Homework 10

Due on Fri. Apr 19, 2019.

- 1. Give an example of a chain of circles that provides an analytic continuation of the function element $f(z) = 1 + z + z^2 + \dots$ in the disk $|z| < 1$ to $z = \pi i$. Obtain explicitly the Taylor series inside each circle.
- 2. Show that the function element (f, D_0) given by $f(z) = z \frac{1}{2}$ $\frac{1}{2}z^2 + \frac{1}{3}$ $\frac{1}{3}z^3 - \ldots$ in the unit disk $D_0 = \{z : |z| < 1\}$ has unique analytic continuation to the disk $D_2 = \{z : |z| < 1\}$ $|z-2| < 2$ } and two distinct analytic continuations to the disk $D_{-2} = \{z : |z+2| < 1\}.$ Obtain the corresponding Taylor series.
- 3. Suppose R is the radius of convergence of the power series \sum^{∞} $n=0$ $a_n(z-z_0)^n$ and let $f(z)$ denote its sum.
	- (a) Show that $\frac{1}{2}$ 2π $\int^{2\pi}$ 0 $|f(z_0 + re^{i\theta})|^2 d\theta = \sum_{n=1}^{\infty}$ $n=0$ $|a_n|^2 r^{2n}, \ \ 0 < r < R.$ Hint: $|f|^2 = ff^*$. See also Section 2-6.
	- (b) If f is bounded: $|f(z)| \leq M$ for $|z z_0| < R$, show that $\sum_{n=1}^{\infty}$ $n=0$ $|a_n|^2 R^{2n} \leq M^2$.
	- (c) If $f(z) = \sum_{n=1}^{\infty}$ $n=0$ $a_n z^n$ is bounded inside the unit circle $|z|=1$ show that $a_n \to 0$ as $n \to \infty$.
- 4. Consider the function element (f, D) ,

$$
f(z) = \sum_{n=0}^{\infty} z^{2^n}, \quad D = \{z : |z| < 1\}.
$$

- (a) Show that the series used in the definition of $f(z)$ has radius of convergence 1.
- (b) Show that $f(z)$ is unbounded as $z \to 1$ and moreover that $f(z) \to +\infty$ for $z < 1$ real and approaching 1.
- (c) Show that $f(z^2) = f(z) z$ for $|z| < 1$. Use this to show that $f(z) \to +\infty$ for $z > -1$ real and approaching -1 .
- (d) Extend the result of part (c) to show that the radial limits from inside of the unit circle do not exist for any point $z_{nm} = \exp(2\pi i \frac{n}{2^m})$.
- (e) We say that the boundary of a region U is a natural boundary for a function $g(z)$ analytic in U if this function has no analytic continuation to any larger region containing U. Prove that the function element (f, D) has the unit circle as its natural boundary.

5. Suppose that the real part u, and its normal derivative u_y , of an analytic function $f(z)$ are given for $x \in (0,1)$:

$$
u(x, 0) = \sin(\pi x), \quad u_y(x, 0) = -\pi \sin(\pi x).
$$

Determine the function $f(z)$ on a largest possible domain in \mathbb{C} . Is $f(z)$ unique? Hint: Use Problem 2-8:1 in the textbook.

6. (Problem 2-8:2) Let two regions U_1 and U_2 be adjacent to one another; in more precise terms, for a certain subset Γ of their common boundary, the set $U = U_1 \cup \Gamma \cup U_2$ is again a region. Examples could be provided by two rectangles sharing a common side, two half-circles sharing a common diameter, etc. However, two disks sharing a common boundary point are not considered adjacent regions. Let $f_1(z)$ be analytic in $U_1, f_2(z)$ in U_2 ; let each function be continuous onto Γ, and let $f_1(z) = f_2(z)$ on Γ. Show that the combined function is analytic in U.

Hint: Use Morera's Theorem (Problem 2-3:7). The assumption of simple connectedness is not needed in that statement.

- 7. (Problem 2-8:3: Schwarz's Reflection Principle) Let $f(z)$ be analytic in a region U_1 in the upper half-plane adjacent to a part Γ of the real axis, with $f(z)$ continuous on Γ and purely real on Γ. Let U_2 denote the mirror image of U_1 in the real axis: $U_2 = \{z : z^* \in U_1\}$ and such that $U = U_1 \cup \Gamma \cup U_2$ is a region in \mathbb{C} . Then show that by setting $f(z) = f^*(z^*)$ for $z \in U_2$ we obtain an analytic continuation of f into U. Devise a non-trivial example.
- 8. (Problem 3-1:1) Using the contour of Figure 3-1 in the textbook, show that if a, b, c are real and $b^2 < 4ac$ then

$$
\int_{-\infty}^{\infty} \frac{dx}{ax^2 + bx + c} = \frac{2\pi}{(4ac - b^2)^{1/2}}
$$

.

9. (Problem 3-1:2) Using the contour of Figure 3-1 in the textbook, evaluate (using Jordan's lemma where necessary)

$$
I = \int_0^\infty \frac{x \sin x}{a^2 + x^2} \, dx.
$$

10. (Problem 3-1:5) If p and s are positive integers with $s \leq 2p-2$, show that

$$
\int_{-\infty}^{\infty} \frac{x^s \, dx}{1 + x^{2p}} = (1 + (-1)^s) \frac{\pi/(2p)}{\sin((\pi/(2p))(s+1))}.
$$