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Abstract 

Accurate micromechanical modeling of particle and fibrous composite samples with large number of defects (inclusions, voids, 
cracks, etc.) using regular finite elements is expensive because of the mesh-refinement used around each defect. Based on 
Lekhnitskii formulation, we develop new type of elements (named “Computational Piezo-Grains” (CPGs)) with two important 
features: (1) each element can have an arbitrarily polygonal shape to mimic the shape of grains in the microscale, (2) each 
element may contain a void or inclusion embedded in its domain. The materials of the matrix and inclusions could be elastic, 
piezoelectric, or piezomagnetic, allowing for modeling various composite types. 
Copyright © 2014 Elsevier Ltd. All rights reserved. 
Selection and peer-review under responsibility of Conference Committee Members of Advances in Functional Materials 
(Conference 2015). 
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1. Introduction 

Because of the large amount of applications of piezo-composites [1], several types of finite elements with embedded 
defects were formulated recently for micromechanical modeling of such composites (see [2]-[3] for instance). This 
work extends the elements developed in [2] for piezoelectric composites to the case of piezoelectric-piezomagnetic 
composites. 
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2. Computational Piezo-Grains (CPGs) formulation 

In order to model an arbitrary polygonal shaped material grain with an inclusion or a void with only one “finite 
element”, the proposed element geometry is shown in Fig. 1. The outer boundary of the element can take any 
arbitrary polygonal shape with any number of sides. An arbitrarily oriented ellipse is embedded in the element in 
order to model a void or an inclusion in the element’s domain. 

 

Fig. 1. 2D Computational Piezo-Grain (CPG) with an arbitrarily oriented elliptical void/inclusion and its local coordinates ( 1 3x x ) as well as 
the global ( 1 3X X ), and grain local ( 1 3ˆ ˆx x ) Cartesian coordinate systems. 

In order for these grains -or elements- to be able to model variety of piezo-composites, the material of the matrix or 
the inclusion in each element could be piezoelectric, piezomagnetic, or elastic with no couplings. Mathematically the 
following equations should be enforced in the non-conducting matrix domain ( e

m ) and inclusion domain ( e
c ): 

1- Stress equilibrium and the electric and magnetic forms of  Gauss’s equations: 
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2- Strain-displacement (for infinitesimal deformations), Electric field-electric potential, Magnetic field-
magnetic potential relations: 
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     In the previous three equations the superscript orm c   indicates whether we are talking about the matrix (m) 

or the inclusion (c) if any. u (m), ε  (m/m)  and σ (Pa or N/m2) denote mechanical displacement vector, strain 

and stress tensors written in vector form respectively,  (V), E  (V/m or N/C)  and D  (C/m2)  denote scalar 

electric potential, electric field & electric displacement vectors respectively, and   (A or C/s), H  (A/m or 

C/ms)  and B  (N/Am or Vs/m2)  denote scalar magnetic potential, magnetic field & magnetic induction (magnetic 
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flux density) vectors respectively. fb  is the body force vector, and f  is the electric free charge density. C (Pa 

or N/m2), h (C/Vm), m (N/A2), S (m2/N), β (Vm/C) and υ (A2/N) are, respectively, the elastic stiffness 

tensor, dielectric permittivity tensor,  magnetic permeability tensor, elastic compliance tensor, inverse of the 

permittivity tensor, and reluctivity tensor. e (C/m2) and g (m2/C) are piezoelectric tensors, d (N/Am) and b

(Am/N) are piezomagnetic tensors, and n (N/AV) and κ (AV/N) are electromagnetic tensors. The diagonal 
matrices in eq. (3) are positive definite. If the material of the matrix or the inclusion is not piezoelectric, then the 

coupling piezoelectric matrices vanish e g 0  in eq. (3) and if the material is not piezomagnetic, then 

d b 0 . Commercially available monolithic piezoelectric and piezomagnetic materials have very small or no 

electromagnetic coupling, hence n κ 0 . 
            The following natural and essential boundary conditions should be enforced on the outer element (or grain) 

boundaries ( e e e e e e e e e e
u t g Q g B gS S S S S S S S S ), and inclusion or void boundary e

c : 
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, 0, 0 at (void)m m m m m m e
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where t  is the specified boundary traction vector, Q is the specified surface charge density (or electric 

displacement) and MQ  is the specified surface magnetic flux density (or magnetic induction). 1n  and 3n , the two 

components present in σn  and en , are the components of the unit outward normal to the boundaries e
tS , e

QS , or  

e
BS  respectively. u  is the specified mechanical displacement vector at the boundary e

uS ,  is the specified electric 

potential at the boundary eS , and  is the specified magnetic potential at the boundary eS . e
gS  is the grain 

boundary shared with neighboring grains. 
We assume linear primal fields along each grain boundary in terms of the nodal values of the mechanical 
displacements iuq , electric potential φq , and magnetic potential ψq ,  as: 

at eu Nq           (13) 

where N  are linear shape functions, 1 3
T

u uu  and T T T T
u φ ψq q q q .  

We also assume the following fields in the matrix and inclusion domain of each element: 

, , in eu N c σ M c         (14) 
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c  denotes the unknown real coefficients, 1 3
T

u uu , T T T Tσ σ D B . N  and M  are 

Trefftz functions based on Lekhnitskii formulation [4] for interior/exterior fields which satisfy eqs. (1)-(3). For the 
case of impermeable elliptical voids, a special solution set which satisfies the void stress-free and vanishing surface 
charge and magnetic flux densities boundary conditions (eqs. (12)) can be used instead. For more details about 
Ttrefftz-Lekhnitskii functions used, readers are referred to [5] where the functions are written as general expressions 
that account for the material type whether it is piezoelectric, piezomagnetic, or elastic.  
Then we can write: 

at or ,e e
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Now we can use the following multi-field boundary variational principle to enforce all the required conditions at the 
grain boundary and at the inclusion boundary: 

1
1

1

2
( , , )

1

2

e e e e
c c

e e e e
c t Q B

m m m m c

N
m c

c ce
M

S S S

dS dS dS

dS dS Q dS Q dS

t u t u t u

u u u
t u t u

    (16) 

This will lead to the following element equation: 
Kq Q             (17) 

where  
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Alternatively, the conditions on the outer grain boundary and the inclusion boundary can be enforced using 

collocation or least squares method. This will lead to relating the unknown coefficients, c ,  to the nodal variables: 

,m m c cc Z q c Z q    (20) 

Then a simple variational principle can be used to enforce the natural boundary conditions: 
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which will give:  
mT m

mmK Z H Z    (22) 

where 
e

mT T mdSmmH M n N  here.  

We denote these two types of grains as “CPG-BVP” and “CPG-C” respectively. The derived stiffness matrices 
simplify when the grain includes a void instead of an inclusion, and simplify more when the grain includes no defect. 
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3. Numerical Examples 

Any number of grains can be assembled exactly as regular finite elements are assembled to form a microstructure. 
Loads and essential BCs can then be prescribed on the outer boundary and the FE equations can be solved for nodal 
values, and then secondary fields can be calculated anywhere in the microstructure. Here we show sample results. 
All material properties are listed in [5]. Considering a domain with piezomagnetic CoFe2O4 matrix and piezoelectric 
BaTiO3 inclusion subjected to traction loading in the vertical direction, only one CPG grain can be used to model 
this domain.  Sample results (electric potential and vertical stress distributions) are shown in Fig. 2. The effective 
material properties of this piezo-composite for various volume fractions can also be estimated using a unit cell of 
any number of grains. A sample result (estimation of piezoelectric coefficients) can be seen in Fig. 3 (left) compared 
to the results in [6]. Finally a microstructure of 30 grains with polymer matrix and piezo-inclusions (PZT-4) in some 
grains, voids in other grains, and no defects in the remaining grains, can be modeled simply using 30 CPGs. The 
strain energy density distribution is presented in Fig. 3 (right) as a sample result. 
 

 

Fig. 2. Electric potential (left) and 33  (right) distributions 

 

Fig. 3. (left) Effective piezoelectric coefficients of BaTiO3/CoFe2O4 piezo-composite as functions of inclusions’ volume fraction, (right) Strain 
energy density distribution in a microstructure of 30 grains 

4. Summary and Conclusions 

In order to model material microstructures with large number of defects (voids, inclusions, cracks), regular finite 
elements will definitely lead to very large system of equations that renders the analysis inefficient. Accordingly 
advanced finite elements with embedded defects are being developed to alleviate this problem. In this work, new 
multi-physics finite elements (named Computational Piezo-Grains (CPGs)) are developed to model piezo-
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composites in the micro-scale. Each element (or computational grain) can have the shape of a material grain with 
embedded elliptical void or inclusion. In order to enforce all governing equations and boundary conditions, the 
formulation of these grains relies on (1) Trefftz-Lekhnitskii functions for interior/exterior fields, (2) a multi-field 
boundary variational principle (BVP) or collocation method with simple primal boundary variational principle. 
Stiffness matrices can be derived and assembled exactly as regular finite elements are assembled. CPGs are 
successful in modeling piezo-composites with any number and distribution of voids or inclusions, and to estimate the 
effective material properties of piezoelectric-piezomagnetic composites. 
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