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Abstract: In this paper, 2D and 3D Multiphysics Voronoi Cells (MVCs) are

developed, for the Direct Mesoscale Numerical Simulation (DMNS) of the switch-

ing phenomena in ferroelectric polycrystalline materials. These arbitrarily shaped

MVCs (arbitrary polygons in 2D, and arbitrary polyhedrons in 3D with each face

being an arbitrary polygon) are developed, based on assuming radial basis func-

tions to represent the internal primal variables (mechanical displacements and elec-

tric potential), and assuming linear functions to represent the primal variables on

the element boundaries. For the 3D case, the linear functions used to represent the

primal variables on each of the polygonal surfaces of the polyhedral VCs are the

Barycentric Washspress functions. The present 2D MVC is denoted as MVC-RBF,

while the 3D MVC is denoted as MVC-RBF-W. Each MVC can represent a single

grain or crystallite, with an irregular polygonal shape for the 2D case, and an irreg-

ular polyhedral shape for the 3D case. In this work, a nonlinear constitutive model

is used to describe the evolution of volume fractions of the constitutive-variants in

each grain, as the electric or mechanical loading changes. This constitutive model

is based on satisfying a local dissipation inequality in each grain in the polycrys-

talline that yields the minimum Gibbs free energy in this grain. This requirement

should always hold in order to be consistent with the second law of thermodynam-

ics and is used to govern the switching process in each grain in each simulation

step. Since the interaction between the grains during the loading cycles has a pro-

found influence on the switching phenomena, it is important to simulate the grains

with geometrical shapes that are similar to the real shapes of the grains as seen in

the lab experiments. Hence the use of 3D MVCs, which allow for the presence of

all the six variants of the constitutive relations, together with the randomly gener-

ated crystallographic axes in each grain (or MVC), as done in the present paper, is
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considered to be the most realistic analytical model that can be used for the direct

mesoscale numerical simulation of polycrystalline ferroelectric materials.

Keywords: Ferroelectric, ferroelastic, switching, Gibbs free energy, Voronoi cells,

radial basis functions, Barycentric coordinates, collocation.

1 Introduction and literature review

Ferroelectric materials have a linear behavior, similar to piezoelectric materials, at

very low values of applied mechanical and electrical loads. At high intensities of an

applied electric field, for instance, the behavior of the material becomes non-linear,

and both the hysteresis loop of the macroscopic polarization vs. electric field, and

the butterfly loop of the macroscopic strain vs. electric field, appear. Piezoelec-

tric materials have spontaneous polarization; ferroelectric materials have the abil-

ity to reorient their spontaneous polarization with the application of an external

field. This macroscopic behavior is actually based on mechanisms that happen in

smaller scales. A polycrystalline ferroelectric ceramic is composed of an aggregate

of grains separated by grain-boundaries, in the mesoscale. Within a grain, all the

unit cells have the same crystallographic axes. Each grain has a random shape and

is subdivided into several domains. A domain is a region in the grain where all the

unit cells composing it have the same orientation of their asymmetry or the same

spontaneous polarization direction. Domains of a grain are separated by domain

walls. The reorientation of spontaneous polarization in ferroelectric materials is

principally controlled by the motion of domain walls. Polarization reorientation

within one phase can be induced by either applied stress (ferroelastic switching) or

electric field (ferroelectric switching). Ferroelectric polycrystalline material behav-

ior is more complicated than single crystals as each of the randomly oriented grains

is a constrained single crystal subjected to local stress and electric field due to grain

boundaries and local inhomogeneities [Webber (2008)]. In a tetragonal unit cell,

the polarization switching occurs when an applied electric field exceeds the coer-

cive field (which is the magnitude of electric field at zero polarization intensity on

the electric field-electric displacement hysteresis response) and thus moves the cen-

tral ion from one of the six off-center tetragonal sites to another. This changes the

polar direction to the one that is most closely aligned with the applied electric field.

In a polycrystalline ceramic, a crystallite usually has six different types of consti-

tutive variants that are combined to form a complicated domain structure/pattern.

Therefore, switching process is much more complicated in a polycrystalline mate-

rial than in a unit cell.

Modeling a ferroelectric polycrystalline using the finite element method has been

performed during the past 15 years, using different constitutive models [Hwang



2D and 3D Multiphysics Voronoi Cells 21

and McMeeking (1998, 1999); Steinkopff (1999); Kamlah et al. (2005); Arock-

iarajan et al. (2006, 2007); Haug et al. (2007); Menzel et al. (2008); Pathak and

McMeeking (2008) among others]. Finite element modeling can deal with complex

boundary value problems and explicitly takes the interaction between neighboring

grains (inter-granular effects) into account. Randomly oriented crystal axes within

the elements, or rather grains, together with the corresponding material properties

realize the locally anisotropic nature of the polycrystalline ferroelectric specimen.

A macroscale finite element model for an electro-mechanically coupled material

has been suggested by Ghandi and Hagwood (1996). The phase/polarization state

of materials is represented by internal variables in each element, which are updated

in each simulation step based on a phenomenological model. Mesoscale finite el-

ement models has been developed by [Hwang and McMeeking (1998, 1999); Huo

and Jiang (1997, 1998)]. The former modeled each crystallite as a cubic element

with only one type of variant, with the tetragonal orientation for each element se-

lected randomly. When an element satisfies a given switching criterion, switching

occurs in the element and the tetragonal axis changes to a different permitted direc-

tion immediately. The latter modeled a crystallite as a body of mixture consisting

of distinct types of constitutive variants, and characterized a grain by the values of

volume fractions of variants. The volume fractions are regarded as internal vari-

ables and updated at each simulation step by a switching criterion. Kim and Jiang

(2002) modeled the rate-dependent behavior of ferroelectric ceramics. They con-

sidered each crystal grain as a regular hexagon which was modeled by 12 triangular

elements. As in [Huo and Jiang (1997, 1998)], they regarded a finite element as a

continuum body of mixture characterized by the volume fractions of the existing

variants. Haug et al. (2007) also modeled each grain using triangular or hexag-

onal elements. Kamlah et al. (2005) modeled each crystal grain as a rectangular

element.

Ferroelectric polycrystalline grains have random polyhedral shapes. Hence, to bet-

ter model the polycrystalline microstructure, Voronoi Cells which are based on

Dirichlet tessellation of the considered body into irregular polygons in 2D, or ir-

regular polyhedra in 3D, should be used. In this way, a grain in a representative fer-

roelectric microstructure is surrounded by a varying number of differently shaped

neighboring grains. This can also increase the computational efficiency since each

grain is modeled by a single Voronoi Cell and no further sub-discretization is re-

quired in one crystal grain structure. In consequence, Voronoi-based discretiza-

tions, together with randomly generated crystallographic axes for each grain, in

general, represent the overall polycrystalline microstructure better. It is important

to note that using regular elements (quadrilaterals in 2D or bricks in 3D) to model

ferroelectric materials gives the same macroscopic response as that of the irregular
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Voronoi-cell elements. However, the local distributions of stress, strain, electric

field and electric displacement are different. This was shown in [Jayabal et al.
(2011)] for the 2D case, and is presented here for the 3D case as well. Local con-

centrations of stresses during switching, as a result of the inter-granular effects,

are thought to be the cause of micro-crack initiation along grain boundaries. For

these reasons, a Direct Mesoscale Numerical Simulation (DMNS) of ferroelectric

materials, using 3D MVCs is pursued in the present paper.

In the early days of finite element research (1960-2000), the hybrid stress formula-

tion of Pian (1964), which uses interpolations for an equilibrated stress-field in the

interior of a finite-element and inter-element compatible displacement fields only

at the boundary of the element, was thought to be the only way of developing the

stiffness matrices of arbitrary shaped finite elements (polygons with arbitrary num-

ber of sides in 2D, or polyhredra with arbitrary number of faces, each of which is an

arbitrary polygon, in 3D) in 2 and 3 dimensions; and that the primal formulations

which use only element-displacement field were unable to achieve inter-element

compatibility. Subsequent work, as for instance in the text book by Atluri (2005),

has shown that there are many other, perhaps simpler and more numerically sta-

ble, methods (which avoid the troublesome LBB conditions) for developing arbi-

trary shaped 2 and 3D Voronoi Cell elements, by using methods such as multi-field

collocation methods, Trefftz Methods, Method of Fundamental Solutions, Radial

Basis Function Methods, Symmetric Galerkin Boundary Element Methods, etc.

These ideas to develop stable, invariant, and simple Voronoi Cells are pursued in

the present paper, as well as in recent work by Bishay and Atluri (2012), and by

Dong and Atluri (2011, 2012 a, b, c, d).

Sze and Sheng (2005) extended the Voronoi cell finite elements developed by

Ghosh and his co-workers [Ghosh (2011)] based on Pian’s hybrid stress finite ele-

ment formulation [Pian (1964)] to model a ferroelectric polycrystalline. They used

the Huo-Jiang single-crystal-multi-domain constitutive and switching model [Huo

and Jiang (1997, 1998); Kim and Jiang (2002)]. Using this same framework, Jaya-

bal et al. (2011) incorporated a micromechanical model based on well-established

thermodynamic principles into the 2D Voronoi-cell finite elements. In their model,

the switching process on the level of a single crystal of the overall ferroelectric

polycrystalline is not continuous but faces a certain resistance or facilitation de-

pending upon the changes in the combination of crystal variants.

The previously mentioned Voronoi-cell formulations for modeling ferroelectric ma-

terials are based on a multi-field hybrid electromechanical variational principle

(modified principle of complementary energy, or Hellinger-Reissner variational

principle [Sze and Pan (1999)]) and have the same disadvantages of Pian’s hy-

brid elements, namely: (1) Lagrangian multipliers are involved in the multi-field
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variational principle, and hence the derived elements suffer from the LBB stability

conditions [Babuska (1973); Brezzi (1974)], which are impossible to be satisfied

a priori, (2) there are additional matrices (H and G) which need to be computed

through numerical quadrature in each element, (3) H needs to be inverted in each

element, thus raising the computational cost, and the rank of G (equals to the num-

ber of the degrees of freedom in each element, less the number of rigid modes) in

each element has to be assured a priori, (4) the use of "a priori equilibrated" stress

field is difficult or even impossible for dynamical and geometrically nonlinear prob-

lems, (5) the assumed stress-field is often incomplete, and cannot account for the

steep stress-gradients and singularities often encountered in microstructures with

inclusions or voids, in multifunctional materials, and (6) prohibitive computational

costs.

For elastic materials, Dong and Atluri (2012 a,b,c,d) developed 2D and 3D Trefftz

Voronoi cell finite elements with voids and/or rigid/elastic inclusions for modeling

heterogeneous materials. These elements were successful in accurately capturing

the stress concentration around spherical/ellipsoidal voids/inclusions in composite

and porous materials.

The Multiphysics Voronoi Cells (MVCs) presented here are the extensions of VCFEM-

RBF developed in [Dong and Atluri (2011)] for 2D elasticity and VCFEM-RBF-W

developed in [Bishay and Atluri (2012)] for 3D elasticity, by using Radial Basis

Functions (RBF). The present MVCs are based on assuming internal as well as

boundary fields separately for each of the primal variables (mechanical displace-

ments and electric potential) and enforcing the compatibility between these fields.

The compatibility between the interior and the boundary fields can be enforced

using two methods. The first is done simply by collocating the interior and bound-

ary fields at some boundary collocation-points, and the second is done by using

the least square method which is the limit of the collocation method as the num-

ber of collocation points increases to infinity. For both the 2D and the 3D MVCs

we assume the internal fields in terms of radial basis functions (RBF), while the

boundary fields are assumed in terms of linear functions for the 2D case, and the

linear Wachspress barycentric functions for the 3D case. Hence the 2D elements are

denoted MVC-RBF and the 3D elements are denoted MVC-RBF-W. The present

elements are much simpler and more efficient than Ghosh’s hybrid-variational ele-

ments [Ghosh (2011)]. Also, the 3D MVC-RBF-W avoids adding additional nodes

inside the boundary-surfaces through the use of Wachspress functions as the bound-

ary surface displacements. However, Ghosh’s formulation divides each surface of

the 3D VCFEM into triangles, after adding a center node in each surface.

Each 2D MVC-RBF is a random irregular polygon, while the 3D MVC-RBF-W

has an arbitrary number of faces, and each face has an arbitrary number of edges.
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Considering only tetragonal unit cells composing the grains of a ferroelectric poly-

crystalline, each crystal grain (or MVC) in 2D analysis has a randomly generated

crystallographic axes (axes 1 and 3) and 4 possible constitutive-variants (or do-

main types) parallel and perpendicular to the crystallographic axis. While in the

3D analysis, we have 6 possible variants parallel and perpendicular to the three

randomly generated crystallographic axes (axes 1, 2 and 3). When dealing with

3D models, the amount of computation is increased, hence it is important to adopt

efficient constitutive and switching models. The Huo-Jiang single-crystal-multi-

domain constitutive and switching model [Huo and Jiang (1997, 1998); Kim and

Jiang (2002); Sze and Sheng (2005)] requires solving the finite element system not

only once in each simulation step. The system is solved n times in each simulation

step, where n is the number of switching elements (the elements that have tendency

to switch). The final configuration of volume fractions in each element at any time

step is the one that yields the minimum Gibbs free energy of the whole body. This

method is obviously inefficient and impractical especially for 3D simulations with

large numbers of elements. For this reason, representative volume element (RVE)

is used in [Kim et al. (2003)] to incorporate this model in a 3D simulation. How-

ever, especially for ferroelectric polycrystalline samples, it is important to model

the randomness of the grain shapes in order to simulate the local interactions and

this cannot be done using RVE.

Any constitutive and switching models for ferroelectric materials can be incorpo-

rated with the developed MVCs to simulate the switching phenomenon. Here we

use the switching model of [Jayabal et al. (2011)] which proved to be much more

efficient than the previously mentioned models. It requires solving the VC system

of equations just once in each simulation step. In consequence, the proposed mod-

eling approach includes the essential intergranular effects in ferroelectric polycrys-

tals arising from the individual grain geometries on the one hand, and the evolution

of the underlying microstructures by switching effects on the other hand.

The rest of this paper is organized as follows: section 2 introduces the governing

equations, and the method used to generate material matrices of each domain in

each grain, or MVC, based on the orientation of the crystallographic axes of the

grain. Section 3 presents the formulation of the 2D MVC-RBF and the 3D MVC-

RBF-W used to model ferroelectric grains, and the method used to better condition

the system of matrices to be solved. Section 4 is devoted for explaining the switch-

ing criteria and the kinetics, while in section 5, the solution method is illustrated.

Section 6 presents the results of the 2D and 3D models in simulating ferroelectric

and ferroelastic switching. Conclusions are summarized in section 7.
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2 Governing equations

Adopting a matrix and vector notation, and denoting by u (3 components), σσσ (6

components) and εεε (six components) the vectors of mechanical displacements,

strains, and stresses respectively , and by ϕ (scalar), E (3 components) and D (3

components) the electric potential, electric field intensity vector, and the electric

displacement vector, respectively, we have:

1- Stress equilibrium equations:

∂∂∂ u
T σσσ +b = 0; σσσ = σσσT in Ω (1)

2- Charge conservation (Maxwell) equation:

∂∂∂ e
T D−ρ f = 0, in Ω (2)

Where Ω is the problem domain, b is the body force, and ρ f is the electric free

charge density.

3- Strain-displacement equations:

εεε = ∂∂∂ uu (3)

4- Electric field intensity- electric potential equations:

E =−∂∂∂ eϕ (4)

Where

∂∂∂ u =

⎡
⎢⎣

∂
∂x1

0 0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0

0 0 ∂
∂x3

0 ∂
∂x2

∂
∂x1

⎤
⎥⎦

T

, ∂∂∂ e =
[

∂
∂x1

∂
∂x2

∂
∂x3

]T

This representation of the electric field intensity (Eq. 4), as gradients of the electric

potential guarantees the satisfaction of the other Maxwell equations (∇×E = 0).

5- Constitutive relations for the type-i-domain in a ferroelectric material:

εεε i = Siσσσ i +mT
i Ei + εεεS

i

Di = miσσσ i +dT
i Ei +PS

i

(5)

Where εεε i and σσσ i are, respectively, the strain and stress tensors, and Ei and Di are

the electric field intensity and electric displacement vectors of type-i-domain; εεεS
i
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and PS
i are the spontaneous strain tensor and spontaneous polarization vector of

type-i-domain, respectively; Si , mi , di are, respectively, the elastic compliance

tensor measured under constant electric field, piezoelectric and dielectric tensors

measured under constant stress of type-i-domain.

For three-dimensional analysis, there are six possible spontaneous polarization di-

rections in a tetragonal unit cell. These directions are parallel/opposite to the crys-

tal axes which are denoted as the 1-, 2- and 3- directions. But for two-dimensional

analysis, there are only four possible spontaneous polarization directions. The crys-

tallographic axes are the reference directions for expressing all the constitutive re-

lations. As a result, each crystal grain in a polycrystalline ferroelectric material has

six different types of domains in a 3D analysis, and four types in a 2D analysis.

To determine the average physical properties of a ferroelectric crystal grain (or

Multiphysics Voronoi Cell MVC), a simple averaging method is used. The method

is based on the assumptions that all the domains in a crystal grain are subjected

to uniform stress and electric field intensity, and that the strain and electric dis-

placement of the crystal grain are the summation of those of all the domains of the

crystal grain weighted by their volume fractions cis, i.e.

σσσ i = σσσ , Ei = E, εεε =
Nd

∑
i=1

ciεεε i, D =
Nd

∑
i=1

ciDi (6)

Where Nd is the number of domain types in the crystal grain (4 for 2D analysis

and 6 for 3D analysis, considering only ferroelectric materials entirely composed

of tetragonal unit cells). The volume fractions, cis, should always satisfy the con-

sistency conditions:

ci ≥ 0,
Nd

∑
i=1

ċi = 1,
Nd

∑
i=1

ci = 0 (7)

Substituting Eq. 6 into Eq. 5, we get the constitutive equation for a ferroelectric

crystal grain as:{
εεε
D

}
=

[
S mT

m d

]{
σσσ
E

}
+

{
εεεR

PR

}
=

{
εεεL

DL

}
+

{
εεεR

PR

}
(8)

Where

εεεR =
Nd

∑
i=1

ciεεεS
i , PR =

Nd

∑
i=1

ciPS
i , S =

Nd

∑
i=1

ciSi, m =
Nd

∑
i=1

cimi, d =
Nd

∑
i=1

cidi (9)

Here εεε ,σσσ , E and D are the average vectors of strain, stress, electric field intensity

and electric displacement in the crystal grain (MVC) respectively; εεεL and DL are
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the average linear (reversible) strain and electric displacement vectors respectively;

εεεR and PR are the average remnant (irreversible) strain and polarization vectors

respectively; S , m and d are the average material matrices for the grain or VC in

question.

Eq. 5 can also be written as:

σσσ i = Ci(εεε i − εεεS
i )− eT

i Ei

Di = ei(εεε i − εεεS
i )+hT

i Ei +PS
i

(10)

Where Ci = S−1
i , ei = miCi and hi = di −mieT

i are the elastic tensor measured

under constant electric field, piezoelectric and dielectric tensors measured under

constant strain of the type-i-domain. Again the elastic and piezoelectric tensors

can be cast in a matrix form.

Similarly the constitutive equation for the ferroelectric crystal grain (MVC), Eq. 8,

can be written as:{
σσσ
D

}
=

[
C eT

e −h

]{
εεε − εεεR

−E

}
+

{
0

PR

}
(11)

With C = S−1 , e = mC and h = d−meT .

Usually Ci, ei and hi are the given material properties. From them we can get

Si = C−1
i , mi = eiC−1

i and di = hi +mieT
i = hi + eiC−1

i eT
i . Then we can get the

average material matrices S, m and d using Eq. 9 and C, e and h using Eq. 11.

If the spontaneous (irreversible) strain and polarization are assumed to vanish, we

then get the linear constitutive equations in the piezoelectric response region:{
εεεR

PR

}
=

{
0
0

}
,

{
εεε
D

}
=

{
εεεL

DL

}
=

[
S mT

m d

]{
σσσ
E

}
,

or

{
σσσ
DL

}
=

[
C eT

e −h

]{
εεεL

−E

} (12)

6- First and second laws of thermodynamics for deformable electric materials:

ρU̇ = σσσ : ε̇εε +E · Ḋ−∇ · r, (13)

ρη̇ −∇ ·
( r

T

)
≥ 0 (14)

Where ρ , U , r, η and T denote the density, the internal energy per unit mass, the

heat flux, the entropy per unit mass and the absolute temperature. Super-script dot

denotes material time derivative.

The SI units of the mentioned fields are as follows: stress σσσ (Pa or N/m2), strains εεε ,
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εεεL and εεεR (No unit or m/m), electric displacements D , DL and PR (C/m2), electric

field intensity E (V/m or N/C), and the SI units of the material matrices are: ma-

terial elastic stiffness C (Pa or N/m2), piezoelectric matrix e (C/m2), and dielectric

matrix h (C/Vm). Finally the SI unit of the density ρ (Kg/m3), internal energy per

unit mass U (J/Kg), the heat flux r (J/m2), the entropy per unit mass, η (J/(Kg.K)),

and the absolute temperature, T (K).

7- Mechanical natural (traction) boundary conditions:

nσσσ σσσ = t at St , (15)

8- Mechanical essential (displacement) boundary conditions:

ui = ui at Su, (16)

9- Electric natural boundary conditions:

neD = Q at SQ, (17)

10- Electric essential boundary conditions:

ϕ = ϕ at Sϕ , (18)

where

nσσσ =

⎡
⎣nx 0 0 ny 0 nz

0 ny 0 nx nz 0

0 0 nz 0 ny nx

⎤
⎦ ne =

[
nx ny nz

]

t is the boundary traction vector, Q is the specified surface density of free charge.

nx, ny and nz , the three components of nσσσ and ne, are the components of the unit

outward normal to the boundaries St or SQ. u is the specified mechanical displace-

ment vector at the boundary Su , and ϕ is the specified electric potential at the

boundary Sϕ .

When dividing the whole domain of the body into subdomains (MVCs), the fol-

lowing conditions should also be satisfied at each subdomain interface Sm:

1- Mechanical (displacement) compatibility at each inter-subdomain boundary:

ui
+ = ui

− at Sm, (19)

2- Mechanical (traction) reciprocity condition at each inter-subdomain boundary:

(nσσσ σσσ)++(nσσσ σσσ)− = 0 at Sm, (20)
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3- Electric potential compatibility at each inter-subdomain boundary:

ϕ+ = ϕ− at Sm, (21)

4- Electric reciprocity condition at each inter-subdomain boundary:

(neD)++(neD)− = 0 at Sm, (22)

2.1 Material properties for the different domain types

For the 3D case, domains of types 1 and 2 with the spontaneous polarization direc-

tion along the ± crystal axis 3, the material properties with respect to the crystallo-

graphic axes x′1 − x′2 − x′3 can be written as:

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦
, εεεS

i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εS
11

εS
11

εS
33

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, PS

i =

⎧⎨
⎩

0

0

±pS

⎫⎬
⎭

ei =±
⎡
⎣ 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

⎤
⎦ , hi =

⎡
⎣h11 0 0

0 h11 0

0 0 h33

⎤
⎦

(23)

Denoting the unit vectors of the local crystal orthogonal coordinate system (x′1 −
x′2 − x′3) as g′1, g′2 and g′3, all the tensors of the material properties can be rotated to

any other orthogonal coordinate system (x1 −x2 −x3) whose unit vectors are g1, g2

and g3 using the rotation matrix R:

x = Rx′, gk = Rg′k, (24)

Where Rkl = gk ·g′l and R = Rklgkg′l .
For 2D rotation around x2-axis by angle θ , R has the form:

R =

⎡
⎣cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

⎤
⎦ (25)

For 3D rotation characterized by the three Euler angles (θ ,φ ,ψ), the rotations are

done according to the following sequence: rotation by angle θ around x3-axis to

get x′′′1 −x′′′2 −x′′′3 coordinate axes, then rotation by angle φ around the new x′′′1 -axis

to get x′′1 −x′′2 −x′′3 coordinate axes, followed by rotation by angle ψ around the new
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x′′3-axis to get x′1 − x′2 − x′3 coordinate axes. This is shown in Fig. 1. R in this case

can be written as:

R =

⎡
⎣c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1

⎤
⎦
⎡
⎣1 0 0

0 c(φ) −s(φ)
0 s(φ) c(φ)

⎤
⎦
⎡
⎣c(θ) −s(θ) 0

s(θ) c(θ) 0

0 0 1

⎤
⎦ (26)

Where c( ) means cos( ) and s( ) means sin( ).

Figure 1: 3D rotation of axes using Euler angles: (left) rotation by angle θ around

x3-axis, (middle) rotation by angle φ around x′′′1 -axis, (right) rotation by angle ψ
around x′′3-axis

.

For any material tensor, such as the elastic stiffness tensor (which is a fourth order

tensor), the components of the tensor in the new coordinate axes can be expressed

in terms of the components in the old coordinate system as follows:

C =C′
pqrsg

′
pg′qg′rg

′
s =Ci jklgig jgkgl,

Ci jkl =C′
pqrs(g

′
p ·gi)(g′q ·g j)(g′r ·gk)(g′s ·gl)

(27)

So domains of types 3 and 4 with the spontaneous polarization direction along

the ± crystal axis 1, the material properties with respect to the crystallographic

axes x′1 − x′2 − x′3 can be obtained by a rotation of ± 90◦ around x′2- axis (using

the rotation matrix in Eq. 25). Domains of types 5 and 6 with the spontaneous

polarization direction along the ± crystal axis 2, the material properties with respect

to the crystallographic axes x′1 − x′2 − x′3 can be obtained by a rotation of ± 90◦

around x′1- axis (using the rotation matrix in Eq. 26 with θ = ψ = 0 ).

For the 2D case, if the body is very long (infinite) in the 2-direction (plane strain

case), then we have the assumptions:

ε2 = ε4 = ε6 = 0, E2 = 0, and εS
2 = 0, PS

2 = 0 (28)
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This reduces the problem into 2D case in the X1 −X3 plane with only 4 types of

domains (types 1,2, 3 and 4). In this case, the material matrices in Eq. 23 of domain

types 1 and 2, with the spontaneous polarization direction along the ± crystal axis

3, reduce to:

Ci =

⎡
⎣C11 C13 0

C13 C33 0

0 0 C44

⎤
⎦ , εεεS

i =

⎧⎨
⎩

εS
11

εS
33

0

⎫⎬
⎭ , PS

i =

{
0

±pS

}

ei =±
[

0 0 e15

e31 e33 0

]
, hi =

[
h11 0

0 h33

] (29)

The material properties of the domains of types 3 and 4, with the spontaneous po-

larization direction along the ± crystal axis 1, reduce similarly from the matrices

of the 3D case.

When dealing with polycrystalline ferroelectric ceramic with many grains of arbi-

trary shapes, the crystallographic coordinate system is randomly oriented in each

grain. Hence, with respect to the global coordinate axis (X1 −X2 −X3) of the ag-

gregate, the material properties of each domain inside a grain can also be obtained

using the rotation matrix R, where the angle θ in Eq. 25 for the 2D case, or the

angles θ ,φ and ψ in Eq. 26 for the 3D case, are between the global coordinate

system and the local crystallographic coordinate system of the grain. Fig. 2 shows

the global coordinate system and the crystallographic axes of the grain with the po-

larization directions of the 6 possible domain types in a ferroelectric crystal grain

aligned with the crystallographic axes.

Figure 2: Crystallographic axes in a ferroelectric crystal grain and the polarization

direction of the 6 possible domain types or variants

.
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3 Multiphysics Voronoi Cell (MVC) formulation for ferroelectric materials

Discretizing the problem domain using the 2D or the 3D Voronoi cells (MVCs),

so that each element has a unique shape, will allow us to study micromechanical

problems with ferroelectric materials, since the shapes and the sizes of the grains in

the micro-scale are random and the Voronoi cells are the best approximation for this

structure due to randomness it provide to the element shapes and sizes. Each grain

(or MVC) is surrounded by a varying number of differently shaped neighboring

grains. Dirichlet tessellation of the domain into MVCs together with randomly

generated crystallographic axes for each grain, in general, represents the overall

polycrystalline microstructure better. The 2D grain, VC-RBF-1 and VC-RBF-2,

based on radial basis functions presented in [Dong and Atluri (2011)], and the 3D

Voronoi cells element, VC-RBF-W, based on radial basis functions and Washspress

functions presented in [Bishay and Atluri (2012)] for elasticity, are extended here

for modeling the multiphysics of ferroelectric materials.

3.1 Interior and boundary primal variables

Defining the mechanical displacement and electric potential fields using radial basis

functions (RBF) in Ωm the interior of each element, and as linear functions on ∂Ωm

the boundary of each element, we can write the internal fields as:

uI
i = RT (x)aui +PT (x)bui in Ωm

ϕ I = RT (x)aϕϕϕ +PT (x)bϕϕϕ in Ωm
(30)

or,

uI
i = M(x)αααui, ϕ I = M(x)αααϕϕϕ , in Ωm (31)

Where M(x) = [RT (x) PT (x)] and αααui =

{
aui

bui

}
, αααϕϕϕ =

{
aϕϕϕ
bϕϕϕ

}
, i =1,3

and RT(x) = [Rr1(x) Rr2(x) ... Rrl(x)] is a set of radial basis functions centered

at l points xr1,xr2, ...xrl along ∂Ωm; PT(x) = [P1(x) P2(x) ...Pm(x)] is a set of m
monomial functions which are complete to a certain order; aui,bui,aϕϕϕ and bϕϕϕ are

coefficient vectors.

The radial basis functions used here have the form:

Rrl(x) =

{ (
1− drl(x)

rrl

)3(
1+3

drl(x)
rrl

)
, drl(x)< rrl

0, drl(x)≥ rrl
(32)

Where drl(x) =| x−xrl | is the Euclidean distance from point x to point xrl , rrl is

the support size of Rrl(x).
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In this study, a first order complete polynomial basis is used:

PT (x) = [1 x1 x2] for 2D analysis

PT (x) = [1 x1 x2 x3] for 3D analysis
(33)

The linear boundary fields can generally be written, in terms of the nodal values of

the mechanical displacements qui and electric potential qϕϕϕ , as:

uB
i = Ñqui, ϕB

i = Ñqϕϕϕ on ∂Ωm (34)

In the 2D version of the MVC-RBF (see Fig. 3), we use simple linear shape func-

tions:

Ñ =
1

2
[1−ξ 1+ξ ] (35)

Where −1 ≤ ξ ≤ 1 is the normalized running length from one corner to the other

on each side of the boundary. While in the 3D version, denoted by MVC-RBF-

Figure 3: 2D irregular polygon (Voronoi cell)

.

W, the element is an arbitrary polyhedron (3D Voronoi Cell) in the 3D space, as

shown in Fig. 4, with n nodes x1,x2, ...xn, and corresponding nodal displacements

u1
i ,u

2
i , ...u

n
i . A smooth linear displacement field assumption on each surface can be

used as:

Ñ = [λ1(x) λ2(x) λ3(x) ... ] (36)

Dealing with polygonal surfaces, Barycentric coordinates should be used to de-

scribe the displacement field. The Barycentric coordinates, denoted as λi (i = 1,2, ..n)
where n is the number of the vertices of the convex polygon, in general should sat-

isfy two properties:
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Figure 4: Polyhedron (3D Voronoi cell) element with arbitrary number of polygonal

faces

.

1. Non-negative: λi ≥ 0 on ∂Ωm.

2. Linear completeness: For any linear function f (x) : ∂Ωm → R,

f (x) = ∑n
i=1 f (xi)λi.

Any set of Barycentric coordinates under this definition also satisfies:

1. Partition of unity: ∑n
i=1 λi ≡ 1.

2. Linear precision: ∑n
i=1 xiλi(x) = x.

3. Dirac delta: λi(xj) = δi j

In this work, we use the Wachspress coordinates [Wachspress (1975)], defined as

follows:

Let x ∈ ∂Ωm and define the areas: Bi as the area of the triangle having xi−1,xi and

xi+1 as its three vertices, and Ai(x) as the area of the triangle having x,xi and xi+1

as its three vertices. This is illustrated in Fig. 5.

Define the Wachspress weight function as:

wi(x) = Bi ∏
j 	=i,i−1

A j(x) (37)

Then, the Wachspress coordinates are given by the rational functions:

λi(x) =
wi(x)

∑n
j=1 w j(x)

(38)
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Figure 5: Definition of triangles Bi and Ai(x)

Similar to the well-known triangular coordinates used in the 2D triangular ele-

ments, where the shape functions associated with the three vertices are indeed the

triangular coordinates themselves, the shape functions associated with the vertices

of this polygonal surface displacement field are the Barycentric coordinates. The

triangular coordinates are actually a special case of the Barycentric coordinates

when the polygon is just a triangle.

The compatibility between the interior fields , as in Eq. 31 and the boundary fields,

as in equation Eq. 34, at the surface ∂Ωm,in each element can be enforced in many

ways, including:

(a) The boundary collocation between (uI
i ,ϕ I) and (uB

i ,ϕB) at selected points on

∂Ωm, , or

(b) The method of minimizing boundary-least-square error between (uI
i ,ϕ I) and

(uB
i ,ϕB) at ∂Ωm.

Both methods are presented in the following:

Using the Collocation method:
The coefficients αααui and αααϕϕϕ are obtained by enforcing the compatibility condi-

tion of the interior and the boundary fields at collocation points xr1,xr2, ...,xrn (see

Fig. 3 for the 2D case and Fig. 6 (left) for the 3D case). This leads to:

[
R0 P0
P0

T 0

]{
aui

bui

}
=

{
uBr

i
0

}
,

[
R0 P0
P0

T 0

]{
aϕϕϕ
bϕϕϕ

}
=

{
ϕϕϕBr

0

}
(39)

R0 =

⎡
⎢⎢⎣

Rr1(xr1) Rr2(xr1) ... Rrl(xr1)
Rr1(xr2) Rr2(xr2) ... Rrl(xr2)

: : : :

Rr1(xrl) Rr2(xrl) ... Rrl(xrl)

⎤
⎥⎥⎦ (40)
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Figure 6: (left) collocation points on one boundary surface of the 3D MVC-RBF-

W. (right) triangulating each boundary surface and taking the Gaussian points in

each triangle to be the RBF centers and collocation points

P0 =

⎡
⎢⎢⎣

P1(xr1) P2(xr1) ... Pl(xr1)
P1(xr2) P2(xr2) ... Pl(xr2)

: : : :

P1(xrl) P2(xrl) ... Pl(xrl)

⎤
⎥⎥⎦ (41)

(uBr
i )T = [uBr1

i uBr2
i ... uBrl

i ]

=

[
n

∑
k=1

Ñk(xr1)uk
i

n

∑
k=1

Ñk(xr2)uk
i ...

n

∑
k=1

Ñk(xrl)uk
i

]

(ϕϕϕBr)T = [ϕBr1 ϕBr2 ... ϕBrl]

=

[
n

∑
k=1

Ñk(xr1)ϕk
n

∑
k=1

Ñk(xr2)ϕk ...
n

∑
k=1

Ñk(xrl)ϕk

]
(42)

Solving equation (39) gives:

aui = GruBr
i and bui = GpuBr

i

aϕϕϕ = GrϕϕϕBr and bϕϕϕ = GpϕϕϕBr (43)

So the interior displacement and electric potential fields have the form:

uI
i = [RT (x)Gr +PT (x)Gp]uBr

i =
n

∑
k=1

Nk
u(x)u

k
i in Ωm

ϕ I = [RT (x)Gr +PT (x)Gp]ϕϕϕBr =
n

∑
k=1

Nk
ϕ(x)ϕ

k in Ωm

(44)



2D and 3D Multiphysics Voronoi Cells 37

In terms of nodal displacement and electric potential vectors, qu and qϕϕϕ , the inte-

rior displacement and electric potential fields are expressed as:

uI = Nu(x)qu in Ωm

ϕ I = Nϕϕϕ(x)qϕϕϕ in Ωm
(45)

where uI =
{

uI
1 uI

3

}
.

Dong and Atluri (2011) proved that for the VC-RBF to pass the patch test, when

the collocation method is used, with an error reduced to a satisfactory level, the

interior and boundary fields should be collocated at the quadrature points. Hence,

the compatibility between internal and boundary fields is satisfied at least in a fi-

nite volume sense. For the 2D MVC-RBF, the collocation points are the Gaussian

quadrature points along each boundary side (see Fig. 3), and for the 3D MVC-RBF-

W, the collocation points are the 2D triangular quadrature points on the triangles

generated by triangulating each polygonal surface (see Fig. 6 (right)). In this work,

the collocation points used to enforce the compatibility between the interior and

boundary fields are 6 (six) 1D Gaussian quadrature points on each side of the 2D

MVC-RBF element, and 7 (seven) 2D triangular quadrature points, on each of the

triangles generated by triangulating each polygonal surface for the 3D MVC-RBF-

W element.

In principle, as the number of quadrature points increases, the error in the patch test

is decreased, provided that a sufficient quadrature order is used in the integration

of the stiffness matrix. However, since the integrands in the stiffness matrix are not

polynomials, the numerical quadrature is always approximate, whatever the order

of the quadrature. For the 2D MVC-RBF, each polygon is divided into triangles

and 7 triangular quadrature points in each triangle are used in the integration of the

element stiffness matrix. For the 3D MVC-RBF-W, three-dimensional Delaunay

triangulation is used to divide each Voronoi Cell into a number of tetrahedrons in

order to use the 3D tetrahedron numerical quadrature in calculating the stiffness

matrix of each element. In this work, we use 11 quadrature points in each tetra-

hedron, for integrating the stiffness matrix in order to obtain sufficiently accurate

results.

It should be mentioned here that the matrices that are being inverted in Eq. 39, in

order to obtain aui,bui,aϕϕϕ and bϕϕϕ , have dimensions n× n, where n is the number

of RBF-basis functions plus the number of the P-basis functions. Here, the number

of RBF-basis functions is taken to be exactly the number of collocation points, and

the RBF centers are taken to be exactly the collocation points in the whole element.

Thus, n = number of collocation points + number of P-basis, which is n = 6 × num-

ber of sides of the polygon + 3 for the 2D case, and n = 7 × number of triangles on

all boundaries + 4 for the 3D case.
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Using the Least squares method:
When the number of collocation points is increased to a limit of infinity, it is equiv-

alent to enforcing the compatibility between uI and uB , and ϕ I and ϕB , using the

least squares method, namely minimizing the following functional:

e(uI
i ,u

B
i ,ϕ

I,ϕB) =
∫

∂Ωm

{
(uI

i −uB
i )(u

I
i −uB

i )+(ϕ I −ϕB)(ϕ I −ϕB)
}

dS (46)

Using Eq. 31 and Eq. 34, the functional e can be written as:

e(αααui,qui,αααϕϕϕ ,qϕϕϕ) =
∫

∂Ωm

(αααT
uiM

T Mαααui −2αααT
uiM

T Ñqui +qT
uiÑ

T Ñqui)dS

+
∫

∂Ωm

(αααT
ϕϕϕMT Mαααϕϕϕ −2αααT

ϕϕϕMT Ñqϕϕϕ +qT
ϕϕϕÑT Ñqϕϕϕ)dS

= (αααT
u Uαααu −2αααT

u Vqui +qT
uiWqui)+(αααT

ϕϕϕUαααϕϕϕ −2αααT
ϕϕϕVqϕϕϕ +qT

ϕϕϕWqϕϕϕ)

(47)

To minimize e for a fixed qui and qϕϕϕ we have,

δe(δαααui,qui,δαααϕϕϕ ,qϕϕϕ) =

(2δαααT
u Uαααu −2δαααT

u Vqui)+(2δαααT
ϕϕϕUαααϕϕϕ −2δαααT

ϕϕϕVqϕϕϕ)
(48)

This should be true for any δαααui and δαααϕϕϕ , hence;

Uαααui = Vqui, or αααui = Luqui

Uαααϕϕϕ = Vqϕϕϕ , or αααϕϕϕ = Lϕϕϕqϕϕϕ
(49)

Substituting this into the second equation in Eq. 31 gives:

uI
i = M(x)αααui = M(x)Luqui or uI = Nu(x)qu in Ωm

ϕ I = M(x)αααϕϕϕ = M(x)Lϕϕϕqϕϕϕ = Nϕϕϕ(x)qϕϕϕ in Ωm
(50)

Only the square matrix U =
∫

∂Ωm
MT MdS is being inverted here. The dimensions

of this matrix is also n×n where n is the number of RBF-basis functions plus the

number of the P-basis functions. If we take the number of RBF-basis to be exactly

the same as that of the integration points in the whole element as we did in the case

of the collocation method, the number of unknowns αααui =

{
aui

bui

}
or αααϕϕϕ =

{
aϕϕϕ
bϕϕϕ

}
will be larger than that of the equations (in a collocation sense) by the number of

the P-basis functions (3 for 2D element and 4 for 3D element). So the number of

integration points in the whole element used in evaluating U and V matrices should
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be larger than that of the RBF basis functions.

For the 3D MVC-RBF-W, we selected the RBF centers to be at the 3 (three) Gaus-

sian points in each triangle of the triangulated boundary surfaces, while 7 (seven)

Gaussian points per triangle are used in integration. Hence the number of RBF

basis functions is 3 × number of triangles on all boundaries. This number of RBF

basis functions proved to be enough to give sufficient accuracy of the element un-

like the case of the collocation method where 7 collocation points per triangle are

required to give an acceptable accuracy. Thus, n = 3 × number of triangles on

all boundaries + 4. This number n is much less than that used in the collocation

method, and hence the least square method yields a much cheaper element while

also leading to better accuracy as was illustrated in [Bishay and Atluri (2012)].

3.2 Finite element equation

Having the interior fields in terms of the nodal values of mechanical displacements

and electric potential (as in Eq. 45 for the collocation method, and Eq. 50 for the

least square method), the corresponding interior strain and electric field intensity

are:

εεε I = ∂∂∂ uuI = ∂∂∂ u(Nu(ξ γ)qu) = Bu(x)qu in Ωm

−EI = ∂∂∂ eϕ I = ∂∂∂ e(Nϕϕϕ(ξ γ)qϕϕϕ) = Bϕϕϕ(x)qϕϕϕ in Ωm
(51)

Now we can use Π(u,ϕ) , a functional used for developing irreducible or primal

finite elements [Sze and Pan (1999)], to obtain the finite element equation for any

of the two mentioned methods:

Π(u,ϕ) =
∫

Ω

[
1

2

{
∂∂∂ uu
∂∂∂ eϕ

}T [C eT

e −h

]{
∂∂∂ uu
∂∂∂ eϕ

}
−bT u+ρ f ϕ

]
dΩ

−
∫

St

tT udS−
∫

SQ

QϕdS

(52)

Substituting the finite element interpolation functions, Eq. 45 and Eq. 51, we get

after dropping the superscript I for simplicity and considering that the body is com-

posed of N finite elements (Ω = ∑N
k=1 Ωk):

Π =
N

∑
k=1

⎛
⎜⎜⎜⎜⎝

1
2

{
qk

u
qk

ϕϕϕ

}T [∫
Ωk

BT
u CkBudΩ

∫
Ωk

BT
u ekT BϕϕϕdΩ∫

Ωk
BT

ϕϕϕekBudΩ −∫Ωk
BT

ϕϕϕhkBϕϕϕdΩ

]{
qk

u
qk

ϕϕϕ

}
−
(∫

Ωk
bkT NudΩ

)
qk

u +
(∫

Ωk
ρk

f NϕϕϕdΩ
)

qk
ϕϕϕ

−
(∫

Sk
t
tkT NudS

)
qk

u −
(∫

Sk
Q

QkNϕϕϕdS
)

qk
ϕϕϕ

⎞
⎟⎟⎟⎟⎠ (53)
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Equating the first variation of this functional with respect to
{

qk
u qk

ϕϕϕ
}T

to zero,

leads to the global finite element equation that is solved for the global nodal primal

variables q =
{

qu qϕϕϕ
}T

= ∑N
k=1

{
qk

u qk
ϕϕϕ
}T

:

Kq = F (54)

with the stiffness matrix and load vector having, respectively, the forms:

K =
N

∑
k=1

[∫
Ωk

BT
u CkBudΩ

∫
Ωk

BT
u ekT BϕϕϕdΩ∫

Ωk
BT

ϕϕϕekBudΩ −∫Ωk
BT

ϕϕϕhkBϕϕϕdΩ

]
(55)

F =

{
Fu
Fϕϕϕ

}
=

{ ∫
Ωk

bkT NudΩ+
∫

Sk
t
tkT NudS

−∫Ωk
ρk

f NϕϕϕdΩ+
∫

Sk
Q

QkNϕϕϕdS

}
(56)

We denote the 2D version of this element as "MVC-RBF-1" while the 3D version

as "MVC-RBF-W-1".

By increasing the number of RBF center/collocation points, the residual error pro-

duced in the patch test can be reduced to a satisfactory level. However, MVC-

RBF1 and MVC-RBF-W-1 may suffer from locking because the assumed interior

displacement field is only complete to the first order, and the derived strains are

locked together. This not only affects the accuracy of the mechanical displace-

ments but also affect that of the electric potential due to the piezoelectric coupling.

To improve the performance of MVC-RBF-1 and MVC-RBF-W-1, we can further

independently assume an interior strain field ε In
i j (x,ααα) which eliminates the shear

locking terms, and determine the undetermined parameters ααα by enforcing the com-

patibility between ε In
i j (x,ααα) and ε I

i j(x,qu) at several preselected collocation points.

Similarly we can assume independent electric field EIn
i (x,βββ ) and collocate it with

the electric field derived from the electric potential EI
i (x,qϕϕϕ);

For the 2D element:

ε In
1 = Aεεε1(ξ γ)αααI, ε In

3 = Aεεε3(ξ γ)αααII, ε In
5 = Aεεε5(ξ γ)αααIII,

−EIn
1 = AE1(ξ γ)βββ I, −EIn

3 = AE3(ξ γ)βββ II
(57)

and for the 3D element:

ε In
1 = Aεεε1(ξ γ)αααI, ε In

2 = Aεεε2(ξ γ)αααII, ε In
3 = Aεεε3(ξ γ)αααIII,

ε In
4 = Aεεε4(ξ γ)αααIV, ε In

5 = Aεεε5(ξ γ)αααV, ε In
6 = Aεεε6(ξ γ)αααVI,

−EIn
1 = AE1(ξ γ)βββ I, −EIn

2 = AE2(ξ γ)βββ II, −EIn
3 = AE3(ξ γ)βββ III

(58)

Collocating the independent fields (the components of normal strains and electric

field) in Eq. 57 or Eq. 58 with that of equation Eq. 51 at enough points inside the
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element, and collocating the shear terms (ε In
5 for the 2D case and ε In

4 , ε In
5 and ε In

6

for the 3D case) only at the center of the element, we get:

εεε In = Aεεε(ξ γ)ααα = B∗
u(ξ

γ)qu,

EIn = AE(ξ γ)βββ = B∗
ϕϕϕ(ξ

γ)qϕϕϕ ,
(59)

Then we substitute in the functional Π as was done in Eq. 53 to get the stiffness

matrix and load vector as similar to that in Eq. 55 and Eq. 56, respectively, but with

replacing Bu(ξ γ) and Bϕϕϕ(ξ γ) with B∗
u(ξ γ) and B∗

ϕϕϕ(ξ γ). We denote the 2D version

of this element by "MVC-RBF-2" and the 3D version as "MVC-RBF-W-2". Actu-

ally the stiffness matrix of MVC-RBF-2 and MVC-RBF-W-2 can be derived using

the same procedure of deriving MVC-RBF-1 and MVC-RBF-W-1, only by substi-

tuting the center point at every quadrature point in integrating the shear strains.

3.3 Conditioning of the system matrices

The finite element global system of equations to be solved in any of the previ-

ously presented elements is ill-conditioned because the stiffness matrix contains

the material elastic stiffness matrix C in the Kuu part and also contains the dielec-

tric material matrix h in the Kϕϕϕϕϕϕ part. The numerical values of the components of

C are as large as 1010 , and that of h are as small as 10−9. Hence the ratio is as large

as 1019 , and this makes the global stiffness matrix ill-conditioned. To improve the

conditioning we can use the following matrix instead of that of Eq. 11:{
σ̂σσ
D̂

}
=

[
Ĉ êT

ê −ĥ

]{
εεε − εεεR

−Ê

}
+

{
0

P̂R

}
(60)

where

σ̂i =
σi

c̃
, D̂i =

Di

ẽ
, Êi =

Eiẽ
c̃
, P̂R

i =
PR

i

ẽ

and

Ĉi j =
Ci j

c̃
, êi j =

ei j

ẽ
, ĥi j =

hi jc̃
ẽ2

.

and from Eq. 4, we also have ϕ̂ = ϕ ẽ
c̃ .

Here we can select c̃ =C11 and ẽ = e33.

Hence, the stiffness matrix will have the form:

K̂ =

[
K̂uu K̂uϕϕϕ
K̂T

uϕϕϕ −K̂ϕϕϕϕϕϕ

]
=

N

∑
k=1

[∫
Ωk

BT
u ĈkBudΩ

∫
Ωk

BT
u êkT BϕϕϕdΩ∫

Ωk
BT

ϕϕϕ êkBudΩ −∫Ωk
BT

ϕϕϕ ĥkBϕϕϕdΩ

]
(61)
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and the system to be solved will be:

K̂q̂ = F̂ (62)

Where

F̂ =

{
F̂u
F̂ϕϕϕ

}
, F̂u =

Fu

c̃
, F̂ϕϕϕ =

Fϕϕϕ

ẽ

q̂ =
{

qu q̂ϕϕϕ
}T

and q̂ϕϕϕ =
qϕϕϕ ẽ

c̃
.

(63)

So, we solve the system (62) for q from which we get qu and qϕϕϕ =
q̂ϕϕϕ c̃

ẽ .

4 Switching criterion and kinetics

Gibbs energy density g can be related to the internal energy density U via a Legen-

dre transformation, which results in:

ρg = ρU −σσσ : εεε −E ·D−ηT (64)

Gibbs energy is considered to be composed of two parts, a linear (or reversible) part,

gL , which reflects the linear or reversible responses of the material and primarily

depends on σσσ , E and T , and a remnant (or irreversible) part, gR , arising from the

changes in the remnant state of the crystal with respect to a reference state, and is

assumed to be a function of the remnant polarization and strain.

g = gL(σσσ ,E,T )+gR(PR,εεεR) (65)

Substituting Eq. 8, Eq. 13, Eq. 64 and Eq. 65 into Eq. 14, we get the local dissipa-

tion inequality for the isothermal case considered :

σσσ : ε̇εεR +E · ṖR −ρ∂εεεRgR · ε̇εεR −ρ∂PRgR · ṖR ≥ 0 (66)

In the case of a reversible response, the microscopic state of the crystal, as well

as the remnant values, remain unaltered-such that ṖR = 0 and ε̇εεR = 0 , and Eq. 66

turns into an equality taking the value zero. In this work, rate-effects will not be

accounted for and also changes in volume fractions are done at discrete time inter-

vals Δt > 0 .

Several representation forms of the Gibbs energy associated with the remnant state

of the crystal, gR(PR,εεεR) , have been investigated in the literature (see Cooks and

McMeeking (1999) and Kamlah and Jinag (1999) for example). Here we restrict
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ourselves to a quadratic form in terms of the remnant polarization and strains,

namely:

ρgR(PR,εεεR) =
1

2
εεεR : Hεεε : εεεR +

1

2
PR ·HP ·PR (67)

Where Hεεε and HP denote the hardening-type tensors pertaining to the crystal’s rem-

nant strain and polarization respectively. Here, we assume the simplest format, i.e.

the hardening-type tensors are chosen to be proportional to the symmetric identity

tensors of fourth and second order:

Hεεε = HεIsym, HP = HPIsym (68)

Where Hε and HP are positive scalars, being referred to as hardening parameters,

Isym is a symmetric identity tensor of the fourth order for strain and second order

for polarization. Hε and HP are set constant in this work. Based on Eq. 66 and

Eq. 67, the local dissipation inequality now corresponds to

[
σσσ −σσσb] : ε̇εεR +

[
E−Eb] · ṖR ≥ 0 (69)

With

σσσb = ρ∂εεεRgR = Hεεε : εεεR = HεεεεR (70)

Eb = ρ∂PRgR = HP ·PR = HPPR (71)

The contributions σσσb and Eb are referred to as back stresses and back electric field,

respectively. If the remnant polarization and strain of a grain vary from a reference

state, the back fields will either resist or assist further domain switching processes

depending upon whether the process will take the current state further away from

the reference state or closer to it. Here, the reference state is defined as the state at

which the remnant polarization and strain of the single grain are zero.

The rate of change of the remnant strain and polarization is calculated from Eq. 9

as:

ε̇εεR =
Nd

∑
i=1

ċiεεεS
i , ṖR =

Nd

∑
i=1

ċiPS
i (72)

Substitution of Eq. 72 into Eq. 69 yields the local dissipation inequality to result in:

Nd

∑
i=1

[[
σσσ −σσσb] : εεεS

i +
[
E−Eb] ·PS

i

]
ċi ≥ 0 or

Nd

∑
i=1

fiċi ≥ 0 (73)
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At the level of a single crystal, fi denotes the force driving domain switching pro-

cesses by altering the crystal variant i in combination with one or more of the

remaining variants.

The switching criterion specifies the conditions under which domain switching

commences. Let a domain switching process-transforming one variant into another-

be referred to as a transformation system. For a 2D ferroelectric body with four

types of different phases per element or grain, 6 such transformation systems can

be observed, while for the 3D case with six types of variants, we have 15 transfor-

mation systems.

Concerning notation, a transformation system that increases the variant j at the ex-

pense of another variant, say i, is denoted as i → j . The related driving force fi j is

obtained from Eq. 73 as,

fi j = f j − fi =
[
σσσ −σσσb] : εεεS

i→ j +
[
E−Eb] ·PS

i→ j for i, j = 1..Nd (74)

Where εεεS
i→ j = εεεS

j − εεεS
i and PS

i→ j = PS
j −PS

i .

For the 2D case, four of the six possible forward transformation systems are re-

lated to 90◦ domain switching, while the remaining two correspond to 180◦ domain

switching. For the 3D case, 12 of the possible 15 forward transformation systems

are related to 90◦ domain switching, while the remaining three correspond to 180◦

domain switching. Once the driving force reaches a certain critical threshold values

k90 or k180 associated with 90◦ or 180◦ domain switching respectively, the model-

ing of the related switching process is initiated. In other words, the transformation

system is activated based on:

| fi j| ≥ k90 ⇒ 90◦ switching

| fi j| ≥ k180 ⇒ 180◦ switching
(75)

So, the ferroelectric crystal exhibits reversible responses without any change in its

microscopic state because the underlying volume fractions of crystal variants are

unaltered until the driving force reaches any of the critical values. Once a trans-

formation system becomes active, the associated discrete changes in the volume

fractions as referred to the time or rather load interval Δt > 0 can be determined

using Eq. 74 and Eq. 75. The update of a crystal variant j according to the i → j
transformation system is represented by

Δc j =

⎧⎪⎨
⎪⎩
−min{ci,Δc̃ j}, for fi j ≤− fcr

0, for − fcr ≤ fi j ≤ fcr

min{ci,Δc̃ j}, for fi j ≥ fcr

(76)
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Where

fcr =

{
k90, for 90◦ switching

k180, for 180◦ switching

and

Δc̃ j =
〈| fi j|− fcr〉

εεεS
i→ j : Hεεε : εεεS

i→ j +PS
i→ j : HP : PS

i→ j
(77)

Where 〈•〉= 1
2
[| • |+•] . Note that:

εεεS
1 = εεεS

2 , εεεS
3 = εεεS

4 , and εεεS
5 = εεεS

6

PS
1 =−PS

2 , PS
3 =−PS

4 , and PS
5 =−PS

6

Hence for 180◦ switching, there is no change in the remnant strain and Eq. 77

reduces to:

Δc̃ j =
〈| fi j|− k180〉
4PS

j : HP : PS
j

Note that the consistency constraints on the volume fractions (see Eq. 7) are in-

herently guaranteed within the proposed model as the relation fi j =− f ji generally

holds. So for the forward transformation system i → j the volume fraction c j in-

creases by the same amount as ci decreases. Once the incremental volume fractions

are obtained, the volume fractions of each element should be updated:

c j(new) = c j(old) +
Nd

∑
i=1,i	= j

Δci j for j = 1..Nd (78)

Then, the material matrices as well as the remnant strain and polarization can be

updated using Eq. 9, while the back fields of the current crystal state can be de-

termined via Eq. 70 and Eq. 71. As the back fields resist subsequent switching

process in the same transformation system, increasing loading levels are required

to continue the transformation of the respective phase. If the loading direction is

reversed, however, the back fields additionally support the transformation process

until the crystal reaches the reference state. Hardening or softening effects within

the crystal- stemming from changing remnant states-are accounted for in the model

by means of these back fields. In order to realize the crystal-to-crystal interactions

in a ferroelectric polycrystal, i.e. the so-called intergranular effects, as well as to

simulate general boundary value problems, the single crystal model proposed is
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embedded into an iterative finite element framework as will be discussed in the

next section.

Note that the switching criterion used here is local in nature, unlike the switching

criterion of [Kim and Jiang (2002) and others] which is based on the overall energy

release of the whole body. Using this local switching criterion prevents searching

for the configuration that yields the minimum overall energy of the whole body

in each simulation step. This search for the desired configuration requires solv-

ing the finite element system of equations as much as the number of the switching

elements (the elements that tend to switch) in each simulation step. Hence it is

computationally inefficient.

5 Solution method

To calculate the response of a polycrystalline ferroelectric under electromechani-

cal loading, the switching criterion and kinetic relations presented in the previous

section should be implemented into a numerical algorithm to obtain the volume

fractions of various domains in each grain at each time step. First the body is dis-

cretized to randomly generated Voronoi Cells (MVCs). Each MVC represents one

crystal grain. Then randomly generated crystallographic axes are assigned to each

MVC, modeling a crystal grain in a polycrystalline ferroelectric specimen. This is

done by generating a random value for the angle θ -between the global X1 axis and

the local crystal axis 1, x′1 , in each element for the 2D analysis. x′3 or the crystal

axis 3 is set by a 90◦ rotation of x′1 , in the X1 −X3 plane. For the 3D case, three

Euler angles (θ ,φ and ψ ) are generated randomly for each polyhedron element to

define its crystallographic axes as was discussed in subsection 2.1. The crystallo-

graphic axes are mutually orthogonal.

Initially, each MVC modeling a crystal grain consists of Nd distinct types of do-

mains, where Nd is the number of possible domain types in the element ( Nd = 4

in the 2D analysis and Nd = 6 for the 3D case). The spontaneous polarization di-

rections of the domains are parallel/opposite to the crystallographic axes in each

element. Hence for the system configuration which is defined by domain volume

fractions, all the element domains are assigned with the same initial values of vol-

ume fraction, i.e. 1/Nd . The net polarization and strain of the specimen are there-

fore zero at the initial instant of time. The back fields are also zero initially.

Suppose that the system configuration at time t is known. After an incremental time

step Δt, the system configuration at time t +Δt are determined as follows:

(a) The load vector F is updated to that at time t + Δt. By using the known

values of volume fractions at time t and the known load vector at time t +Δt, the

finite element system of equation is assembled and solved to obtain a new nodal

electromechanical displacements q =
{

qu qϕϕϕ
}T

. Based on the new element elec-
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tromechanical displacement vector q , the element area (volume) average linear

strain and electric field are calculated as:

εLk =

∫
Ak εεεLdA

Ak =

∫
Ak BudA

Ak qu (79)

Ek
=

∫
Ak EdA

Ak =
−∫Ak BϕϕϕdA

Ak qϕϕϕ (80)

Where A and Ak are replaced by V and V k respectively for the 3D case. Ak and V k

are the area and volume of element k respectively.

Then the element area (volume) average stress σσσ k and linear electric displacement

DkL
are calculated from the linear constitutive relations (Eq. 12) in which the ma-

terial matrices are determined with the known values of volume fractions at time

t.{
σσσ k

DLk

}
=

[
Ck ekT

ek −hk

]{
εεεLk

−Ek

}
(81)

(b) All the domains in an element are assumed to be subjected to constant electric

field and stress, E and σσσ . The driving force for all the transformation systems, fi j ,

in each element can then be computed using Eq. 74, and compared with the critical

values k90 and k180 . If driving forces are less than the critical values, then no

switching is done and loading is continued elastically.

(c) Once the driving force of any transformation system in an element exceeds

the corresponding critical value, then increments in the volume fractions can be

calculated using Eq. 76 and the volume fractions of all the domains in each element

can be updated using Eq. 78. The average material matrices, remnant strain, εεεRk

, and polarization, PRk , as well as the back fields in each element should also be

updated using Eq. 9, Eq. 70 and Eq. 71. Then the element’s macroscopic strain and

polarization are calculated using Eq. 8.

(d) Using the new average material properties, the system of equations is as-

sembled and solved. A new set of nodal electromechanical displacements can be

obtained. For the same simulation step or load increment, the previous steps should

be repeated with the new/updated volume fractions until some convergence crite-

rion is met.

By repeating the steps (a)-(d), the system configuration at the next time step can be

found.

It was shown in [Jayabal et al. (2011)], that for sufficiently small load increments

further iteration steps for the local volume fractions at fixed external loads (as de-

scribed in (d)) are not necessary and do not significantly change the solution of the
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boundary value problems investigated. Moreover, by not allowing for additional

iteration steps for a given load increment, the possible problem of back and forth

switching, which depends in particular on the orientation of the local crystallo-

graphic axes with respect to the loading directions, is avoided. This algorithmic

problem is due to the discrete nature of the switching criterion introduced.

6 Results

In this section, we present the results of the developed MVC-RBF models for fer-

roelectric switching (by applying cyclic electric loads that may be combined with

constant mechanical loads) and ferroelastic switching (by applying only cyclic me-

chanical loads). The material used for the simulation is BaTiO3. The properties of

a BaTiO3 crystal poled in x′3− crystallographic axis are:

C11 = 16.6×1010, C12 = 7.7×1010, C13 = 7.75×1010, C33 = 16.2×1010

C44 = 4.29×1010 N/m2; e31 =−4.4, e33 = 18.6, e15 = 11.6 C/m2;

h11 = 1.1151×10−8, h33 = 1.2567×10−8 C/(Vm);

εS
33 = 4.15×10−3, pS = 0.23 Cm−2.

For the 2D analysis, we take εS
11 = −εS

33, while for the 3D analysis, we use εS
11 =

εS
22 = −εS

33/2 . This will result in zero net spontaneous strain and polarization in

the initial state before applying any loads.

The hardening parameters and the switching threshold values are taken to be:

Hε = 3×109 Pa, HP = 106 Vm/C, k90 = 1.42×105 Pa, k180 = 2k90

The 2D specimen is a square with L = W = 1 mm . The mesh used in the 2D

simulation is composed of 200 MVC-RBF elements, equivalent to 402 nodes, each

having its own random shape as shown in Fig. 7. The figures also shows the ran-

domly generated direction of the x′3 -crystallographic axis in each grain.

The lower surface of the specimen is constrained from motion in the X3 direction,

while the left surface is not allowed to move in the X1 direction. Constraints were

used to keep the upper and right surfaces (edges in 2D analysis) straight. The lower

surface is earthed, i.e. has electric potential ϕ = 0 .

The 3D specimen is a cube with L = W = D =1 mm . 100 MVC-RBF-W elements

only are composing the mesh which has 572 nodes as shown in Fig. 8. In addition

to the boundary conditions considered in the 2D analysis, the back surface of the

3D specimen is prevented from motion in X2 direction. The right, upper and front

surfaces are constrained to be flat surfaces after deformation. Fig. 9 shows a 3D
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Figure 7: the 2D mesh used in the simulation with the x′3-crystallographic axis of

each grain shown

Figure 8: the 3D mesh used in the simulation (100 3D Voronoi cells)

representation of the considered ferroelectric material specimen and all the consid-

ered surfaces and dimensions with the global coordinate axes. In 2D analysis we
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only consider the projection of this model on X1 −X3 plane.

Figure 9: surfaces of the ferroelectric specimen

6.1 Ferroelectric switching

In this case switching is produced by cyclic external electric field applied to the

ferroelectric polycrystalline. This results in the hysteresis and butterfly loops of

macroscopic electric displacement and strain, respectively, versus electric field.

Constant applied external compressive stresses cause these nonlinear loops to be-

come flatter. Cyclic electric field is applied by specifying a constant value for the

electric potential on the upper surface while the lower surface is earthed. The value

of the electric potential on the upper surface is expressed as:

ϕ(t) =W ×E sin(2π f t) (82)

Where E = 20× 105 V/m is the amplitude of the applied electric field, and f =
60 Hz is the frequency of the applied electric load. t is the time in second. The time

step used in the simulation is Δt = 1/(624 f ) = 2.6709× 10−5 sec . In addition,

constant compressive stress is applied on the upper surface of the specimen.

The experimentally observed material behavior for PZT-51 under the loading con-

ditions considered is reported in [Li et al. (2006)] and also shown in Fig. 10. Corre-

sponding simulation results, namely representative hysteresis loops of macroscopic

electric displacement - electric field and butterfly curves of macroscopic strain -

electric field, are shown in Fig. 11 for the 2D model. The simulation results match

the experimental investigations, even though a two-dimensional formulation is con-

sidered and the material parameters adopted do not fully reflect the local properties
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of the material used for the experimental investigations (as these are not directly

available in the literature).

The macroscopic electric displacement and strain are the area average electric dis-

placement and strain calculated as:

D3 =
∑N

k=1

∫
Ak Dk

3(ξ
γ)dA

A
(83)

ε3 =
∑N

k=1

∫
Ak εk

3(ξ
γ)dA

A
=

∑N
k=1(ε

Lk
3 + εRk

3 )Ak

A
(84)

Where A is the total surface area of the specimen A = L×W . For the 3D analysis,

we use the volume average macroscopic strain which is calculated similarly but

replacing the area integral by a volume integral in each element and dividing by the

total volume of the specimen instead of the total area.

Figure 10: Experimental observation of a ferroelectric polycrystal (PZT-51) un-

der electromechanical loading conditions with a cyclic external electric field and

constant external compressive stresses, taken from [Li et al. (2006)]: (left) macro-

scopic electric displacement and (right) macroscopic strain

Both Fig. 10 and Fig. 11 clearly show that increasing the magnitude of the con-

stant uniaxial compressive stresses causes the hysteresis loop to contract. The mi-

croscopic or rather physical background for this macroscopically observed behav-

ior lies in the fact that at larger external compressive stresses, domain switching

processes locally experience higher resistance for switching. The butterfly curves

show similar behavior, except that the curves are also shifted towards the compres-

sive regime for increasing external compression levels. Moreover, the simulated

response curves in Fig. 11 are smooth, which is not the case for several FEM-based

discrete switching models reported in the literature, but here stems from the incor-

poration of hardening contributions (back fields).
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Figure 11: Simulated response of ferroelectric polycrystalline under electrome-

chanical loading conditions with a cyclic external electric field and constant exter-

nal compressive stresses (2D mesh: 200 MVC-RBF)

For the 3D case, Fig. 12 shows the hysteresis and butterfly loops for different levels

of externally applied compressive stresses on the upper surface.

Figure 12: Simulated response of ferroelectric polycrystalline under electrome-

chanical loading conditions with a cyclic external electric field and constant exter-

nal compressive stresses (3D mesh: 100 MVC-RBF-W)

Even though any regular mesh can also generate the same macroscopic response,

the microstructure of the regular mesh will not be similar to that of the physical

specimens because of the difference in grain geometries. The macroscopic re-

sponse is just the average of the local response. So higher and lower values of

stress and electric field can exist locally inside the specimen, but on average they
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are canceled out. In order to show this, Fig. 13 presents the distribution of the

X3 -component of strain, stress, electric field and electric displacement at three in-

stants during the electric loading cycle in the absence of any applied compressive

stress. These 3 particular points referred to as "A", "B" and "C" are shown in the

hysteresis and butterfly curves ("A": fully poled along the positive X3 -axis; "B":

electrically depoled; "C": fully poled along the negative X3 -axis). Fig. 14 shows

the same distributions for the 3D model. The plots are slightly transparent to show

the distribution of the fields in the internal elements. Moreover, in Fig. 15 some

elements are removed from the model to clearly visualize the stress distribution, as

an example, in the inner elements. (The model is also rotated in Fig. 15 for better

visualization).

The plots of the electric displacement in Fig. 13 at loading points "A" and "C" dis-

play that the specimen is almost completely poled with respect to the macroscopic

loading direction while at the macroscopically depoled state "B", some individual

crystals show zero net contribution to the projected electric displacements. Other

crystals, however, still show non-vanishing contributions either in positive or nega-

tive direction of the X3 -axis. This can also be seen in Fig. 14 for the 3D model. On

the macroscopic level, however, these contributions in average cancel each other

out so that the overall specimen possesses a negligible polarization as graphically

displayed in the hysteresis loop in Fig. 11 and Fig. 12. The simulation results not

only show the same macroscopic strain level at states "A" and "C", but also sim-

ilar internal strain field distribution as presented in Fig. 13 for the 2D model. By

analogy, similar stress contributions are observed at these two states as well. How-

ever for the 3D model in Fig. 14, the strain and stress distribution is not exactly

similar at points "A" and "C" because the sequence of switching occurred to reach

point "A" is different from the switching sequence that occurred to achieve point

"C". Even though the level of macroscopic strain at these two instants may be sim-

ilar, the local strain distribution is different. The locations of stress concentration

are different because the switching sequence is the process that governs the inter-

granular effects. For the depoled state "B", the strains in most of the individual

crystals are close to zero. The local stress distribution along the X3 -axis turn out

to take non-vanishing values within some grains in all the three states "A", "B"

and "C" even though their averaged values on the macroscopic scale are negligible.

Similarly but not that pronounced, a non-homogeneous distribution of the electric

field E3 is observed.

6.2 Ferroelastic switching

A uniformly cyclic stress is applied on the upper surface of the polycrystalline

ferroelectric specimen to cause switching. This case of loading causes only 90˚
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Figure 13: Simulation results representing the local distribution of strain, stress

(Pa), electric field (V/m) and electric displacement (C/m2) at points "A", "B", and

"C"
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Figure 14: Simulation results representing the local distribution of strain, stress

(Pa), electric potential (V), electric field (V/m) and electric displacement (C/m2) at

points "A", "B", and "C" (3D model: 100 MVC-RBF-W elements)
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Figure 15: Some elements are removed from the ferroelectric specimen to show the

stress distribution (Pa) in the inner elements

switching. Since there is no applied electric field (E = 0 ), then the driving force,

fi j , in Eq. 74 is only dependent on the applied stress, t , the back stress, σσσb ,

and the difference in the domains’ spontaneous strain vectors, εεεs
i→ j . Hence any

180˚ switching is prevented in all elements (i.e. f12 = f34 = f56 = 0 ), and we get

the same value of volume fraction for types 1 and 2 domains and another value of

volume fraction for types 3 and 4 domains (and a third value for domains of types

5 and 6 in 3D analysis) in each element in each simulation step. Consequently, the

element piezoelectric matrix (ek or mk ), and remnant polarization vector, PRk , are

always zero, and then the element macroscopic electric displacement, D will also

be zero. So ferroelastic is easier than ferroelectric switching because the switching

only affects the mechanical variables and the problem is reduced to a pure elastic

problem with spontaneous strain that changes every time step as the domains switch

in each grain by 90˚. For our simulations, the cyclic uniform stress that is applied

on the upper surface of the specimen is expressed as:

t3(t) = σ sin(2π f t) (85)

Where σ = 100 MPa is the amplitude, and f = 20 Hz is the frequency of the applied

mechanical load; t is the time in second. The time step used in the simulation is

Δt = 1/(624 f ). For the 2D model, Fig. 16 (left) shows the hysteresis loop of the

applied stress- macroscopic strain, while Fig. 17 shows the hysteresis loop for the

3D model. In each 2D element there are two domain types or variants more aligned

to X3 - axis while the other 2 are more aligned to the X1 - axis. The switching

process change the amount of the X1 - and X3- aligned domains or volume fractions

in the whole specimen as shown in Fig. 16 (right). The results presented here

together with the results of Kim and Jiang (2002) and Sze and Sheng (2005) are in
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qualitative agreement with the experimental observations.

Figure 16: (Left): Stress-strain hysteresis loop in ferroelastic switching, (right): X1

- and X3 - aligned volume fractions in ferroelastic switching (2D model)

Figure 17: Stress-strain hysteresis loop in ferroelastic switching (3D model)

It should be noted that since the VC mesh is random and also the crystallographic

axes in each element or grain is random, as the domain descritization and the ran-

dom distribution of the crystallographic axes change, the resulting loop is slightly

changed.
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7 Conclusions

2D as well as 3D models of the Multiphysics Voronoi Cells based on radial basis

functions, to describe the primal variables (mechanical displacements and elec-

tric potential) in the interior of each finite element as well as linear functions to

describe the primal variables on the element boundaries, were developed to simu-

late ferroelectric and ferroelastic switching in ferroelectric ceramic materials. The

linear functions used at the surfaces of the 3D VCs are based on the Washspress

functions. The compatibility between the assumed fields in the interior of the el-

ement and those on the boundaries is met, using either the collocation or the least

squares methods. Independently assumed strain and electric fields can also be used

to avoid the shear locking problem. The compatibility between these independently

assumed secondary fields and those derived from the primary fields is also met us-

ing the same mentioned methods.

The developed 2D and 3D MVCs were able to simulate ferroelectric and ferroe-

lastic switching phenomena accurately, as compared to previous models in the lit-

erature and the experimental results. The complexity of geometry and domains

orientation of the ferroelectric specimens as well as the distribution of the mechan-

ical and electric fields during the cyclic electromechanical loading can now be fully

simulated using the 3D MVCs (MVC-RBF-W), and the randomly generated crys-

tallographic axes in each grain. Each MVC represents a crystal grain having a

random shape, and surrounded by a different number of neighboring elements or

grains.

This is the first time for 3D Multiphysics Voronoi Cells (MVC) to be implemented

in a ferroelectric switching model. It was shown here that during the cyclic load-

ing, domain switching can cause localized stresses inside the specimen and this is

one of the causes of crack nucleation in ferroelectric materials. These localized

stresses are not apparent in the macroscopic response which gives average values

of the field distributions. However, the internal distributions are visualized here to

show the localized concentrations of stresses and strains. In this work it was ob-

served with the 3D model that points with similar macroscopic stresses and strains

may have different stress and strain distributions. The cause of this is thought to lie

in the fact that the sequence of switching is different as the body is being loaded

to the points having the same level of macroscopic strain. The difference in this

switching sequence causes the locations of the concentrated stresses and strains to

change. Experimental testing is needed to verify this observation.
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