Homework 12

- 1. (Problem 4-2:1) If the function $f(\zeta)$ is analytic in a domain D' and if the transformation $f: D' \to D$ is one-to-one and onto show that f is conformal on D' (*i. e.* $f'(\zeta) \neq 0, \zeta \in D'$).
- 2. (Problem 4-2:2) If F(z) is analytic inside and on a simple contour C and assumes any value at most once on C show that the transformation $\zeta = F(z)$ maps the domain interior to C conformally and bijectively onto the domain interior to C'.
- 3. (Problem 4-2:5) Find the critical points of all the transformations defined by the equation $\cos z = \sinh \zeta$.
- 4. (Problem 4-2:9) (a) Show that the transformation $\zeta = 2z^{-1/2} 1$ maps the domain exterior to the parabola $y^2 = 4(1 x)$ conformally onto the domain $|\zeta| < 1$. Explain carefully why this transformation does not, at the same time, map the domain interior to the parabola onto the domain $|\zeta| > 1$.

(b) Show that the transformation $\zeta = \tan^2 \frac{\pi\sqrt{z}}{4}$ maps the domain interior to the parabola y = 4x(1-x) onto the domain $|\zeta| < 1$.

- 5. Give an example of a conformal map from the semidisk $\{z : |z| < 1, \operatorname{Re}(z) > 0\}$ onto the interior of the unit circle |z| = 1.
- 6. Conformally map the region inside the disk $\{z : |z 1| \le 1\}$ and outside the disk $\{z : |z \frac{1}{2}| \le \frac{1}{2}\}$ onto the upper half-plane.
- 7. (Problem 4-2:15) A transformation $\zeta = F(z)$ gives a one-to-one conformal map of the domain $1 < |z| < R_1$ onto the domain $1 < |z| < R_2$. If $p(z) = \ln R_1 \ln F(z) \ln R_2 \ln z$ show that $\operatorname{Im}(p(z))$ is constant in $1 < |z| < R_1$ and hence $R_1 = R_2$.
- 8. (Problem 4-2:17) Find the form of the most general bijective conformal transformation $\zeta = f(z)$ that maps the interior of the unit circle onto itself, with $f(z_0) = 0$. Hint: Note that $w = (z - z_0)/(z_0^* z - 1)$ is one such transformation, and use Schwarz's lemma given in Exercise 2-6:3 (Problem 6 of Homework Set 8).
- 9. (Problem 2-7:9) Use the Argument Principle to determine the quadrants in which the roots of $2z^4 + z^3 + 2z^2 + 1 = 0$ lie.
- 10. (Problem 2-7:11) Let f(z) be analytic and nonconstant inside a closed contour C on which |f(z)| is constant. Show that f(z) has at least one zero inside C. Is it true that if f(z) has n zeros inside that contour then f'(z) has n 1 zeros inside C?