MATH 655

Homework 8

Due on Wed. Apr 3, 2019.

1. If f(z) is analytic for $0 < |z - z_0| < \rho$ and |f(z)| is bounded, show that $f(z_0)$ can be defined in such a way that f(z) becomes analytic for $|z - z_0| < \rho$.

[Hint: Show that $h(z) = f(z)(z-z_0)^2$ is analytic for $|z-z_0| < \rho$ and look at its Taylor expansion.]

2. If f(z) is analytic for $0 < |z - z_0| < \rho$ and $\operatorname{Re}(f(z))$ is bounded, show that $f(z_0)$ can be defined in such a way that f(z) becomes analytic for $|z - z_0| < \rho$.

[Hint: Without loss of generality, $0 \leq \operatorname{Re}(f(z)) \leq M$. Consider a fractional linear transformation g(z) that maps the upper half-plane into the unit disk and use the result of the previous problem for the function g(f(z)).]

3. If u is harmonic and bounded for $0 < |z| < \rho$ show that the origin is a removable singularity in the sense that u becomes harmonic in $\{z : |z| < \rho\}$ when u(0) is properly defined.

[Hint: Use the result of Problem 6 in the previous homework set.]

- 4. (Problem 2-7:1) Obtain the power-series expansions for the following functions around the indicated points. Where the function is multiple-valued, give the results for all possible branches.
 - (a) $(1 + z + z^2)^{-1}$, $z_0 = 0$ [Hint: use partial fractions; simplify the final result!]
 - (b) $\sin^2 z$, $z_0 = 0$, $z_0 = -1$ [Hint: use the known series for $\cos(z)$, $z_0 = 0$.]
 - (c) $z^{1/2}, z_0 = 1, z_0 = i\pi$

(d) $\ln(iz + (1 - z^2)^{1/2})$, $z_0 = 0$, $z_0 = i$ [Hint: the series for the derivative is simpler.]

5. (Problem 2-7:2) In terms of the Bernoulli numbers B_n , show that

(a)
$$\cot z = \frac{1}{z} \sum_{n=0}^{\infty} (-1)^n \frac{2^n B_{2n}}{(2n)!} z^{2n}$$

(b) $\tanh z = \sum_{n=1}^{\infty} \frac{2^{2n} (2^{2n} - 1) B_{2n}}{(2n)!} z^{2n-1}$
(c) $(z - \pi) / (\sin z) = \sum_{n=0}^{\infty} (-1)^n \frac{2(2^{2n-1} - 1) B_{2n}}{(2n)!} (z - \pi)^{2n}$

[Hint: Reduce the functions above to a form that would allow to use the standard series

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} \, z^n$$

and notice that $B_{2k+1} = 0$ for k = 1, 2,]

- 6. (Problem 2-7:3) Let f(z) be analytic inside the unit circle, with f(0) = 0, and with $|f(z)| \le 1$ inside and on the circle. Show that $|f(z)| \le |z|$ for any point z inside the circle, and if equality holds for any interior point $z \ne 0$ then $f(z) = e^{i\alpha}z$ everywhere, with α some real constant (Schwarz's lemma).
- 7. (Problem 2-7:6) Show that:
 - (a) The power-series expansion about the origin of an even (odd) analytic function contains only even (odd) powers of z.
 - (b) If f(z) is entire, with $f(z)/|z|^n$ bounded as $z \to \infty$, where n is some positive integer, then f(z) must be a polynomial of degree $\leq n$.