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We consider a class of piezoelectric materials with defects, voids, and/or elastic dielectric or piezoelectric
inclusions. We develop computationally highly efficient as well as mathematically highly accurate
methods for the Direct Numerical Simulation (DNS) of micro/meso mechanics of such materials, for the
purposes of: 1. determining the meso/macro physical properties of such materials, and 2. studying the
mechanics of damage initiation at the micro-level in such materials. In this paper, we develop what we
label as ‘‘Trefftz-Lekhnitskii Grains (TLGs)’’, each of which can model a single grain of piezoelectric
materials with voids. These TLGs are of arbitrary geometrical shapes, to mimic the natural shape of each
micro-grain of the material.

The TLGs are based on expressing the mechanical and electrical fields in the interior of each grain in
terms of the Trefftz solution functions derived from Lekhnitskii formulation for piezoelectric materials.
The potential functions are written in terms of Laurent series which can describe interior or exterior
domains where negative exponents are used only in the latter case. The boundary conditions at the outer
boundaries of each TLG can be enforced using a boundary variational principle, collocation or least squares
method, while the boundary conditions at the inner (void/inclusion) boundary can be enforced using col-
location/least squares, or by using the special solution set which satisfy the traction-free, charge-free
boundary conditions at the void periphery. These various methods of enforcing the boundary conditions
generate different grains which are denoted as TLG-BVPs, TLG-C, TLG-Cs, TLG-LS, TLG-LSs (where BVP
refers to ‘‘boundary variational principle’’, C refers to ‘‘collocation’’, LS refers to ‘‘Least Squares’’, and s
refers to ‘‘special solution set’’). Several examples of the DNS of micro/meso mechanics of porous piezo-
electric materials are presented, not only to determine the macro physical properties of such materials,
but also to study the mechanisms for damage precursors in such intelligent materials.

� 2013 Elsevier B.V. All rights reserved.
1. Introductions and literature review

Piezoelectric materials are smart materials that are strained
when subjected to electric fields (this is the so-called ‘‘direct ef-
fect’’) and are electrically polarized when they are strained (which
is the ‘‘converse effect’’). During the last 4 decades, large amounts
of experimental, analytical and computational research were con-
ducted to study the linear and non-linear behaviors of such mate-
rials in different applications under different loading conditions.
Transducers, actuators, frequency generators and smart material
systems for aerospace and medical industries, are among the sev-
eral applications of these materials.

Piezoelectric ceramics are also used in smart composite materi-
als because these composites possess some enhanced properties
over monolithic piezoelectric materials such as bigger range of
coupled properties, better acoustic properties or figures of merit,
and less brittleness. Both ‘‘subtractive’’ and ‘‘additive’’ approaches
were used to develop piezoelectric composites where, in the ‘‘sub-
tractive’’ approach, controlled porosity are added to the piezoelec-
tric material to form porous piezoelectric material with reduced
density [1]. These porous piezoelectric materials found applica-
tions such as miniature accelerometers, vibration sensors, contact
microphones and hydrophones. On the other hand, in the ‘‘addi-
tive’’ approach, the effective properties of the composite are opti-
mized by combining two or more constituents. The second phase
could be dielectric ceramic [2], metal [3], or polymer [4] to modu-
late the electrical properties. Piezoelectric ceramics are also used in
smart composite materials where piezoelectric rods (fibers) are
embedded in an elastic matrix.

Porous piezoelectric materials have several advantages such as
lack of possibility of destructive chemical reactions between the
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piezoelectric ceramic and the second phase during production
(porous piezoelectric ceramics are composed of ceramics only,
the second phase is air), ability to control pore size, shape and dis-
tribution (hence piezoelectric properties can be tailored), light
weight compared to monolithic piezoelectric materials and
piezoelectric composites, reduced price of production compared
to other piezoelectric composites, and low acoustic impedances
compared to dense ceramics, hence they could be used to improve
the mismatch of acoustic impedances at the interfaces of medical
ultrasonic imaging devices or underwater sonar detectors [5].

Analytical models of porous piezoelectric materials are only
available for simple geometries such as infinite plate with circular
or elliptical holes as presented in [6–9] using either Lekhnitskii for-
malism [10] or the extended Stroh formalism [11]. However for
more complicated geometries and practical problems, numerical
methods such as finite elements, boundary elements, meshless or
Trefftz methods should be used.

Modeling domains with defects (holes, inclusions or cracks)
using the ordinary finite element method needs mesh refinement
around defects in order to achieve acceptable results for the gradi-
ents of fields; hence it is very complex, time-consuming, and
costly. Thus, special methods should be used to model defects. Spe-
cial methods for Direct Numerical Simulation (DNS) of micro/meso
structures of isotropic elastic materials were developed by Dong
and Atluri as 2D and 3D Trefftz [12–14] and SGBEM cells [15–
18], where each cell models an entire grain of the material, with
elastic/rigid inclusions or voids, for direct numerical micromechan-
ical analysis of composite and porous materials. Elements with
elliptical holes were also developed by Wang and Qin [19]. For pie-
zoelectric materials, Wang et al. [20] developed a hybrid finite ele-
ment with a hole based on Lekhnitskii formalism, while Cao et al.
[21] developed a hybrid finite element with defects based on the
extended Stroh formalism. The boundary element method was also
used by Xu and Rajapakse [22] to analyze piezoelectric materials
with elliptical holes. In addition, Trefftz Cells were used to model
microstructures with defects, using the multi-source-point Trefftz
method in [23] for plane elasticity, and multi-domain Trefftz
boundary collocation method for plane piezoelectricity macrome-
chanics developed by Sheng et al. [24] based on Lekhnitskii
formalism.

The basic idea of the various Trefftz methods is to use the so-
called Trefftz functions which satisfy the homogenous governing
equations of the relevant physical phenomenon as the trial and/
or weight functions. A complete set of Trefftz functions that satisfy
only the homogenous governing equations is sometimes termed as
a basic solution set. A complete set of Trefftz functions that satisfy
both the homogenous governing equations and the homogenous
boundary conditions is sometimes termed as a special solution
set. To formulate any Trefftz methods, Trefftz functions must be
available.

In this paper, Trefftz-Lekhnitskii Grains (TLGs) are developed for
modeling porous piezoelectric materials where each grain has an
arbitrarily polygonal shape, and may or may not include a circular
or an arbitrarily oriented elliptical void, for Direct Numerical Sim-
ulation of the micromechanics of porous piezoelectric materials.
The advantage of using TLGs is that each TLG may represent a sin-
gle grain in the material that has its own polling direction. The
Dirichlet tessellation used to construct the mesh and the geometric
shapes of the TLGs resembles the physical configurations of the
grains in the mesomechanics, wherein each grain may be sur-
rounded by an arbitrary number of neighboring grains; hence TLGs
are expected to show field distributions that cannot be obtained
using regular triangular and four-sided elements. Lekhnitskii for-
malism is employed here due to the relatively explicit nature of
the derived Trefftz functions. 2D and 3D radial basis function
(RBF) grains and SGBEM grains were successfully used to model
the switching phenomena in ferroelectric materials by Bishay
and Atluri [25] and to model heterogeneous and functionally
graded materials in [26,27,12–18].

For TLGs that include voids, three methods can be used to en-
force matrix boundary primal fields’ continuity. These methods
are boundary variational principle (BVP), collocation (C), or least
squares (LS), while void boundary conditions can be enforced using
collocation/least squares method or by using the special solution
set which is available only for impermeable voids. Accordingly, five
types of grains are presented here and denoted as TLG-C, TLG-LS,
TLG-BVPs, TLG-Cs and TLG-LSs (where the last ‘‘s’’ in the latter
three denotes ‘‘special solution set’’). There is no need to enforce
void boundary conditions in the latter three grains, because the
special solution set already satisfies the traction-free, charge-free
conditions. This makes these grains more efficient. However, for
other cases, such as grains with piezoelectric or dielectric
inclusions, the special solution set does not exist and hence it is
very important to present the first two grain types which will be
extended to the aforementioned cases in a future work.

The paper is organized as follows: Section 2 introduces all gov-
erning equations and boundary conditions. Lekhnitskii’s solution
for plane piezoelectric problem is presented in Section 3, while
Trefftz-Lekhnitskii Grain (TLG) formulation for piezoelectric mate-
rials with/without voids is introduced in Section 4. Numerical
examples are provided in Section 5 and conclusions are summa-
rized in Section 6.
2. Governing equations and boundary conditions

Consider a domain X filled with piezoelectric material or por-
ous piezoelectric material. On the boundary of the domain, de-
noted @X, we can specify displacement on Su or traction on St

(not both at any point. i.e., Su \ St = Ø). Similarly we can specify
electric potential on Su or electric charge per unit area (electric
displacement) on SQ (where again Su \ SQ = Ø). So @X = Su [ St =
Su [ SQ. The whole domain X can be divided into N elements
X ¼

PN
e¼1X

e (where each element may represent a grain in the
material). The intersection of the boundary of grain e, denoted
@Xe, with Su, St, Su and SQ is Se

u; Se
t ; Se

u and Se
Q , while the intersec-

tion with the neighboring grain boundaries is denoted Se
g . Hence

@Xe ¼ Se
u [ Se

t [ Se
g ¼ Se

u [ Se
Q [ Se

g .
Each grain domain, Xe, may contain a void filling the domain Xe

c

and has a boundary @Xe
c such that Xe

c � Xe and @Xe
c \ @X

e ¼ Ø. In
this case, the region outside the void domain in grain e is called
the matrix domain Xe

m ¼ Xe �Xe
c . Fig. 1 (left) shows one grain

(irregular polygonal element in the 2D case) with an arbitrary void.
The figure also shows the crystallographic coordinates and the
polling direction.

Adopting matrix and vector notation and denoting u (2 compo-
nents), e (3 components) and r (3 components) as the mechanical
displacement vector, strain and stress tensors written in vector
form respectively, and u (scalar), E (2 components) and D (2 com-
ponents) as the electric potential, electric field and electric dis-
placement vectors respectively. The following equations should
be satisfied in the piezoelectric matrix domain, Xe

m:

(1) Stress equilibrium and Charge conservation (Gauss’s)
equations:
@T
urþ �b ¼ 0; r ¼ ðrÞT ; @T

eD� �qf ¼ 0 ð1Þ
where �b is the body force vector, and �qf is the electric free charge
density (which is approximately zero for dielectric and piezoelectric
materials).

(2) Strain–displacement and Electric field–electric potential
equations:



Fig. 1. (left) 2D irregular polygon (grain) with an elliptical void and its local coordinates (x1 � x3) as well as the global (X1 � X3), grain local ðx̂1 � x̂3Þ and crystallographic
x01 � x03
� �

Cartesian coordinate systems, (right) Elliptical void and its local coordinate system as well as the polling direction of the piezoelectric material.
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e ¼ @uu; E ¼ �@eu ð2Þ
where @u ¼
@
@x1

0 @
@x3

0 @
@x3

@
@x1

" #T

@e ¼ @
@x1

@
@x3

h iT

This representation of electric field (Eq. (2)), as gradients of an
electric potential includes the assumption that Faraday’s equation
ðr � E ¼ � @B

@t ¼ 0, where B is the magnetic flux density) is satisfied
for electrostatics. Note that we consider only two equations
(Gauss’s and Faraday’s equations) from the four Maxwell’s equa-
tions. The remaining two equations (Gauss’s law for magnetism
and Ampere’s law with Maxwell’s correction) are not considered
in the electrostatic analysis of piezoelectric materials.

(3) Piezoelectric material constitutive laws:
r ¼ CEe� eT E
D ¼ eeþ heE

or
e ¼ SDrþ gT D
E ¼ �grþ brD

ð3Þ
where CE, he, SD, br are, respectively, the elastic stiffness tensor
measured under constant electric field, dielectric permittivity ten-
sor measured under constant strain, elastic compliance tensor mea-
sured under constant electric displacement, and inverse of the
dielectric permittivity tensor measured under constant stress. e
and g are piezoelectric tensors measured under constant strain
and stress respectively.
The SI units of the mentioned fields are as follows: stress r (Pa or N/
m2), strain e (m/m), electric displacement D (C/m2), electric field E
(V/m or N/C), and the SI units of the material matrices are: CE (Pa or
N/m2), SD (m2/N), he (C/Vm), br (Vm/C), e (C/m2), and g (m2/C).
Note that SD – (CE)�1 and br – (he)�1. The material constants in Eq.
(3) are related through:
SD gT

�g br

� �
¼ CE �eT

e he

� ��1

ð4Þ
Matrix boundary conditions:

(1) Mechanical natural (traction) and essential (displacement)
boundary conditions:
nrr ¼ �t at St or Se
t ; u ¼ �u at Su or Se

u; ð5Þ
(2) Electric natural and essential boundary conditions:
neD ¼ Q at SQ or Se
Q ; u ¼ �u at Su or Se

u; ð6Þ

where nr ¼
n1 0 n3

0 n3 n1

� �
; and ne ¼ n1 n3½ �; ð7Þ
�t is the specified boundary traction vector, Q is the specified surface
density of free charge. n1 and n3, the two components present in nr

and ne are the components of the unit outward normal to the
boundaries St (or Se

t ), and SQ (or Se
Q ), respectively. �u is the

specified mechanical displacement vector at the boundary Su (or
Se

u), �u is the specified electric potential at the boundary Su (or
Se
u).

The following conditions should also be satisfied at each inter-
grain boundary Se

g:

(1) Mechanical displacement and Electric potential compatibil-
ity conditions:
uþ ¼ u�; uþ ¼ u� ð8Þ
(2) Mechanical traction and Electric charge reciprocity
conditions:
ðnrrÞþ þ ðnrrÞ� ¼ 0; ðneDÞþ þ ðneDÞ� ¼ 0 ð9Þ
Impermeable void boundary conditions

Dielectric constants of piezoelectric materials are three orders
of magnitude higher than that of air or vacuum inside the void.
This means that charges do not accumulate on the void boundary
and the impermeable assumption can be adopted. We then have
traction-free, charge-free conditions along the void boundary, @Xe

c:

t ¼ nrr ¼ 0; Q ¼ neD ¼ 0 ð10Þ
2.1. Plane-stress and plane-strain assumptions

If the considered body is very thin in the 2-direction (plane
stress case), the assumptions: r02 ¼ r04 ¼ r06 ¼ 0; D02 ¼ 0 can be
used and the constitutive equation (Eq. (3)) of a piezoelectric mate-
rial polled in the crystal axis 3, with respect to the crystallographic
axes x01 � x03 can be written as:

e01
e03
e05
E01
E03

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

S011 S013 0 0 g031

S013 S033 0 0 g033

0 0 S044 g015 0
0 0 �g015 b011 0
�g031 �g033 0 0 b033

26666664

37777775
r01
r03
r05
D01
D03

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð11Þ

where subscripts of material matrices in Eq. (3) are omitted for
simplicity.
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If the body is very long (infinite) in the 2-direction (plane strain
case), then we have the assumptions: e02 ¼ e04 ¼ e06 ¼ 0; E02 ¼ 0, and
the constitutive equation can be written as:

e01
e03
e05
E01
E03

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

S011 S013 0 0 �g031

S013 S033 0 0 �g033

0 0 S044 �g015 0
0 0 ��g015

�b011 0
��g031 ��g033 0 0 �b033

26666664

37777775
r01
r03
r05
D01
D03

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð12Þ

where

S011 ¼
S0211 � S0212

S011

; S013 ¼
S013 S011 � S012

� �
S011

; S033 ¼
S011S033 � S0213

S011

;

S044 ¼ S044

�g031 ¼
g031 S011 � S012

� �
S011

; �g033 ¼
S011g033 � S013g031

S011

; �g015 ¼ g015;

�b011 ¼ b011;
�b033 ¼

S011b
0
33 þ g0231

S011
3. General solution of plane piezoelectricity using Lekhnitskii
formulation

Let x01; x
0
3

� �
be the principal material (crystallographic) coordi-

nates, x03 be the poling direction and (x1, x3) be the set of coordi-
nates obtained by rotating x01; x

0
3

� �
through an anti-clockwise

rotation f, see Fig. 1(right). Using Lekhnitskii formalism, Xu and
Rajapakse [7] derived the general solution of plane piezoelectricity
with respect to (x1, x3) coordinate system as follows:

The constitutive equation with respect to the crystallographic
axes x01 � x03 for plane stress and plane strain problems, with the
stress and electric displacement as the objectives of the equations,
can be written in compact form as:

e0

E0

� �
¼ S0 g0T

�g0 b0

" #
r0

D0

� �
ð13Þ

where subscripts of material matrices in Eq. (3) are omitted for
simplicity.

By invoking tensor transformation rule, the constitutive rela-
tions can be written with respect to (x1, x3) coordinate system as:

e1

e3

e5

E1

E3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

S11 S13 S15 g11 g31

S13 S33 S35 g13 g33

S15 S35 S55 g15 g35

�g11 �g13 �g15 b11 b13

�g31 �g33 �g35 b13 b33

26666664

37777775
r1

r3

r5

D1

D3

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
or

e

E

� �
¼ S gT

�g b

� �
r

D

� �

ð14Þ

In which

S ¼ TT
2S0T2; g ¼ TT

1g0T2; b ¼ TT
1b
0T1 ð15Þ

In the above equations,

T1 ¼
cos f � sin f

sin f cos f

� �
and

T2 ¼
cos2 f sin2 f �2 sin f cos f

sin2 f cos2 f 2 sin f cos f

sin f cos f � sin f cos f cos2 f� sin2 f

264
375:

It can be seen that the coefficients S, g and b are functions of the
angular rotation f.

Based on Lekhnitskii formalism, two complex potential func-
tions: stress function, /(x1, x3), and induction function, w(x1, x3),
are introduced as:
r1 ¼
@2/ðx1; x3Þ

@x2
3

; r3 ¼
@2/ðx1; x3Þ

@x2
1

; r5 ¼ �
@2/ðx1; x3Þ
@x1@x3

;

D1 ¼
@wðx1; x3Þ

@x3
; D3 ¼ �

@wðx1; x3Þ
@x1

:

ð16Þ

The balance rules for plane piezoelectricity (Eq. (1)) in the ab-
sence of body force and free-charge density (�b ¼ 0; qf ¼ 0) can
be satisfied by Eq. (16). Substituting Eq. (16) into Eq. (14) and
invoking the following strain and electric field compatibility
equations:

@2e1

@x2
3

þ @
2e3

@x2
1

� @2e5

@x1@x3
¼ 0;

@E1

@x1
� @E3

@x3
¼ 0 ð17Þ

two differential equations coupled in /(x1, x3) and w(x1, x3) can be
obtained. Eliminating w(x1, x3), the governing equations of plane
piezoelectricity are reduced to the following sixth-order differential
equation which can be written symbolically as:

F1F2F3F4F5F6/ðx1; x3Þ ¼ 0 ð18Þ

where Fk = (@/@x3) � lk(@/@x1) and lk (k = 1, . . ., 6) are the roots of
the characteristic equation:

c6l6 þ c5l5 þ c4l4 þ c3l3 þ c2l2 þ c1lþ c0 ¼ 0: ð19Þ

where

c0 ¼ S33b33þg2
33; c1 ¼�2S35b33�2S33b13�2g33ðg13þg35Þ;

c2 ¼ S33b11þ4S35b13þb33ð2S13þS55Þþ2g33ðg31þg15Þþðg13þg35Þ
2
;

c3 ¼�2g11g33�2S15b33�2S35b11�2b13ð2S13þS55Þ�2ðg31þg15Þðg13þg35Þ;

c4 ¼ S11b33þ4S15b13þb11ð2S13þS55Þþ2g11ðg13þg35Þþðg31þg15Þ
2;

c5 ¼�2S11b13�2S15b11�2g11ðg31þg15Þ; c6 ¼ S11b11þg2
11:

In general, the roots of Eq. (19) are complex with three conjugate
pairs, i.e.

l1 ¼ A1 þ iB1; l2 ¼ A2 þ iB2; l3 ¼ A3 þ iB3;

l4 ¼ �l1; l5 ¼ �l2; l6 ¼ �l3
ð20Þ

in which i ¼
ffiffiffiffiffiffiffi
�1
p

, Ak and Bk (k = 1, 2, 3) are all distinct. Over-bar de-
notes complex conjugate. Integration of Eq. (18) leads to the general
solution for the complex potential function /(x1, x3) as:

/ðx1; x3Þ ¼ 2Re
X3

k¼1

/kðzkÞ ð21Þ

where /k(zk) is an arbitrary function of the complex variable
zk = x1 + lkx3. Introducing three new complex potential functions:

xkðzkÞ ¼
@/kðzkÞ
@zk

; k ¼ 1;2;3; ð22Þ

the stress, electric displacement, strain and electric field compo-
nents can be expressed in terms of the complex potential functions
xk (zk) as:

r1

r3

r5

8><>:
9>=>; ¼ 2Re

X3

k¼1

l2
k

1

�lk

8>><>>:
9>>=>>;x0kðzkÞ;

D1

D3

( )
¼ 2Re

X3

k¼1

dklk

�dk

( )
x0kðzkÞ

e1

e3

e5

8><>:
9>=>; ¼ 2Re

X3

k¼1

pk

qk

rk

8><>:
9>=>;x0kðzkÞ;

E1

E3

( )
¼ �2Re

X3

k¼1

sk

tk

( )
x0kðzkÞ

ð23Þ

where the prime (0) denotes derivative with respect to zk and,
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dk ¼
g11l3

k
�ðg15þg31Þl2

k
þðg13þg35Þlk�g33

b11l2
k
�2b13lkþb33

;

pk ¼ S11l2
k þ S13 � S15lk þ dkðg11lk � g31Þ;

qk ¼ S13l2
k þ S33 � S35lk þ dkðg13lk � g33Þ;

rk ¼ S15l2
k þ S35 � S55lk þ dkðg15lk � g35Þ;

sk ¼ g11l2
k þ g13 � g15lk � dkðb11lk � b13Þ;

tk ¼ g31l2
k þ g33 � g35lk � dkðb13lk � b33Þ:

Invoking the gradient relations for plane piezoelectricity in Eq. (2),
the general solution for displacement and electric potential can be
obtained as:

u1

u3

u

8><>:
9>=>; ¼ 2Re

X3

k¼1

pk

qk=lk

sk

8><>:
9>=>;xkðzkÞ ð24Þ
3.1. Basic solution sets

For an elliptical void as shown in Fig. 1(right), the following
conformal mapping can be used to transform an ellipse in zk-plane
into a unit circle in nk-plane [28]:

zk ¼
ao � ilkbo

2
nk þ

ao þ ilkbo

2
n�1

k ; k ¼ 1;2;3 ð25Þ

where ao and bo are the half lengths of the void axes as shown in
Fig. 1(right). The inverse mapping has the form:

nk ¼
zk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

k � a2
o þ l2

k b2
o

	 
r
ao � ilkbo

; k ¼ 1;2;3 ð26Þ

where the sign of the square root (±) is chosen in such a way that
jnkjP 1.

Using the general solution, the plane piezoelectric problem has
been reduced to the one of solving for the complex potential func-
tions xk. For interior domain problems without flux singularities,
xk can be represented by Taylor series [29], i.e.

xkðzkÞ ¼
X1
n¼0

aðnÞk þ ibðnÞk

	 

zn

k ; k ¼ 1;2;3 ð27Þ

In the case of a domain exterior to an elliptical void, xk can be rep-
resented by Laurent series in terms of nk instead of zk [29].

xkðnkÞ ¼
X1
n¼0

aðnÞk þ ibðnÞk

	 

nn

k þ
X1
n¼1

að�nÞ
k þ ibð�nÞ

k

	 

n�n

k ; k ¼ 1;2;3

ð28Þ

where að�nÞ
k and bð�nÞ

k (k = 1, 2, 3 and n = 1, 2, 3, . . .) are real coeffi-
cients. Along the void boundary which is a unit circle in the nk-
plane, we have: jnkj = 1 or n1 = n2 = n3 = eiH where H 2 [�p, p]. Note
that �nn

k ¼ n�n
k on the unit circle.

For exterior domains, xk(zk) and x0kðzkÞ are replaced by xk(nk)

and
x0

k
ðnkÞ

z0
k
ðnkÞ

in Eqs. (23) and (24), where z0k ¼ A� Bn�2
k ,

A ¼ ao�ilkbo
2 ; B ¼ aoþilkbo

2 and the prime (0) now denotes derivative
with respect to nk. Hence, in the coming equations, the following
will be used:

Zk ¼
zk for interior domains
nk for exterior domains

�

Yn�1
k ¼

zn�1
k for interior domains
nn�1

k

A�Bn�2
k

for exterior domains

8<:
By substituting xk in Eq. (27), or Eq. (28) into Eq. (24), the basic set
of Trefftz functions for electromechanical displacement
u ¼ fu1;u3;ugT , electromechanical stress and strain
r ¼ r1 r3 r5 D1 D3f gT
; e ¼ e1 e3 e5 E1 E3f gT for inte-

rior or exterior domain problems respectively, can be obtained as:

u ¼ 2
XM

n¼Ms

X3

k¼1

ReðDkÞRe Zn
k

� �
� ImðDkÞIm Zn

k

� �� �
aðnÞk

h
� ReðDkÞIm Zn

k

� �
þ ImðDkÞRe Zn

k

� �� �
bðnÞk

i
ð29Þ

r ¼ 2
XM

n¼Ms

X3

k¼1

ReðGkÞRe nYn�1
k

	 

� ImðGkÞIm nYn�1

k

	 
	 

aðnÞk

h
� ReðGkÞIm nYn�1

k

	 

þ ImðGkÞRe nYn�1

k

	 
	 

bðnÞk

i
ð30Þ

e ¼ 2
XM

n¼Ms

X3

k¼1

ReðHkÞRe nYn�1
k

	 

� ImðHkÞIm nYn�1

k

	 
	 

aðnÞk

h
� ReðHkÞIm nYn�1

k

	 

þ ImðHkÞRe nYn�1

k

	 
	 

bðnÞk

i
ð31Þ

In the above, Dk ¼ fpk; qk=lk; skgT , Gk ¼ l2
k ;1;�lk; dklk;�dk

� �T
;

Hk ¼ fpk; qk; rk;�sk;�tkgT and the upper limit of n (the maximum
order of Zk used in Trefftz functions) is taken to be M for numerical
implementation, while the lower limit Ms is taken as:

Ms ¼
0 for interior domains
�M for exterior domains

�
For interior/exterior solutions, when n is increased by one, six/
twelve Trefftz functions with their corresponding undetermined
real coefficients að�nÞ

1 ; bð�nÞ
1 ; að�nÞ

2 ; bð�nÞ
2 ; að�nÞ

3 ; bð�nÞ
3

n o
are added to the

solution. So the number of Trefftz functions mT (which is also equiv-
alent to the number of undetermined real coefficients) is:

mT ¼
6ðM þ 1Þ for interior domain solution
6ð2M þ 1Þ for exterior domain solution

�
ð32Þ

Note that when n = 0, the associated six Trefftz functions corre-
spond to rigid-body modes (constant mechanical displacements
and electric potential), and vanishing stress, strain, electric field
and electric displacement: r = 0, e = 0,
u ¼ 2

P3
k¼1 ReðDkÞað0Þk � ImðDkÞbð0Þk

h i
.

Generally speaking, it is impossible to find a closed form solu-
tion for xk(nk) for arbitrary boundary conditions. For the case of
impermeable elliptical void, a special solution set can be found
as will be presented in the next subsection.

3.2. Special solution set for impermeable elliptical void

Trefftz special solution set accounts for the homogeneous
boundary conditions of voids, cracks etc. Wang et al. [20] con-
structed a special solution set of Trefftz functions for elliptical
voids with axes parallel/perpendicular to polling direction. Sheng
et al. [24] extended this to the case of an arbitrarily oriented
impermeable elliptical voids.

Note that generally along any boundary surface, we can write
[6]:

w ¼ 2Re
X3

k¼1

dkxkðzkÞ ¼ �
Z s

0
ðD3n3 þ D1n1Þds ¼ �

Z s

0
Qds

@/ðx1; x3Þ
@x3

¼ 2Re
X3

k¼1

lkxkðzkÞ ¼
Z s

0
ðn1r1 þ n3r5Þds ¼

Z s

0
t1ds

@/ðx1; x3Þ
@x1

¼ 2Re
X3

k¼1

xkðzkÞ ¼ �
Z s

0
ðn1r5 þ n3r3Þds ¼ �

Z s

0
t3ds

ð33Þ

So for traction-free, charge-free boundary conditions along the void
surface, the following conditions should be satisfied:
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Re
X3

k¼1

xkðnkÞ ¼ 0; Re
X3

k¼1

lkxkðnkÞ ¼ 0; Re
X3

k¼1

dkxkðnkÞ ¼ 0

for jnkj ¼ 1 ð34Þ

which can be written in matrix form as,
�x1

�x2

�x3

8><>:
9>=>; ¼

E11 E12 E13

E21 E22 E23

E31 E32 E33

264
375 x1

x2

x3

8><>:
9>=>; for jnkj ¼ 1 ð35Þ

where
E11 E12 E13

E21 E22 E23

E31 E32 E33

24 35 ¼ � 1 1 1
�l1 �l2 �l3
�d1

�d2
�d3

24 35�1 1 1 1
l1 l2 l3
d1 d2 d3

24 35
Assuming xk(nk) in a form similar to that of Eq. (28) and Substi-

tuting it into Eq. (35) yields six constraint equations on the twelve

real coefficients aðnÞk ; bðnÞk ; að�nÞ
k and bð�nÞ

k ðk ¼ 1;2;3Þ. By expressing

að�nÞ
k and bð�nÞ

k in terms of aðnÞk and bðnÞk , we get:

að�nÞ
k ¼

X3

j¼1

ReðEkjÞaðnÞj � ImðEkjÞbðnÞj

h i
;

bð�nÞ
k ¼ �

X3

j¼1

ImðEkjÞaðnÞj þ ReðEkjÞbðnÞj

h i
ð36Þ

So the number of Trefftz functions mT is reduced to mT = 6(M + 1).
Substituting Eq. (36) into Eqs. (29)–(31) yields the following

special set of Trefftz functions:

uvoid ¼
X1
n¼0

X3

k¼1

UðnÞak
aðnÞk þUðnÞbk

bðnÞk

h i
;

rvoid ¼
X1
n¼0

X3

k¼1

WðnÞak
aðnÞk þWðnÞbk

bðnÞk

h i

evoid ¼
X1
n¼0

X3

k¼1

CðnÞak
aðnÞk þ CðnÞbk

bðnÞk

h i
ð37Þ

where:
UðnÞak
¼ vðnÞak

þ
X3

j¼1

ReðEjkÞvð�nÞ
aj
� ImðEjkÞvð�nÞ

bj

h i
;

UðnÞbk
¼ vðnÞbk

�
X3

j¼1

ImðEjkÞvð�nÞ
aj
þ ReðEjkÞvð�nÞ

bj

h i

WðnÞak
¼ RðnÞak

þ
X3

j¼1

ReðEjkÞRð�nÞ
aj
� ImðEjkÞRð�nÞ

bj

h i
;

WðnÞbk
¼ RðnÞbk

�
X3

j¼1

ImðEjkÞRð�nÞ
aj
þ ReðEjkÞRð�nÞ

bj

h i

CðnÞak
¼ !ðnÞak

þ
X3

j¼1

ReðEjkÞ!ð�nÞ
aj
� ImðEjkÞ!ð�nÞ

bj

h i
;

CðnÞbk
¼ !ðnÞbk

�
X3

j¼1

ImðEjkÞ!ð�nÞ
aj
þ ReðEjkÞ!ð�nÞ

bj

h i
ð38Þ

and in (38):
vð�nÞ
ak
¼ 2ReðDkÞRe n�n

k

� �
� 2ImðDkÞIm n�n

k

� �
;

vð�nÞ
bk
¼ �2ReðDkÞIm n�n

k

� �
� 2ImðDkÞRe n�n

k

� �
Rð�nÞ

ak
¼ �2n ReðGkÞRe n�n�1

k
z0

k

	 

� ImðGkÞIm

n�n�1
k
z0

k

	 
h i
Rð�nÞ

bk
¼ �2n ReðGkÞIm

n�n�1
k
z0

k

	 

þ ImðGkÞRe n�n�1

k
z0

k

	 
h i
!ð�nÞ

ak
¼ �2n ReðHkÞRe n�n�1

k
z0

k

	 

� ImðHkÞIm

n�n�1
k
z0

k

	 
h i
!ð�nÞ

bk
¼ �2n ReðHkÞIm

n�n�1
k
z0

k

	 

þ ImðHkÞRe n�n�1

k
z0

k

	 
h i
Note that for the case of elliptical boundary, using the following el-
lipse parametric equation:

x1ðtÞ ¼ ao cos t; x3ðtÞ ¼ bo sin t; ð39Þ

ds can be written in terms of the parameter t:

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2

1 þ dx2
3

q
¼ Jdt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

o sin2 t þ b2
o cos2 t

q
 �
dt ð40Þ

where J is the Jacobian of the transformation. Then any boundary
integration can be written as a function of t as follows:I
@Xe

c

f ðnkÞds ¼
Z t¼2p

t¼0
f ðnkðtÞÞJdt ð41Þ

where nkðtÞ ¼
zkðtÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzkðtÞÞ2� a2

oþl2
k

b2
oð Þ

p
ao�ilkbo

; zkðtÞ ¼ x1ðtÞ þ lkx3ðtÞ.

In the following, the finite element formulation of the new pro-
posed TLG grains is presented. All the variables should be ex-
pressed in the grain’s Cartesian local coordinate system (x̂1 � x̂3

is Fig. 1 (left)), hence tensor transformation rule can be used again
to do this rotation by an angle �(f + c).

4. Formulation of Trefftz-Lekhnitskii Grains (TLGs) for
piezoelectric materials with/without void

Consider a 2D irregular m-sided polygonal grain with/without a
void as shown in Fig. 1 (left). We can define linear displacements
and electric potential fields along each grain boundary in terms
of the nodal values of the mechanical displacements qui and elec-
tric potential qu, as:

~u¼ eNuqu; ~u¼ eNuqu or ~u¼
~u
~u

� �
¼

eNu 0
0 eNu

" #
qu

qu

( )
¼ eNq at @Xe

ð42Þ

where eNu and eNu are shape functions, ~u ¼ ~u1 ~u3 ~u½ �T and
qT ¼ qT

u qT
u

n o
.

The basic solution set in Eqs. (29) and (30) can be used as the
interior/exterior fields, which satisfy the constitutive law, the
strain–displacement relationship, the electric field-electric poten-
tial relationship and the equilibrium and Gauss’s equations. For
the case of impermeable elliptical voids, the special solution set
in Eq. (37) which satisfies the void stress-free charge-free bound-
ary conditions can be used instead. In matrix and vector notation,
these interior/exterior fields can be written in the form:

u
u

� �
¼

Nu

Nu

� �
a;

r

D

� �
¼

Mr

MD

� �
a; in Xe or u¼Na; r¼Ma; in Xe

ð43Þ

where N contains Trefftz functions in the order of Ms, . . ., 0, 1, . . ., M
and a denotes the unknown real coefficients (að�nÞ

k ; bð�nÞ
k , k = 1, 2, 3

and n = Ms, . . ., M) associated with Trefftz functions. If there is no
void, only the non-negative exponents are used.

The tractions and density of free charge on the boundaries can
be written as:
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t ¼ nrr ¼ nrMra; Q ¼ neD ¼ neMDa at @Xe;

or t ¼
t
Q

� �
¼

nr 0
0 ne

� �
r

D

� �
¼ nr ¼ nMa at @Xe;

ð44Þ

Since the matrix interior fields already satisfy the equilibrium and
Gauss’s Eq. (1), the constitutive Eq. (3), as well as the strain-
mechanical displacement, and electric field-electric potential rela-
tions (Eq. (2)), three steps should be done:

1. Step one: matrix interior primal fields should be related to
matrix boundary primal fields. Once the mechanical displace-
ments and the electric potential are expressed in terms of their
nodal values in each grain, the displacement and the electric
potential continuities (Eq. (8)) are automatically satisfied, and
the essential boundary conditions (in Eqs. (5) and (6)) can be
easily enforced after generating the global system of equations.

2. Step two: the reciprocity conditions (Eq. (9)) as well as the nat-
ural boundary conditions (Eqs. (5) and (6)) should be enforced.

3. Step three: (if a void exists in the grain) the conditions on the
void boundary should also be satisfied as mentioned in
Section 2.

There are at least three ways to accomplish step one: using
multi-field boundary variational principle, using collocation meth-
od and using the least squares method. If a void exists in the grain,
then we can use two methods to satisfy step three: using the spe-
cial solution set as presented in subsection 3.2, or the collocation/
least squares method. In the following, we present different Tre-
fftz-Lekhnitskii Grains (TLGs) with/without voids. Table 1 presents
the considered grains and the methods used to satisfy the previ-
ously mentioned conditions. When the void boundary @Xe

c shrinks
to zero, the grain is reduced to the case of a piezoelectric grain with
no void.

It should be noted that the three grain types that are based on
the special solution set (TLG-BVPs, TLG-Cs, TLG-LSs) are expected
to be more efficient than the other grain-types, because the special
solution set already satisfies the void boundary conditions and
there is no need to collocate along the void boundary. However,
the special solution set is only valid for the case of traction-free,
charge-free voids and it is not available in the literature for other
cases. Actually, these grains are not valid if the void is pressurized,
filled with conducting fluid or if the void is replaced by any type of
inclusions. This is why it is important to consider the other grain
types which will be extended to handle the aforementioned cases
in a future work.

4.1. Using multi-field boundary variational principle

Using the special solution set that satisfies the void boundary
conditions if the grain contains a void, or the basic solution set
for interior domains if the grain contains no void, then a multi-field
boundary variational principle whose Euler–Lagrange equations
(stationarity conditions) are the natural BCs, the reciprocity condi-
tions, as well as the compatibility between interior and boundary
primal fields can be used to derive the grain equation.
Table 1
Different TLGs and the corresponding methods used to satisfy the different conditions (BV
principle’’).

Grain Matrix interior and boundary primal fields continuity

TLG-BVPs BVP
TLG-C Collocation
TLG-Cs Collocation
TLG-LS Least squares
TLG-LSs Least squares
P1ðui; ~ui;u; ~uÞ ¼
XN

e¼1

�
Z
@Xe

1
2
ðtiui þ QuÞdSþ

Z
@Xe
ðti~ui þ Q ~uÞdS

�

�
Z

Se
t

�ti~uidS�
Z

Se
Q

Q ~udS

)
ð45Þ

where i = 1,3 in Eq. (45) and the equations to follow. Euler–Lagrange
equations of this functional are:

ti ¼ nrjrij ¼ �ti at Se
t ; Q ¼ neiDi ¼ Q at Se

Q ;

ðnrjrijÞþ þ ðnrjrijÞ� ¼ 0; ðneiDiÞþ þ ðneiDiÞ� ¼ 0 at Se
g

uþi ¼ u�i ¼ ~ui; uþ ¼ u� ¼ ~u at Se
g

ð46Þ

thus achieving the three steps simultaneously. In matrix and vector
notation P1 can be written as:

P1ðu; ~uÞ¼
XN

e¼1

�
Z
@Xe

1
2

t �udSþ
Z
@Xe

t � ~udS�
Z

Se
t

�t � ~udS�
Z

Se
Q

Q ~udS

( )
ð47Þ

P1ða;qÞ ¼
XN

e¼1

�aT 1
2

R
@Xe MT nT NdS

	 

aþ aT

R
@Xe MT nT eNdS

	 

q

�
R

Se
t

�tT eNudS
	 


qu �
R

Se
Q

Q eNudS
	 


qu

8><>:
9>=>;
ð48Þ

The variation of P1 is:

dP1ðda; dqÞ ¼ d
XN

e¼1

�1
2
aT Hmmaþ aT Gmqq� qT Q

� �

¼
XN

e¼1

�daT Hmmaþ daT Gmqqþ dqT GT
mqa� dqT Q

n o
¼
XN

e¼1

dqT GT
mqa� Q

	 

þ daT Gmqq�Hmma

� �n o
ð49Þ

where

Hmm ¼
Z
@Xe

MT nT NdS; Gmq ¼
Z
@Xe

MT nT eNdS;

Q T ¼
R
Se

t

�tT eNudS
R
Se

Q

Q eNudS
� � ð50Þ

where the matrix interior fields to be used are those presented in
Eq. (37) for the case of a grain with a void, or Eqs. (29) and (30)
for interior domains for a grain with no void.

Using dP1 = 0 and for arbitrary dq and da we get for each grain:

GT
mqa� Q ¼ 0; Gmqq�Hmma ¼ 0

Using the second equation to write a in terms of q as:

a ¼ H�1
mmGmqq ð51Þ

Substituting this into the first equation to get the grain equation
in terms of q:

Kbvpq ¼ Q ; Kbvp ¼ GT
mqH�1

mmGmq ð52Þ
P refers to ‘‘Boundary variational principle’’ and PVP refers to ‘‘Primitive variational

Void boundary conditions Reciprocity and natural BCs

Special solution set BVP
Collocation/least squares PVP
Special solution set PVP
Collocation/least squares PVP
Special solution set PVP
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We denote this grain as ‘‘TLG-BVPs’’ (boundary variational princi-
ple with special solution set) for grains with voids and as
‘‘TLG-BVP’’ for grains with no voids. This formulation clearly in-
volves Lagrangian multipliers and hence suffers from LBB condi-
tions [30,31], which are impossible to be satisfied a priori. This
means that the eigen vaules of the stiffness matrix of an arbi-
trarily distorted grain, without a void for instance, may include
more than four zeros (for the three rigid-body and one constant
electric potential modes) which indicates that the numerical for-
mulation of the grain is not always stable. The stiffness matrix of
TLG-BVPs (or TLG-BVP) grain requires integration along the grain
boundary to evaluate Gmq and Hmm, as well as matrix inversion
(Hmm).

Note that the first six Trefftz functions (corresponding to n = 0)
should be eliminated from N and M when using this method be-
cause they correspond to rigid-body modes which do not contrib-
ute to the strain energy stored in the grain.

4.2. Using collocation method

In this method, the continuity between the matrix interior and
boundary primal fields (electromechanical displacements) are en-
forced in a strong sense at several pre-selected collocation points
xðrÞ, r = 1, 2, . . ., R along the grain boundary @Xe (this is in contrast
to the boundary variational principle where this compatibility was
enforced in a variational sense through the use of Lagrangian mul-
tipliers which renders the formulation plagued by LBB conditions).
Also when using the basic solution set (Eqs. (29)–(31)), the void
boundary conditions are enforced by dividing the void periphery
into number of curved segments, ns, along the void boundary
@Xe

c ¼
Pns

j¼1@X
e
cj, and enforcing the boundary conditions on each

segment. So,

(1) Compatibility between matrix interior and boundary primal
fields along @Xe:
uðxðrÞ;aÞ ¼ ~u xðrÞ;q
� �

; xðrÞ 2 @Xe r ¼ 1;2; . . . ;R ð53Þ
(2) Traction-free and charge-free conditions along @Xe
c:
Z

@Xe
cj

tðx;aÞds ¼ 0; j ¼ 1;2; . . . ; ns ð54Þ
By selecting enough number of void boundary segments, and solv-
ing (53) and (54) in a least-square sense, a is related to q as follows:
Aa ¼ Bq or a ¼ A�1Bq ¼ Zq ð55Þ
Now, the interior fields are related to nodal primal variables (step
one), and the void boundary conditions are enforced (step three),
we just need to enforce the natural boundary conditions as well
as the reciprocity conditions on the outer boundary (step two) using
the following simple primitive field variational principle:
P2ðui;uÞ ¼
XN

e¼1

Z
@Xe

1
2
ðtiui þ QuÞdS�

Z
Se

t

�tiuidS�
Z

Se
Q

QudS

( )
ð56Þ
Whose Euler–Lagrange equations are:
ti ¼ nrjrij ¼ �ti at Se
t ; Q ¼ neiDi ¼ Q at Se

Q ;

ðnrjrijÞþ þ ðnrjrijÞ� ¼ 0; ðneiDiÞþ þ ðneiDiÞ� ¼ 0 at Se
g

ð57Þ

In matrix and vector notation P2 can be written as:
P2ðuÞ ¼
XN

e¼1

Z
@Xe

1
2

t � udS�
Z

Se
t

�t � udS�
Z

Se
Q

QudS

( )
ð58Þ
P2ðqÞ¼
XN

e¼1

1
2

qT ZT
Z
@Xe

MT nT NdS

 �

Zq�
R

Se
t

�tT ~NudS
R

Se
Q

Q eNudS
h i

q
� �

¼
XN

e¼1

1
2

qT ZT HmmZq�qT Q
� �

ð59Þ
The variation of P2 is:
dP2ðdqÞ ¼
XN

e¼1

dqTðZT HmmZÞq� dqT Q
n o

¼
XN

e¼1

dqT Kcq� dqT Q
� �

ð60Þ
where Kc = ZTHmmZ is the stiffness matrix of ‘‘TLG-C’’ grain. This
grain does not suffer from LBB conditions, because there is no
Lagrangian multipliers involved. In order to obtain the stiffness ma-
trix of this grain, only one matrix, Hmm, requires integration over
the outer boundary, as well as the evaluation of Z.
For an impermeable elliptical void, the special solution set (Eq. (37))
can be used as an alternative to the collocation method to enforce
the traction-free, charge-free conditions on the void periphery. In
this case, Eq. (54) is not used in obtaining a in Eq. (55). This grain
is denoted as ‘‘TLG-Cs’’.

4.3. Using the least squares method

When the number of collocation points is increased to a limit of
infinity, it is equivalent to enforcing the compatibility between
boundary and interior primal fields using the least squares meth-
od; that is minimizing the functional L1ðu; ~uÞ:

L1ðu; ~uÞ ¼
Z
@Xe
ðu� ~uÞTðu� ~uÞdS

L1ða;qÞ ¼
Z
@Xe

aT NT Na� 2aT NT eNqþ qT eNT eNq
	 


dS

¼ aT A1a� 2aT B1qþ qT D1q ð61Þ

where A1 ¼
R
@Xe NT NdS; B1 ¼

R
@Xe NT eNdS and D1 ¼

R
@Xe
eNT eNdS.

To minimize L1(a, q) for a fixed q, we have:

dL1ðda;qÞ ¼ 2daT A1a� 2daT B1q ¼ 0 ð62Þ

This should be true for any da, hence together with Eq. (54) that en-
forces the void BCs, we obtain a:

A1

A2

� �
a ¼

B1

0

� �
q or a ¼ Z1q ð63Þ

Eq. (63) is to be used instead of Eq. (55), and hence all the steps used
in constructing TLG-C grain are exactly the same by replacing Z by
Z1 in all equations following Eq. (55) in the previous subsection
where the functional P2(q) was used to derive the grain equation.
This grain is labeled as ‘‘TLG-LS’’. Note that this method requires
additional integration in evaluating A1and B1 as well as matrix
inversion. Again, when using the special solution set (Eq. (37)) to
enforce the void boundary conditions instead of collocating at the
void boundary, the resulting grain is denoted as ‘‘TLG-LSs’’.

4.4. On the selection of the maximum order of Trefftz functions

There are two conditions that should be considered in deter-
mining the maximum order of Trefftz functions, M, to be used in
developing TLG grains. These two conditions are:

1. The number of Trefftz functions (or undetermined coefficients)
m T should be larger than the number of the grain’s degrees of
freedom (DOF) in order to ensure that the number of indepen-
dent Trefftz modes are larger than or equal to the number of the
grain’s DOFs. Note that Trefftz formulation (Eqs. (29) and (30) or



Fig. 2. A Finite rectangular domain with arbitrarily oriented elliptical void.
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Eq. (37)) generates some repeated modes. For example, and as
mentioned earlier, the first 6 Trefftz functions (corresponding
to n = 0) corresponds to 4 rigid-body modes (two translational,
one rotational and one constant electric potential mode). The
number of degrees of freedom in any grain equals to the num-
ber of nodes � the number of degrees of freedom per node i.e.
3m. Hence for rank sufficiency of the grain, the number of
non-rigid-body Trefftz modes, 6M (or 12M when using the basic
solution set for exterior domains), should be larger than the
number of non-rigid-body degrees of freedom which is
3m � 4. This ensures that all grain types except TLG-BVP (or
TLG-BVPs) are stable or rank sufficient (it is impossible to
ensure this for TLG-BVP grain because the grain formulation
involves Lagrangian multipliers as mentioned earlier).

2. The number of equations used to solve for the undetermined
coefficients should be larger than or equal to the number of
these undetermined coefficients (mT). In developing TLG-C (for
grains with no voids) and TLG-Cs, we should select the number
of collocation points used with any m-sided grain. Each colloca-
tion point provides 3 equations since we are collocating the 3
primal variables (the 2 mechanical displacements and the elec-
tric potential). If we use only 2 collocation points per edge then
the total number of collocation equations in any m-sided polyg-
onal grain is m � 2 � 3 = 6m. For TLG-C grains with voids where
the basic solution set is to be used, mT = 6(2M + 1) because the
negative exponents are also considered, thus increasing the
number of unknowns; however 3ns additional equations are
added to enforce the void boundary conditions on the void
periphery. Here, we take ns = 48 (where again ns is the number
of void boundary segments).

When using the basic solution set (interior domains) or the spe-
cial solution set, these two conditions can be expressed as:

6M > 3m � 4 and mT = 6(M + 1) 6 2 � 3m
When using the basic solution set (exterior domains), the two

conditions are:
12M > 3m � 4 and mT = 6(2M + 1) 6 2 � 3m + 3ns

So the conditions on the maximum order of Trefftz functions
can be written as:

3m�4
6

<M 	m�1 when using basic solution set ðinterior

domainsÞ or special solution set
3m�4

12
<M 	 2mþns�2

4
when using basic solution set ðexterior

domainsÞ
ð64Þ

When using the basic solution set (interior domains) or the special
solution set, we can use M ¼ 3m�4

6

� �
, where de is a function that rounds

a number up to an integer. This satisfies the two conditions. In this
work we also use M ¼ 3mþ2

6

� �
which is larger by one order. This is suit-

able for grains with no void, or for grains with void and based on the
special solution set. When using the basic solution set (exterior do-
mains), larger values of M are to be used to increase the accuracy of
the solution without violating the second condition.

Eq. (55) in TLG-C and TLG-Cs grains is over-constrained
whenever the number of collocation points exceeds the number
Table 2
Material properties used in the numerical examples.

C0ij (1010 N m�2)

C011 C013 C033 C044

PZT-4(1) 13.9 7.43 11.3 2.56
PZT-4(2) 12.6 7.43 11.5 2.56
of undetermined coefficients, mT. In addition, the system of
matrices in both TLG-C and TLG-LS (Eqs. (55) and (63)) are singular
because of the repeated Trefftz functions. Hence in order to solve
such systems, singular value decomposition (SVD) technique
should be used. The SVD method can solve even the singular
system of equations and produces the least squares solutions to
the over-constrained systems.

4.5. Conditioning of system matrices

Using the material matrices presented in Section 2 directly in
any grain formulation will result in an ill-conditioned system of
equations to be solved. This is because the numerical values of
the components of the material stiffness matrix C are as large as
1010, while that of the dielectric material matrix h are as small
as 10�9. Hence the ratio is as large as 1019, and this makes the
global stiffness matrix of the grain ill-conditioned. To improve
the conditioning we can use the following conditioned constitutive
equation instead of that of Eqs. (3), (11) and (12), or (13):

r̂0bD0
� �

¼
bC0 �ê0T

ê0 ĥ0

" #
e0bE0

� �
or

e0bE 0
� �

¼
bS0 ĝ0T

�ĝ0 b̂0

" #
r̂0bD0

� �
ð65Þ

where r̂0i ¼
r0

i
~c ;

bD 0i ¼ D0i
~e ;

bE0i ¼ E0i~e
~c and,

bC 0ij ¼ C 0ij
~c
; ê0ij ¼

e0ij
~e
; ĥ0ij ¼

h0ij~c
~e2 ; bS0ij ¼ S0ij~c; ĝij ¼ g0ij~e; b̂0ij ¼

b0ij~e
2

~c

And from Eq. (2), we also have û ¼ u~e
~c . Here we can select ~c ¼ C11,

and ~e ¼ e33.
However, even if this conditioning is done, the system of equa-

tions to be solved using any of the previous methods will still be
e0ij (C m�2) h0ij (10�9C (V m)�2)

e031 e033 e015 h011 h033

�6.98 13.84 13.44 6 5.47
�5.2 15.1 12.7 6.464 5.622
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ill-conditioned because of the exponential growth of the term Zn
k as

n is increased, hence we introduce a characteristic length to scale
the Trefftz solution set.

For an arbitrary polygonal grain as shown in Fig. 1 (left), where

the coordinates of the nodes are xj
1; x

j
3

	 

; j ¼ 1;2; . . . ;N, the center

point of the polygon has coordinates xc
1; x

c
3

� �
. Relative to the local

coordinates at the center point, we have
ẑk ¼ x̂1 þ lkx̂3 ¼ x1 � xc

1

� �
þ lk x3 � xc

3

� �
, k = 1, 2, 3 and correspond-

ingly, n̂k ¼
ẑk�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2

k
� a2

oþl2
k

b2
oð Þ

p
ao�ilkbo

. Now, Zn
k (ẑk for interior domains or n̂k for

exterior domains) will be replaced by ðbZk=RcÞ
n

where:

Rc ¼maxðRckÞ;Rck ¼max
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re bZj

k

	 
h i2
þ Im bZj

k

	 
h i2
r

; j

¼ 1;2; . . . ;N ð66Þ

This is done only for terms with positive exponents. In this way, the
exponential growth of Zn

k is prevented as n is increased because
Table 3
Discrete extreme error for the considered grains in different cases.

Loading Void shape TLG-BVPs TLG

Mechanical load Circular 1.11 (10�3) 1.6
Elliptic (f = 0) 8.90 (10�4) 1.0
Elliptic (f = p/4) 9.12 (10�4) 1.0

Electrical load Circular 1.53 (10�2) 3.1
Elliptic (f = 0) 5.50 (10�3) 2.9
Elliptic (f = p/4) 6.31 (10�3) 2.0

Average time (sec.) 0.0584 0.0

Fig. 3. Variations of (a) rh/ro, (b) Dh/ro, (c) Eh/ro, (d) Er/ro along the periphery of the ellipt
loading.
0 < bZn
k

��� ��� < 1 for any point within the grain or along the grain

boundaries.
Note also that using bZk=Rc instead of Zk in Eq. (24) or (29), gen-

erates ui
_
¼ ui

Rc
and u

_
¼ û

Rc
¼ u~e

Rc~c (not ui and û), so that Eq. (2) are con-
sistent. Hence, u1 u3 ûf gT ¼ Rc u1

_
u3
_

u
_

n oT
should be used

in Eq. (43) for terms with positive exponents.
5. Numerical examples

All grain types described above are programmed using MATLAB
in a 64-bit WINDOWS operating system, and executed on a PC
computer equipped with Intel Q8300 2.5 GHz CPU, and 8 GB
RAM. A commercially available piezoelectric material (PZT-4) is
used in this section. The material properties are listed in Table 2
from two references: Xu and Rajapakse [7] and Wang et al.[32]
and denoted PZT-4(1) and PZT-4(2) respectively.

Eigen value analysis of a single grain proved that all the pro-
posed grain types are invariant to global coordinate system rota-
-Cs TLG-LSs TLG-C TLG-LS

0 (10�3) 1.88 (10�3) 3.08 (10�3) 3.26 (10�3)
2 (10�3) 1.04 (10�3) 9.17 (10�3) 9.34 (10�3)
9 (10�3) 1.34 (10�3) 7.14 (10�3) 7.48 (10�3)

9 (10�2) 3.00 (10�2) 6.26 (10�2) 8.15 (10�2)
5 (10�2) 2.85 (10�2) 5.37 (10�2) 6.22 (10�2)
4 (10�2) 1.75 (10�2) 2.12 (10�2) 2.91 (10�2)

695 0.0602 0.172 0.165

ical void with f = 0 and f = p/4 in an infinite piezoelectric medium under mechanical



Fig. 4. Distribution of the components of stress and electric displacement around the elliptical void with f = p/4 in an infinite piezoelectric medium under mechanical
loading.
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tion (whatever the rotation, we get exactly the same eigenvalues).
Regarding stability, it is guaranteed that TLG-C, TLG-Cs, TLG-LS and
TLG-LSs are stable (or rank sufficient) for any grain shape, because
Fig. 5. Variations of (a) rh/Do, (b) Dh/Do, (c) Eh/Do, (d) Er/Do along the periphery of the ellip
loading.
these types of grains avoid LBB conditions completely. However, it
is not guaranteed that TLG-BVP grain is stable (has only 4 zero
eigenvalues equivalent to the four rigid-body modes) for any other
tical void with f = 0 and f = p/4 in an infinite piezoelectric medium under electrical
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arbitrarily shaped grain, because this type of grain is plagued by
LBB conditions of stability. Simple problems that use grains with
no voids, such as patch test and bending of a meso-scale piezoelec-
tric panel, can be easily and accurately modeled using any grain
type and any number of grains (with no voids) to mesh the prob-
lem domain, and the error in the whole structure is less than 1%.

In the following, we show some numerical examples using the
proposed TLG grains. First we present a piezoelectric domain with
an impermeable horizontal or inclined elliptical void under
mechanical or electrical loadings, followed by evaluation of the
Fig. 6. Distribution of the components of stress and electric displacement around the elli

Fig. 7. Computational models used to evaluate the effective propertie

Fig. 8. Two representative volume eleme
material properties of porous piezoelectric material as functions
of porosity volume fraction. Finally we present contour plots that
detect damage-prone sites in a porous piezoelectric material.

5.1. Infinite piezoelectric domain with impermeable arbitrarily-
oriented elliptical void under mechanical or electrical loading

Consider an infinite piezoelectric plane with an arbitrarily ori-
ented elliptical void subjected to vertical mechanical or electrical
loading in the far field. For numerical implementations, the infinite
ptical void with f = p/4 in an infinite piezoelectric medium under electrical loading.

s: (left) Ceff
11 and Ceff

13 , (middle) Ceff
33 and Ceff

13 , (right) eeff
31 ; eeff

33 and heff
33 .

nts (RVEs) used in the simulations.
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domain is truncated into a rectangle with length L and width W, as
shown in Fig. 2. The semi-axes of the elliptical void are a and b and
the inclination angle between the elliptical void minor axis and the
polling direction is f. The local coordinate system of the ellipse is
denoted x1 � x3, while the global coordinate system is denoted
X1 � X3. The polling direction is aligned with the global vertical
X3 axis (shown in blue in the figure). The material is PZT-4(1)
whose properties are presented in Table 2 and plane strain
assumption is used in this problem. Here we take L = W = 50a,
ro = 1 Pa for the mechanical loading problem and Q = 1 C/m2 for
the electrical problem.

Table 3 shows the discrete extreme error defined in Eq. (67) for
the five considered grain types where we used M = 2 for TLG-BVPs,
TLG-Cs and TLG-LSs and M = 5 for the other two types. The table
presents the results for both mechanical and electrical loadings
and for the cases of circular hole and elliptical hole with b/a = 2
and f = 0, p/4. The last row in the table also shows the average
computational time in calculating the stiffness matrices of the pro-
posed grains.

Ee ¼ max
xi2@Xc

��rhðxiÞ�~rhðxiÞ
��

~rmax
;

DhðxiÞ�eDhðxiÞ
�� ��eDmax


 �
ð67Þ

where ~rhðxiÞ and eDhðxiÞ are the exact solutions at boundary points
xi along the periphery of the void; ~rmax and eDmax are respectively
the maximum magnitudes of ~rhðxiÞ and eDhðxiÞ.

It can be seen from the table that TLG-C and TLG-LS are more
expensive than the other three grain types when M = 5 is used with
the basic solution set. However, and as mentioned before, the for-
Fig. 9. Predictions of the effective piezoelectric material prop
mulation of only these two grain types can be extended to other
void/inclusion boundary condition cases.

Figs. 3 and 5 show the computed circumferential distributions
of rh, Dh, Eh and Er divided by ro (for mechanical loading) or Do

(for electrical loading) for f = 0 and f = p/4 using one TLG grain of
any type (all types give very similar results). The analytical solu-
tion [7] is also included for comparison.

Perfect agreement with the analytical solution can be seen from
the table and the figures. The effects of varying f, a/b and W/a ratios
on the stress, electric displacement and electric field are presented
in [22].

Figs. 4 and 6 show the contour plots of the components of stress
and electric displacement around the elliptical void with f = p/4
and a/b = 2 subjected to mechanical and electrical loadings respec-
tively and modeled using single TLG grain. These figures only show
the region around the void.

5.2. Evaluation of the material properties of porous piezoelectric
materials

In this subsection, we determine the material properties of a
porous PZT-4 ceramic as a function of porosity volume fraction
using different TLG samples. The material properties of non-por-
ous PZT-4 are listed in Table 2 (denoted TLG-4(2)). Three com-
putational models, shown in Fig. 7, are used to calculate the
effective properties of porous PZT-4: Ceff

11 ; Ceff
33 ; Ceff

13 , eeff
31 ; eeff

33 and
heff

33 .
The first model ensures that e33 = 0 and E3 = 0, and is used to

calculate Ceff
11and Ceff

13 as:
erties of PZT-4 as a function of porosity volume fraction.
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Ceff
11 ¼

r11

e11
¼
R

x1¼L t1 � ds=W
�u1=L

; Ceff
13 ¼

r33

e11
¼
R

x3¼W t3 � ds=L
�u1=L

ð68Þ

The second model ensures that e11 = 0 and E3 = 0, and is used to cal-
culate Ceff

33 ; and Ceff
13 as:

Ceff
33 ¼

r33

e33
¼
R

x3¼W t3 � ds=L
�u3=W

; Ceff
13 ¼

r11

e33
¼
R

x1¼L t1 � ds=W
�u3=W

ð69Þ

Finally, the third model ensures that e11 = e33 = 0, and is used to cal-
culate eeff

33 ; e
eff
13 and heff

33 as:

eeff
33 ¼ �

r33

E3
¼
R

x3¼W t3 � ds=L
�u=W

; eeff
13 ¼ �

r11

E3
¼
R

x1¼L t1 � ds=W
�u=W

;

heff
33 ¼

D3

E3
¼
R

x3¼W Q � ds=L
�u=W

ð70Þ

Two types of representative volume element (RVE) are used here as
shown in Fig. 8: (a) a unit cell grain with a circular void (the figure
shows the case of VF = 40%), (b) 10 TLG grains with random circular
voids (the figure shows the case of VF = 25%). Plane strain assump-
Fig. 10. Porous piezoelectric material under mechanical loading: contour plot for (lef
tion is used in this study and the direction of polarization is
vertically upward in all grains. Since all grain types give very similar
results, the simulations are showing only the results of TLG-Cs grain
type. The results are compared with the predictions of Mori–Tanaka
model [33,34] presented in [32] for PZT-4.

Fig. 9 shows the predictions of the effective properties of PZT-4
as a function of porosity volume fraction. The results of the RVE
with 10 TLG grains extends only to VF = 25%. A constraint was used
in this mesh in order to prevent the value of the void radius in any
grain from exceeding 80% of the distance between the center of the
void and the closest point to it on the grain’s outer boundary. The
figure shows very good agreement with the predictions of Mori–
Tanaka’s analytical model.

It should be noted that, with the same number of grains, the re-
sults slightly change as the irregular mesh changes because the
stiffness matrices depends on the grain shape. Changing the mesh
changes the integrands of the stiffness matrices, and the number
and locations of the collocation points in TLG-C and TLG-Cs.
Increasing the number of grains, the maximum order of Trefftz
functions used (without violating the conditions in subsection
4.4), and the number of nodes per side in each grain (i.e., using
t) principal stress, (right) strain energy density, (lower) dielectric energy density.
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more than two nodes per side) generally has the effect of decreas-
ing the error. Also increasing the number of collocation points in
TLG-C and TLG-Cs, increases the accuracy of the solution.

5.3. Damage detection in porous piezoelectric material

We consider porous piezoelectric representative volume ele-
ment (RVE) composed of 20 porous piezoelectric grains made of
PZT-4(1) and polled in the vertical direction. The dimensions of
the RVE are L = W = 1 mm and the porosity volume fraction is 0.1.
The direction of polarization is vertically upward in all grains.
Voids in the grains are randomly sized circles. A constraint was
used in this mesh in order to prevent the value of the void radius
in any grain from exceeding 80% of the distance between the center
of the void and the closest point to it on the grain’s outer boundary.
The lower edge is prevented from motion in the vertical direction
while the lower left corner node is electrically grounded and con-
strained in the horizontal direction. A mechanical loading
ro = 100 MPa is applied on the upper edge. The contour plots of
the maximum principal stress, the strain energy density (SED) as
well as the dielectric energy density are shown in Fig. 10. The re-
sults shown here are computed using TLG-C grain type.

As can be seen from the figures, high principal stress and strain
energy density concentrations are observed near the cavities, in the
direction perpendicular to that of the loading. On the other hand, at
the locations near the cavities, in the direction parallel to the load-
ing direction, very low stress values and strain energy density are
observed. This gives us an idea about where damage is more likely
to initiate and develop in porous piezoelectric materials.

It is also interesting to note that the dielectric energy density
concentrates around the voids at angles ±45� from the mechanical
loading direction, and decreases around the voids in the direction
perpendicular to that of the loading. As the void gets sharper (b/a
ratio is decreased), the variations in the values of the principal
stress, as well as the strain and dielectric energy densities on the
periphery of the void get larger since the void is approaching the
shape of a crack.

6. Conclusions

The proposed TLG grains are capable of modeling porous piezo-
electric materials at the micro and meso scales: (a) effective mate-
rial properties, (b) distribution of all secondary fields, and (c)
distribution of strain and dielectric energy densities in the micro-
structure that allows predicting the locations of damage. Each
computational grain has an irregular polygonal shape that resem-
bles the shape of a material grain with arbitrary number of sides
and neighboring grains. Each grain also may contain a circular or
an arbitrary oriented elliptical void, and may have its own direc-
tion of polarization. The grains that used the special solution sets
(TLG-BVPs, TLG-Cs and TLG-LSs) are the best in modeling grains
with traction-free, charge-free elliptical voids because of their sim-
plicity and efficiency. However these grain formulations need to be
modified for other void boundary condition cases such as grains
with inclusions, and will be presented in future papers. On the
other hand, TLG-C and TLG-LS are more expensive but could be
extended to other cases by enforcing the void/inclusion boundary
conditions on the void/inclusion periphery. All grain types except
TLG-BVP have the advantage of guaranteed stability since Lagrang-
ian multipliers are not involved in their formulations (TLG: Trefftz-
Lekhnitskii Grains, BVP: Boundary Variational Principle, C: Colloca-
tion, LS: Least Squares, s: Special solution set).
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