
April 12, 2019 MATH 655 Prof. V. Panferov

Homework 10

Due on Fri. Apr 19, 2019.

1. Give an example of a chain of circles that provides an analytic continuation of the

function element f(z) = 1+z+z2 + . . . in the disk |z| < 1 to z = πi. Obtain explicitly

the Taylor series inside each circle.

2. Show that the function element (f,D0) given by f(z) = z − 1
2
z2 + 1

3
z3 − . . . in the

unit disk D0 = {z : |z| < 1} has unique analytic continuation to the disk D2 = {z :

|z−2| < 2} and two distinct analytic continuations to the disk D−2 = {z : |z+2| < 1}.
Obtain the corresponding Taylor series.

3. Suppose R is the radius of convergence of the power series
∞∑
n=0

an(z− z0)n and let f(z)

denote its sum.

(a) Show that
1

2π

∫ 2π

0

|f(z0 + reiθ)|2 dθ =
∞∑
n=0

|an|2 r2n, 0 < r < R.

Hint: |f |2 = ff ∗. See also Section 2-6.

(b) If f is bounded: |f(z)| ≤M for |z − z0| < R, show that
∞∑
n=0

|an|2R2n ≤M2.

(c) If f(z) =
∞∑
n=0

anz
n is bounded inside the unit circle |z| = 1 show that an → 0 as

n→∞.

4. Consider the function element (f,D),

f(z) =
∞∑
n=0

z2
n

, D = {z : |z| < 1}.

(a) Show that the series used in the definition of f(z) has radius of convergence 1.

(b) Show that f(z) is unbounded as z → 1 and moreover that f(z)→ +∞ for z < 1

real and approaching 1.

(c) Show that f(z2) = f(z) − z for |z| < 1. Use this to show that f(z) → +∞ for

z > −1 real and approaching −1.

(d) Extend the result of part (c) to show that the radial limits from inside of the unit

circle do not exist for any point znm = exp(2πi n
2m

).

(e) We say that the boundary of a region U is a natural boundary for a function g(z)

analytic in U if this function has no analytic continuation to any larger region

containing U . Prove that the function element (f,D) has the unit circle as its

natural boundary.



5. Suppose that the real part u, and its normal derivative uy, of an analytic function

f(z) are given for x ∈ (0, 1):

u(x, 0) = sin(πx), uy(x, 0) = −π sin(πx).

Determine the function f(z) on a largest possible domain in C. Is f(z) unique?

Hint: Use Problem 2-8:1 in the textbook.

6. (Problem 2-8:2) Let two regions U1 and U2 be adjacent to one another; in more precise

terms, for a certain subset Γ of their common boundary, the set U = U1 ∪ Γ ∪ U2 is

again a region. Examples could be provided by two rectangles sharing a common

side, two half-circles sharing a common diameter, etc. However, two disks sharing a

common boundary point are not considered adjacent regions. Let f1(z) be analytic in

U1, f2(z) in U2; let each function be continuous onto Γ, and let f1(z) = f2(z) on Γ.

Show that the combined function is analytic in U .

Hint: Use Morera’s Theorem (Problem 2-3:7). The assumption of simple connected-

ness is not needed in that statement.

7. (Problem 2-8:3: Schwarz’s Reflection Principle) Let f(z) be analytic in a region U1

in the upper half-plane adjacent to a part Γ of the real axis, with f(z) continuous

on Γ and purely real on Γ. Let U2 denote the mirror image of U1 in the real axis:

U2 = {z : z∗ ∈ U1} and such that U = U1 ∪ Γ ∪ U2 is a region in C. Then show that

by setting f(z) = f ∗(z∗) for z ∈ U2 we obtain an analytic continuation of f into U .

Devise a non-trivial example.

8. (Problem 3-1:1) Using the contour of Figure 3-1 in the textbook, show that if a, b, c

are real and b2 < 4ac then∫ ∞
−∞

dx

ax2 + bx+ c
=

2π

(4ac− b2)1/2
.

9. (Problem 3-1:2) Using the contour of Figure 3-1 in the textbook, evaluate (using

Jordan’s lemma where necessary)

I =

∫ ∞
0

x sinx

a2 + x2
dx.

10. (Problem 3-1:5) If p and s are positive integers with s ≤ 2p− 2, show that∫ ∞
−∞

xs dx

1 + x2p
= (1 + (−1)s)

π/(2p)

sin((π/(2p))(s+ 1))
.
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