tessellation used to construct the mesh or
the geometric shapes of CPGs resembles the physical configurations
of grains in the meso-mechanics, wherein each grain may be sur-
rounded by an arbitrary number of neighboring grains; hence CPGs
are expected to show field distributions that cannot be obtained
using regular triangular or quadrilateral elements. Lekhnitskii's
formalism, presented in the previous section, is employed here due
to the relatively explicit nature of the derived Trefftz functions.

The matrix-boundary-primal-fields' continuity and the void/
inclusion boundary conditions can be enforced using three
methods: boundary variational principle (BVP), collocation (C), or
least squares (LS). Accordingly, several types of computational
grains can be formulated. For CPGs that include voids, the special
solution set for electromagnetically impermeable elliptical voids,
presented in Section 3.3, can be used alternatively. This results in no
need to enforce the void boundary conditions separately, using any
of the previously mentioned methods, and makes the resulting
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computational grains more efficient for modeling grains with
electromagnetically impermeable voids.

Consider a 2D irregular m-sided polygonal grain with/without a
void or an inclusion as shown in Fig. 1 (left). We can define linear
displacements, electric and magnetic potential fields along each
grain boundary in terms of the nodal values of the mechanical dis-
placements qu , electric potential q4, and magnetic potential qj, as:

~u ¼ ~Nuqu; ~4 ¼ ~N4q4; ~j ¼ ~Njqj

or ~u ¼

8><>:
~u

~4

~j

9>=>; ¼

264
~Nu 0 0

0 ~N4 0

0 0 ~Nj

375
8><>:

qu

q4

qj

9>=>; ¼ ~Nq at vUe

(33)

where ~Nu, ~N4 and ~Nj are linear shape functions, ~u ¼ ~u1 ~u3 ~4 ~j
� �T

and qT ¼
n
qT
u qT

4 qT
j

o
.

Fields in thematrix and the inclusion can bewritten in the form:8<:ua

4a

ja

9=; ¼
8<:

Na
u

Na
4

Na
j

9=;ca;

8<:sa

Da

Ba

9=; ¼
8<:Ma

s

Ma
D

Ma
B

9=;ca; in Ue

or ua ¼ Naca; sa ¼ Maca; in Ue

(34)

where Na are the Trefftz functions in the order of Ms,...,0,1,...,M and
ca denotes the unknown real coefficients (að±nÞk ; bð±nÞk , k ¼ 1,2,3,4
and n ¼ Ms,...,M) associated with Trefftz functions for the matrix
(a ¼m) or the inclusion (a¼ c). If there is no void or inclusion, only
the non-negative exponents are used. Na and Ma are taken from
eqs. (23) and (24) for interior/exterior fields, satisfying the consti-
tutive law, the strain-displacement, electric field-electric potential,
and magnetic field-magnetic potential relationships, and the
equilibrium andMaxwell's equations, or from eq. (31) which satisfy
the void stress-free and vanishing surface charge and magnetic flux
densities boundary conditions when dealing with electromagneti-
cally impermeable elliptical void.

The tractions, surface electric charge density and surface mag-
netic flux density on the matrix boundaries are:

ta ¼ nss
a ¼ nsMa

sc
a; Q ¼ neDa ¼ neMa

Dc
a;

Qa
M ¼ neBa ¼ neMa

Bc
a at vUe or vUe

c ;

or ta ¼

8>><>>:
ta

Qa

Qa
M

9>>=>>; ¼

2664
ns 0 0

0 ne 0

0 0 ne

3775
8>><>>:

sa

Da

Ba

9>>=>>; ¼ nsa ¼ nMaca

at vUe or vUe
c ;

(35)

Now, three steps should be done:

Step one: the matrix interior primal fields should be related to
the matrix boundary primal fields. Once the mechanical dis-
placements, and the electric and magnetic potentials are
expressed in terms of their nodal values in each grain, their
continuities (eq. (9)) are automatically satisfied, and the
essential boundary conditions (in eqs. (5) and(6)) can be easily
enforced after generating the global system of equations.
Step two: the reciprocity conditions (eq. (10)) as well as the nat-
ural boundary conditions (in eqs. (5) and (6)) should be enforced.
Step three: (if a void or an inclusion exists in the grain) the
conditions on the void/inclusion boundary should also be
satisfied as mentioned in subsection 2.2.
A multi-field boundary variational principle (BVP) can be used
to enforce all these three steps. Collocation and least squares
methods can also be used to enforce steps one and three, then a
primal variational principle (PVP) can be used to enforce step two.
For the case of a grain with an electromagnetically impermeable
void, the special solution set, presented in Section 3.3, can alter-
natively be used to satisfy step three. This makes the resulting
grains more efficient because there is no need to consider any
conditions on the void periphery. However, if the void is pressur-
ized, filled with conducting fluid or if the void is replaced by any
type of inclusions, the special solution set cannot be used. When
the void/inclusion boundary vUe

c shrinks to zero, the grain is
reduced to the case of a grain with no defect.
4.1. CPGs based on multi-field boundary variational principle

A multi-field boundary variational principle whose
EulereLagrange equations (stationarity conditions) are the natural
BCs, the reciprocity conditions, as well as the compatibility be-
tween interior and boundary fields can be used to derive the grain
equation, with the following scalar functional:

P1
	
umi ;u

c
i ;~ui;4

m;4c;~4;jm;jc;~j



¼
XN
e¼1

8>><>>:�
Z

vUeþvUe
c

1
2
	
tmi umi þQm4mþQm

Mjm
dS
þ
Z
vUe

	
tmi ~uiþQm~4þQm

M
~j


dSþ

Z
vUe

c

	
tmi uci þQm4cþQm

Mjc
dS
þ
Z
vUe

c

1
2
	
tci u

c
i þQc4cþQc

Mjc
dS� Z
Set

ti~uidS

�
Z
SeQ

Q ~4dS�
Z
SeB

QM~jdS

9>>=>>;
(36)

where i ¼ 1, 3 in eq. (36) and the equations to follow. This achieves
the three steps simultaneously. In matrix and vector notation, P1
can be written as:

P1



um;uc; ~u

�
¼
XN
e¼1

8>><>>:�
Z

vUeþvUe
c

1
2
tm$umdSþ

Z
vUe

tm$ ~u dS

þ
Z
vUe

c

tm$ucdSþ
Z
vUe

c

1
2
tc$ucdS�

Z
Set

t$~udS

�
Z
SeQ

Q ~fdS�
Z
SeB

QM~jdS

9>>=>>;
(37)

P1ðcm; cc;qÞ ¼
XN
e¼1

�
� 1
2
cmTHmmcm þ cmTGmqqþ cmTGmccc

þ 1
2
ccTHcccc � qTQ

�
(38)
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where
Hmm ¼
Z

vUeþvUe
c

MmTnTNmdS; Gmc ¼
Z
vUe

c

MmTnTNcdS; Hcc ¼
Z
vUe

c

McTnTNcdS;

Gmq ¼
Z
vUe

MmTnT ~NdS; Q T ¼
24 Z

Set

tT ~NudS
Z
SeQ

Q ~N4dS
Z
SeB

QM
~NjdS

35 (39)
Setting the variation of P1 to zero gives:

dP1ðdcm;dcc;dqÞ¼
XN
e¼1

n
�dcmTHmmcmþdcmTGmqqþdqTGT

mqc
m

þdcmTGmcccþdccTGT
mcc

mþdccTHcccc

�dqTQ
o
¼
XN
e¼1

n
dqT

�
GT
mqc

m�Q
�

þdcmT	Gmqq�HmmcmþGmccc



þdccT
�
GT
mcc

mþHcccc
�o

¼0

(40)

For arbitrary dcmT, dccT and dqT we can write:

GT
mqc

m � Q ¼ 0; Gmqq�Hmmcm þ Gmccc ¼ 0;

GT
mcc

m þHcccc ¼ 0
(41)

Using the second equation, we canwrite cm in terms of cc and q:

cm ¼ H�1
mmGmqqþH�1

mmGmccc (42)

Substituting this into the first and third equations gives:

"
GT
mqH

�1
mmGmq GT

mqH
�1
mmGmc

GT
mcH

�1
mmGmq GT

mcH
�1
mmGmc þHcc

#�
q
cc

�
¼
�
Q
0

�
(43)

Static condensation can reduce this to the following finite
element equation in terms of q only:

Kbvpq ¼ Q (44)

where

Kbvp ¼ GT
mqH

�1
mmGmq þ GT

mqH
�1
mmGmc

�
GT
mcH

�1
mmGmc þHcc

��1

� GT
mcH

�1
mmGmq

(45)

If the grain contains a void instead of an inclusion, we use a
boundary field along the void periphery as:

~uc ¼ ~N
c
cc (46)

where ~N
c
can still be taken from eq. (23) but with substituting the

material properties of the matrix.
In this case, the functional P1 should be modified as follows:
P1v



um; ~u ; ~uc

�
¼
XN
e¼1

8>><>>:�
Z

vUeþvUe
c

1
2
tm$umdSþ

Z
vUe

tm$ ~udS

þ
Z
vUe

c

tm$~ucdS�
Z
Set

t$~udS�
Z
SeQ

Q ~fdS

�
Z
SeB

QM~jdS

9>>=>>;
(47)

If the grain contains no defects, basic solution set is to be used
and all terms containing uc (uci ;4

c;jc) or cc should be dropped from
all previous equations, hence the second term in the stiffness ma-

trix in eq. (45) is dropped and Kbvp ¼ GT
mqH

�1
mmGmq is used with no

integrations done along vUe
c in constructing Hmm.

We denote this grain as “CPG-BVP” (or “CPG-BVPs” when using
the impermeable void special solution set). This formulation clearly
involves Lagrangian multipliers and hence suffers from LBB con-
ditions (see Babuska,1973; Brezzi, 1974), which are impossible to be
satisfied a priori. This means that the eigenvalues of the stiffness
matrix of an arbitrarily distorted grain, without a void or inclusion
for instance, may include more than five zeros (for the three rigid-
body and the two constant electric and magnetic potential modes)
which indicates that the numerical formulation of the grain is not
always stable. The stiffness matrix of CPG-BVP grain requires
integration along the grain boundary to evaluate Gmq andHmm, and
along the inclusion boundary to evaluate Gmc, Hcc and Hmm as well
as matrix inversions.

Note that the first eight Trefftz functions (corresponding to
n ¼ 0) should be eliminated from Na and Ma when using this
method because they correspond to rigid-body and constant po-
tentials modes which do not contribute to the energy stored in the
grain.
4.2. CPGs based on collocation method

In this method, the continuity between the matrix interior and
boundary primal fields (mechanical displacements, electric and
magnetic potentials) are enforced in a strong sense at several pre-
selected collocation points xðrÞ, r ¼ 1, 2, ... R along the grain
boundary vUe, and also when using the basic solution set (eqs.
23e25), the void/inclusion boundary conditions are enforced on a
number of collocation points or curved segments ðvUe

c ¼
Pns

j¼1vU
e
cjÞ

along the void/inclusion periphery. So we have:

1 Compatibility between matrix interior and boundary primal
fields along vUe:
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um
�
xðrÞ; cm

�
¼ ~u

�
xðrÞ;q

�
; xðrÞ2vUe r ¼ 1;2; :::R (48)
2 Void boundary conditions: Traction-free and vanishing surface
charge and magnetic flux densities conditions along vUe

c:

Z
tmðx; cmÞds ¼ 0; j ¼ 1;2; :::ns (49)
vUe
cj

or Inclusion boundary conditions: Traction reciprocity, conti-
nuities of electric charge andmagnetic induction, and primal fields’
continuity:

tm
�
xj; cm

�
þ tc

�
xj; cc

�
¼ 0 xj3vUe

c; j ¼ 1;2; :::ns

um
�
xj; cm

�
¼ uc

�
xj; cc

�
xj3vUe

c ; j ¼ 1;2; :::ns
(50)

By selecting enough number of void/inclusion boundary seg-
ments or collocation points, and solving (48) and (49) or (50) in a
least-square sense, cm and cc are related to q as follows:

�
A0 0
A2 A3

��
cm

cc

�
¼
�
B0
0

�
q (51)

This leads to:

cm ¼ Zmq; cc ¼ Zcq (52)

Now, the interior fields are related to the nodal primal variables
(step one), and the void/inclusion boundary conditions are
enforced (step three), we just need to enforce the natural boundary
conditions as well as the reciprocity conditions on the outer
boundary (step two) using the following simple primitive field
variational principle:

P2
	
umi ;4

m;jm
 ¼XN
e¼1

8>><>>:
Z
vUe

1
2
	
tmi umi þ Qm4m þ Qm

Mjm
dS

�
Z
Set

tmi u
m
i dS�

Z
SeQ

Q4mdS�
Z
SeB

QMjmdS

9>>=>>;
(53)

In matrix and vector notation P2 can be written as:

P2ðumÞ ¼
XN
e¼1

8>><>>:
Z
vUe

1
2
tm$umdS�

Z
Set

tm$umdS

�
Z
SeQ

Q4mdS�
Z
SeB

QMjmdS

9>>=>>;
(54)
P2ðqÞ ¼
XN
e¼1

8><>:1
2
qTZmT

0B@ Z
vUe

MmTnTNmdS

1CAZmq

�
24 Z

Set

tT ~NudS
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where Hmm ¼ R
vUe

MmTnTNmdS here. Setting the variation of P2 to
zero gives:

dP2ðdqÞ ¼
XN
e¼1

n
dqT

�
ZmTHmmZm

�
q� dqTQ

o

¼
XN
e¼1

n
dqTKcq� dqTQ

o
¼ 0 (56)

where Kc ¼ ZmTHmmZm is the stiffness matrix of “CPG-C” grain.
This grain does not suffer from LBB conditions, because there is no
Lagrangian multipliers involved. In order to obtain the stiffness
matrix of this grain, only onematrix,Hmm, requires integration over
the outer boundary, as well as the evaluation of Zm.

For an impermeable elliptical void, the special solution set (eq.
(31)) can be used as an alternative to the collocation method to
enforce the void boundary conditions. In this case, eq. (49) is not
used in obtaining cm in eqs. (51) and (52). The resulting grain is then
denoted “CPG-Cs”.

Collocationmethod can be replaced by the least squaresmethod
(which is equivalent to using infinite number of collocation points)
generating “CPG-LS” and “CPG-LSs” grains. More details about this
method can be found in (Bishay and Atluri, 2014).
4.3. On the selection of the maximum order of Trefftz functions

There are two conditions that should be considered in deter-
mining the maximum order of Trefftz functions, M, to be used in
developing CPG grains. These two conditions are:

1 The number of Trefftz functions (or undetermined coefficients)
mT should be larger than the number of the grain's degrees of
freedom (DOF) in order to ensure that the number of indepen-
dent Trefftz modes are larger than or equal to the number of the
grain's DOFs. Note that Lekhnitskii formulation (eqs. (23) and
(24) or eq. (31)) generates some repeated modes. For example,
and as mentioned earlier, the first eight Trefftz functions (cor-
responding to n ¼ 0) corresponds to the five rigid-body and
constant potential modes. The number of degrees of freedom in
any grain equals to the number of nodes � the number of de-
grees of freedom per node i.e. 4m. Hence for rank sufficiency of
the grain, the number of non-rigid-body Trefftz modes, 8M (or
16M when using the basic solution set for exterior domains),
should be larger than the number of non-rigid-body degrees of
freedomwhich is 4m� 5. This ensures that all grain types except
CPG-BVP (or CPG-BVPs) are stable or rank sufficient. (It is
impossible to ensure this for CPG-BVP grain because the grain
formulation involves Lagrangian multipliers as mentioned
earlier).

2 (Only for CPG-C grains) The number of equations used to solve
for the undetermined coefficients should be larger than or equal
to the number of these undetermined coefficients (mT or
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mT þmTc for the case of a grainwith an inclusion). In developing
CPG-C and CPG-Cs, we should select the number of collocation
points used with any m-sided grain. Each collocation point
provides four equations since we are collocating the four primal
variables. If we use only two collocation points per edge then the
total number of collocation equations in any m-sided polygonal
grain is m � 2 � 4 ¼ 8m. For CPG-C grains with voids where the
basic solution set is to be used, mT ¼ 8(2M þ 1) because the
negative exponents are also considered, thus increasing the
number of unknowns; however 4ns additional equations are
added to enforce the void boundary condition on the void pe-
riphery. For CPG-C grains with inclusions, we have
mT ¼ 8(2M þ 1) for the matrix and mTc ¼ 8(Mc þ 1) for the in-
clusion, but we also have 4ns additional equations that enforce
the inclusion boundary conditions on the inclusion periphery.
Here, we take ns ¼ 48 (where again ns is the number of void/
inclusion boundary segments).

So the conditions on themaximum order of Trefftz functions can
be written as:
4m� 5
8

<M � m� 1 for CPG�Cs and CPG�Cðwith no void=inclusionÞ
4m� 5

16
<M � 2mþ ns � 2

4
for CPG�Cðwith voidÞ

4m� 5
16

<M � 2mþ ns � 4� 2Mc

4
for CPG�Cðwith inclusionÞ

(57)
For CPG-Cs and CPG-C (with no void/inclusion), we can use
M ¼ Q4m� 5=8S, where Q:S is a function that rounds a number up to
an integer. This satisfies the two conditions. In this work we also
useM ¼ Q4mþ 3=8S which is larger by one order. With CPG-C (with
void or inclusion), larger values of M are to be used to increase the
accuracy of the solution without violating the second condition.

Eq. (51) for CPG-C and CPG-Cs grains is over-constrained
whenever the number of collocation points exceeds the number
of undetermined coefficients, mT. In addition, the system matrices
in both CPG-C (eq. (51)) and CPG-LS are singular because of the
repeated Trefftz functions. Hence in order to solve such systems,
singular value decomposition (SVD) technique should be used. The
SVD method can solve even the singular system of equations and
produces the least squares solutions to the over-constrained
systems.
4.4. Conditioning of the system matrices

The system of equations to be solved using any of the previous
methods is ill-conditioned because of the exponential growth of
the term Znk as n is increased; hence we introduce a characteristic
length to scale the Trefftz solution set.

For an arbitrary polygonal grain as shown in Fig. 1 (left), where

the coordinate of the nodes are ðxj1; x
j
3Þ; j ¼ 1;2; :::;m, the center

point of the polygon has coordinates ðxc1; xc3Þ. Relative to the local
coordinates at the center point, we have bzk ¼ bx1 þ mkbx3
¼ ðx1 � xc1Þ þ mkðx3 � xc3Þ, k¼1,2,3,4 and correspondingly,

bxk ¼ bzk± ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibz2k � a2o þ m2kb
2
o

� �r .
ðao � imkboÞ. Now, Zk (bzk for interior
domains or bxk for exterior domains) will be replaced by bZk=Rc
where:

Rc ¼ maxðRckÞ; Rck ¼ max
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
Re
�bZj

k

�i2
þ
h
Im
�bZj

k

�i2r
;

j ¼ 1;2; :::;m

(58)
This is done only for terms with positive exponents. In this way,

the exponential growth of Znk is prevented as n increases because

0<
���ðbZk=RcÞn

���<1 for any point within the grain or along the grain

boundaries.

5. Numerical examples

All grain types described above are programmed using MATLAB
version R2014a in a 64-bit WINDOWS operating system, and
executed on a PC computer equipped with Intel i7-2600K, 3.4 GHz
CPU, and 8 GB RAM. In this section we give examples to show the
capabilities of the proposed CPGs.
Simple problems that use grains with no voids, such as patch
test and bending of a meso-scale piezoelectric or piezomagnetic
panel, can be easily and accurately modeled using any grain type
and any number of grains (with no voids) to mesh the problem
domain, and the error in the whole structure is less than 1%.
5.1. Piezomagnetic domain with piezoelectric inclusion

Consider an infinite piezomagnetic domain with an elliptical
piezoelectric inclusion subjected to vertical mechanical loading in
the far field. For numerical implementations, the infinite domain is
truncated into a rectangle with length L and width W. This can be
modeled using only one CPG of piezomagnetic matrix with
embedded piezoelectric inclusion. Both the poling direction of the
piezoelectric phase and the magnetic bias direction (magnetic po-
larization) of the piezomagnetic phase are aligned with the global
vertical axis. The piezomagnetic material is CoFe2O4 while the
piezoelectric material is BaTiO3. Properties of both materials can be
found in (Lee et al., 2005) and plane strain assumption is used in
this problem. Here we take L¼W¼ 1 m, the volume fraction is 10%,
b/a ratio is set to 0.8, the inclination angle is 0�, and the applied
mechanical traction is so ¼ 1 GPa. Rollers are prescribed at the
lower and left surfaces, while electric and magnetic grounds are
prescribed at the lower left corner.

Figs. 4e7 show the distributions of electric and magnetic po-
tentials, the two components of normal stress, the two components
of electric displacement and the two components of magnetic in-
duction around the inclusion.



Fig. 4. Electric (left) and magnetic (right) potentials distributions.

Fig. 5. s11 (left) and s33 (right) mechanical stress distributions.

Fig. 6. Distributions of the components of electric displacement vector.
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5.2. Evaluation of effective material properties of piezo-composite

In this subsection we determine the effective material proper-
ties of BaTiO3/CoFe2O4 piezo-composite (Piezoelectric Barium
Titanate particles embedded in Piezomagnetic Cobalt Ferrite ma-
trix) as functions of the inclusions’ volume fraction. Special
computational models are used in evaluating the effective prop-
erties of this piezo-composite. Each of these special models ensures
the presence of only one nonzero value in the magneto-electro-
mechanical strain vector ½ ε11 ε33 ε13 �E1 �E3 �H1
�H3�T . We then calculate the magneto-electro-mechanical stress
vector ½ s11 s33 s13 D1 D3 B1 B3 �T on the four boundaries
of the unit cell, and accordingly some material properties can be
determined. For more details about these special models, readers
are referred to (Bishay et al., 2014b) or (Lee et al., 2005). The unit
cell can contain only one CPG or any number of CPGs. The results
will change slightly every time we change the unit cell configura-
tion (number and shapes of the grains). Both the magnetic bias
direction in the piezomagnetic phase and the polarization in the
piezoelectric phase are vertically upward.



Fig. 7. Distributions of the components of magnetic induction.
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Fig. 8 shows the predictions of effective material properties as
functions of inclusions' volume fraction. The FEA results of Lee et al.
(2005) are also shown for comparison. These results are also in
excellent agreement with Mori-Tanaka's analytical model (Li and
Dunn, 1998) as mentioned in (Lee et al., 2005). Very good agree-
ment can be seen.
0 0.1 0.2 0.3 0.4
100

150

200

250

300

Volume fraction

C
11

, C
13

, C
33

 [G
P

a]

C11

C13

C33

FEM [Lee et al. (2005)]
CPGs

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

Volume fraction

h 33
, h

11
 [n

C
/V

m
]

h33

h11

FEM [Lee et al. (2005)]
CPGs

n
 [µ

N
/A

.V
]

0 0.1 0.2 0.3 0.4
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Volume fraction

m
33

, m
11

 [m
N

/A
2 ]

m33

m11

FEM [Lee et al. (2005)]
CPGs

Fig. 8. Effective material properties of BaTiO3/CoFe2O4 piezo
5.3. Modeling a piezo-composite microstructure

Consider a piezo-composite microstructure consisting of
piezoelectric (PZT-4) spherical particles embedded in polymer
matrix. The composite is subjected to tensile loading in the vertical
direction of magnitude 1 GPa. During manufacturing some voids
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Fig. 9. Principal stress (left) and Strain energy density (right) distributions in the microstructure.

P.L. Bishay, S.N. Atluri / European Journal of Mechanics A/Solids 53 (2015) 311e328324
were nucleated in the microstructure. Considering that this
microstructure consists of only 30 grains for illustration, we need
only 30 CPGs to model it, while huge number of regular finite el-
ements is required to get an acceptable accuracy. As the number of
grains increases, the computational burden will highly increase in
case of using finite element models, while with CPGs, the number
of computational grains (super finite elements) is exactly the
number of the modeled physical grains; thus saving a lot of
computational effort, time and cost. In this model we create a
random microstructure with 30 grains and we randomly distribute
the grain types: some grains are solid, some contain voids and some
contain inclusions. The dimensions of the domain are
1 mm � 1 mm. The material properties of PZT-4 are taken from
(Sheng et al., 2006), while the polymer matrix has: C11 ¼ 3.86,
C13 ¼ 2.57, C55 ¼ 0.64 GPa, h11 ¼ h33 ¼ 0.0796 nC/(Vm)2. Fig. 9
shows the principal stress and the strain energy density distribu-
tion plots. Locations of energy concentrations in the microstructure
can be easily and accurately located.
s1 ¼ v2fðx1; x3Þ
vx23

; s3 ¼ v2fðx1; x3Þ
vx21

; s5 ¼ �v2fðx1; x3Þ
vx1vx3

;

D1 ¼ vwðx1; x3Þ
vx3

; D3 ¼ �vwðx1; x3Þ
vx1

; B1 ¼ vrðx1; x3Þ
vx3

; B3 ¼ �vrðx1; x3Þ
vx1

(A.1)
6. Summary and conclusions

In this work, new multi-physics “super finite elements” are
developed to model piezo-composites in the micro-scale. Each
element (or computational grain) can have the shape of a material
grainwith embedded elliptical void or inclusion, and thus enable us
to avoid excessively fine mesh around defects usually encountered
with regular finite elements that can highly increase the model size
especially with large number of defects. Piezoelectricity with
magnetostatics or Piezomagnetism with electrostatics governing
equations are solved in the domain of each element. Several types
of such Computational-Piezo-Grains (CPGs) are presented based on
boundary variational principle (BVP), collocation (C) or least
squares (LS) methods. CPGs are successful in modeling piezo-
composites with any number and distribution of voids or
inclusions, and in estimating the effective material properties of
piezoelectric-piezomagnetic composites.
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Appendix A

Three complex potential functions: Airy stress function, f(x1, x3),
electric scalar potential function, w(x1, x3), and magnetic scalar
potential function, r(x1, x3), are introduced as:
The balance rules for plane magneto-electro-elasticity (eq. (2))
in the absence of body force and free-charge density
(bf ¼ 0; rf ¼ 0) are satisfied using eq. (A.1). By substituting eq.
(A.1) into eq. (14) and invoking the following strain compatibility,
Faraday's and Ampere's equations for 2D electrostatics and
magnetostatics:

v2ε1

vx23
þ v2ε3

vx21
� v2ε5
vx1vx3

¼ 0;
vE1
vx3

� vE3
vx1

¼ 0;
vH1

vx3
� vH3

vx1
¼ 0

(A.2)

Three differential equations coupled in f(x1, x3), w(x1, x3) and
r(x1, x3) can be obtained as:
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L6fðx1; x3Þ � L5wðx1; x3Þ � L4rðx1; x3Þ ¼ 0;
L5fðx1; x3Þ þ L3wðx1; x3Þ þ L2rðx1; x3Þ ¼ 0;
L4fðx1; x3Þ þ L2wðx1; x3Þ þ L1rðx1; x3Þ ¼ 0

(A.3)

Where
L1 ¼ y11
v2

vx23
� 2y13

v2

vx1vx3
þ y33

v2

vx21
; L2 ¼ k11

v2

vx23
� 2k13

v2

vx1vx3
þ k33

v2

vx21
;

L3 ¼ b11
v2

vx23
� 2b13

v2

vx1vx3
þ b33

v2

vx21
;

L4 ¼ �b11
v3

vx33
þ ðb15 þ b31Þ

v3

vx23vx1
� ðb13 þ b35Þ

v3

vx3vx
2
1

þ b33
v3

vx31
;

L5 ¼ �g11
v3

vx33
þ ðg15 þ g31Þ

v3

vx23vx1
� ðg13 þ g35Þ

v3

vx3vx
2
1

þ g33
v3

vx31
;

L6 ¼ S11
v4

vx43
� 2S15

v4

vx33vx1
þ ð2S13 þ S55Þ

v4

vx23vx
2
1

� 2S35
v4

vx3vx
3
1

þ S33
v4

vx41
:

Eliminating w(x1, x3) and r(x1, x3) from eq. (A.3), the governing
equations of plane magneto-electro-elasticity are reduced to the
following eighth-order differential equation:

�
L1L

2
5 � 2L2L4L5 þ L1L3L6 þ L3L

2
4 � L22L6

�
fðx1; x3Þ ¼ 0 (A.4)

If the material is piezoelectric (b ¼ k ¼ 0), then L2 ¼ L4 ¼ 0, and
eqs. (A.3) and (A.4) reduce to:
c0 ¼ S33b33 þ g233; c1 ¼ �2S35b33 � 2S33b13 � 2g33ðg13 þ g35Þ;
c2 ¼ S33b11 þ 4S35b13 þ b33ð2S13 þ S55Þ þ 2g33ðg31 þ g15Þ þ ðg13 þ g35Þ2;
c3 ¼ �2g11g33 � 2S15b33 � 2S35b11 � 2b13ð2S13 þ S55Þ � 2ðg31 þ g15Þðg13 þ g35Þ;
c4 ¼ S11b33 þ 4S15b13 þ b11ð2S13 þ S55Þ þ 2g11ðg13 þ g35Þ þ ðg31 þ g15Þ2;
c5 ¼ �2S11b13 � 2S15b11 � 2g11ðg31 þ g15Þ; c6 ¼ S11b11 þ g211:
�
L25 þ L3L6

�
fðx1; x3Þ ¼ 0; L1rðx1; x3Þ ¼ 0 (A.5)
if it is piezomagnetic (g¼ k¼ 0), then L2¼ L5¼ 0, and eqs. (A.3) and
(A.4) take the form:�
L24 þ L1L6

�
fðx1; x3Þ ¼ 0; L3wðx1; x3Þ ¼ 0; (A.6)

while if it is only elastic dielectric (g ¼ b ¼ k ¼ 0), then
L2 ¼ L4 ¼ L5 ¼ 0, and eqs. (A.3) and (A.4) are reduced to:

L6fðx1; x3Þ ¼ 0; L3wðx1; x3Þ ¼ 0; L1rðx1; x3Þ ¼ 0 (A.7)

Eq. (A.5) for piezoelectric materials can be written symbolically
as sixth and second degree differential equations for piezoelec-
tricity and magnetostatics, respectively:
F1F2F3F5F6F7fðx1; x3Þ ¼ 0; F4F8rðx1; x3Þ ¼ 0 (A.8)

where Fk¼ (v/vx3)� mk(v/vx1) and mk(k¼ 1,…, 8) are the roots of the
characteristic eqs. (A.9) and (A.10). m1,m2,m3,m5,m6 and m7 are ob-
tained from the piezoelectricity eq. (A.9) while m4 and m8 are ob-
tained from the magnetostatics eq. (A.10):
c6m
6 þ c5m

5 þ c4m
4 þ c3m

3 þ c2m
2 þ c1mþ c0 ¼ 0: (A.9)

y11m
2 � 2y13mþ y33 ¼ 0 (A.10)

where
Eq. (A.6) for piezomagnetic materials can be written symboli-
cally as sixth and second degree differential equations for piezo-
magnetism and electrostatics, respectively:

F1F2F4F5F6F8fðx1; x3Þ ¼ 0; F3F7wðx1; x3Þ ¼ 0 (A.11)

where mk are the roots of the characteristic eqs. (A.12) and (A.13).
m1,m2,m4,m5,m6 and m8 are obtained from the piezomagnetism eq.
(A.12) while m3 and m7 are obtained from the electrostatics eq.
(A.13):

d6m
6 þ d5m

5 þ d4m
4 þ d3m

3 þ d2m
2 þ d1mþ d0 ¼ 0: (A.12)

b11m
2 � 2b13mþ b33 ¼ 0 (A.13)
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where
d0 ¼ S33y33 þ b233; d1 ¼ �2S35y33 � 2S33y13 � 2b33ðb13 þ b35Þ;
d2 ¼ S33y11 þ 4S35y13 þ y33ð2S13 þ S55Þ þ 2b33ðb31 þ b15Þ þ ðb13 þ b35Þ2;
d3 ¼ �2b11b33 � 2S15y33 � 2S35y11 � 2y13ð2S13 þ S55Þ � 2ðb31 þ b15Þðb13 þ b35Þ;
d4 ¼ S11y33 þ 4S15y13 þ y11ð2S13 þ S55Þ þ 2b11ðb13 þ b35Þ þ ðb31 þ b15Þ2;
d5 ¼ �2S11y13 � 2S15y11 � 2b11ðb31 þ b15Þ; d6 ¼ S11y11 þ b211:
Eq. (A.7) for elastic dielectric materials can be written symbol-
ically as forth degree differential equation for elasticity and two
second degree differential equations for electrostatics and
magnetostatics:

F1F2F5F6fðx1; x3Þ ¼ 0; F3F7wðx1; x3Þ ¼ 0; F4F8rðx1; x3Þ ¼ 0
(A.14)

where mk are the roots of the characteristic eqs. (A.15), (A.13) and
(A.10). m1,m2,m5 and m6 are obtained from the elasticity eq. (A.15),
m3 and m7 are obtained from the electrostatics eq. (A.13), while m4
and m8 are obtained from the magnetostatics eq. (A.10):

S11m
4 � 2S15m

3 þ ð2S13 þ S55Þm2 � 2S35m
3 þ S33 ¼ 0 (A.15)

Note that if there are no piezoelectric and piezomagnetic cou-
plings, eqs. (A.9) and (A.12) break down, and eqs. (A.15), (A.13) and
(A.10) should be used to obtain the roots mk.

In general, the roots of eqs. (A.9) and (A.10) for piezoelectric
materials, (A.12) and (A.13) for piezomagnetic materials, or those of
eqs. (A.15), (A.13) and (A.10) for elastic dielectric materials are
complex with four conjugate pairs:

m1 ¼ Am1 þ iBm1; m2 ¼ Am2 þ iBm2; m3 ¼ Am3 þ iBm3;
m4 ¼ Am4 þ iBm4;
m5 ¼ m1; m6 ¼ m2; m7 ¼ m3; m8 ¼ m4

(A.16)

inwhich i ¼
ffiffiffiffiffiffiffi
�1

p
, Amk and Bmk (k¼ 1, 2, 3, 4) are all distinct. Over-bar

denotes complex conjugate.
Integration of eq. (A.8) leads to the general solution for the

complex potential functions f(x1, x3) and r(x1, x3) for piezoelectric
materials as:

fðx1; x3Þ ¼ 2Re
X3
k¼1

fkðzkÞ; rðx1; x3Þ ¼ 2Reðu4ðz4ÞÞ (A.17)

where fk(zk) is an arbitrary function of the complex variable
zk ¼ x1 þ mkx3, and u4(z4) is an arbitrary function of the complex
variable z4 ¼ x1 þ m4x3. By virtue of eqs. (A.3) and (A.17), the general
solution for the complex potential function w(x1, x3) can be
expressed as:

wðx1; x3Þ ¼ 2Re
X3
k¼1

hk
vfkðzkÞ
vzk

(A.18)

Where
hk ¼ �l2ðmkÞ
l1ðmkÞ

; l1ðmkÞ ¼ b11m
2
k � 2b13mk þ b33;

l2ðmkÞ ¼ �g11m
3
k þ ðg15 þ g31Þm2k � ðg13 þ g35Þmk þ g33:

Integration of eq. (A.11) leads to the general solution for the
complex potential functions f(x1, x3) and w(x1,x3) for piezomagnetic
materials as:

fðx1; x3Þ ¼ 2Re
X

k¼1;2;4

fkðzkÞ; wðx1; x3Þ ¼ 2Reðu3ðz3ÞÞ (A.19)

By virtue of eqs. (A.3) and (A.19), the general solution for the
complex potential function r(x1, x3) can be expressed as:

rðx1; x3Þ ¼ 2Re
X

k¼1;2;4

tk
vfkðzkÞ
vzk

(A.20)

Where

tk ¼ �l4ðmkÞ
l3ðmkÞ

; l3ðmkÞ ¼ y11m
2
k � 2y13mk þ y33;

l4ðmkÞ ¼ �b11m
3
k þ ðb15 þ b31Þm2k � ðb13 þ b35Þmk þ b33:

Integration of eq. (A.14) leads to the general solution for the
complex potential functions f(x1, x3), w(x1,x3) and r(x1, x3) for elastic
dielectric materials as:

fðx1; x3Þ ¼ 2Re
X2
k¼1

fkðzkÞ; wðx1; x3Þ ¼ 2Reðu3ðz3ÞÞ;

rðx1; x3Þ ¼ 2Reðu4ðz4ÞÞ
(A.21)

Introducing new complex potential functions:

ukðzkÞ ¼
vfkðzkÞ
vzk

(A.22)

where k¼1,2,3 for the piezoelectric case (u4(z4) is already defined
in eq. (A.17) for this case), k¼1,2,4 for the piezomagnetic case
(u3(z3) is already defined in eq. (A.19) for this case), and k¼1,2 for
the mechanical part of the uncoupled material (u3(z3) and u4(z4)
are already defined in eq. (A.21) for this case), the expressions of
f(x1, x3), w(x1,x3) and r(x1, x3) in eq. (A.17)e(A.21) can be generalized
to account for all cases as:
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fðx1; x3Þ ¼ 2Re
P4
k¼1

gkfkðzkÞ; wðx1; x3Þ ¼ 2Re
X4
k¼1

lkukðzkÞ;

rðx1; x3Þ ¼ 2Re
P4
k¼1

DkukðzkÞ

(A.23)

where for uncoupled (elastic dielectric) materials:
gk ¼ dk1 þ dk2; lk ¼ dk3; Dk ¼ dk4;

for piezoelectric: gk ¼ 1� dk4; Dk ¼ dk4;

lk ¼ gkhk

¼ ð1� dk4Þ
g11m3k � ðg15 þ g31Þm2k þ ðg13 þ g35Þmk � g33

b11m
2
k � 2b13mk þ b33

and for piezomagnetic: gk ¼ 1� dk3; lk ¼ dk3;

Dk ¼ gktk

¼ ð1� dk3Þ
b11m3k � ðb15 þ b31Þm2k þ ðb13 þ b35Þmk � b33

y11m
2
k � 2y13mk þ y33

dij is the Kronecker delta. Substituting eq. (A.23) into eq. (A.1),
general expressions for the stress, electric displacement, magnetic
induction, strain, electric field and magnetic field components for
any type of material can be obtained in terms of the complex po-
tential functions uk(zk) as in eq. (18), where:
pk ¼ gk

�
S11m

2
k þ S13 � S15mk

�
þ lkðg11mk � g31Þ þ Dkðb11mk � b31Þ;

qk ¼ gk

�
S13m

2
k þ S33 � S35mk

�
þ lkðg13mk � g33Þ þ Dkðb13mk � b33Þ;

rk ¼ gk

�
S15m

2
k þ S35 � S55mk

�
þ lkðg15mk � g35Þ þ Dkðb15mk � b35Þ;

sk ¼ gk

�
g11m

2
k þ g13 � g15mk

�
� lkðb11mk � b13Þ; tk ¼ gk

�
g31m

2
k þ g33 � g35mk

�
� lkðb13mk � b33Þ;

hk ¼ gk

�
b11m

2
k þ b13 � b15mk

�
� Dkðy11mk � y13Þ; lk ¼ gk

�
b31m

2
k þ b33 � b35mk

�
� Dkðy13mk � y33Þ:
The roots mk(k ¼ 1, …, 8) depend on the material type as
described above. Note that if there are no piezoelectric and piezo-
magnetic couplings, eqs. (A.9) and (A.12) break down, and eqs.
(A.15), (A.13) and (A.10) should be used to obtain the roots mk.

Invoking the gradient relations in eq. (3), the general solution
for displacement, electric and magnetic potentials can be obtained
as in eq. (17).
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