Midterm 2: Study Guide

Textbook coverage:

- 1.7: Sequences and Difference Equations: Computation, Equilibria, Cobwebbing. Examples 3, 4, 6, 8, 9.
- 2.1: Rates of Change and Tangent Lines: Average and Instantaneous Rates of Change, Units, Equations of Tangent Lines. Examples 1, 4-6.
- 2.2: Limits. Techniques: numerical esimation, graphing calculator zoom-in; One-sided limits. Matching Limits Theorem. Examples 1, 4, 5, 7.
- 2.3: Limit laws and Continuity. Continuity of Elementary Functions (Plug-in Principle Theorem 2.2); Algebra techniques; Intermediate Value Theorem. Examples 1, 2, 4, 6-9, 10 (use trace function rather than bisection).
- 2.4: Asymptotes and Infinity; Vertical and Horizontal Asymptotes. Examples 1, 2, 4, 6.
- **2.5:** Sequential Limits. Choosing sufficiently large n ; Monotone Convergence Theorem. Examples 1-4, 6, 8 (with corrections; see problem 29 done in class).
- 2.6: Derivative at a Point; Examples 1, 3, 5-8.
- 2.7: Derivative as Function; Mean-Value Theorem. Intervals of Increase and Decrease. Examples 3, 4, 5, 6, Problems 29-32.
- 3.1: Derivatives of Polynomials, Fractional Powers (including radicals) and Exponentials; Examples 1, 2, 5, 7, online homework examples.

Review Questions

1. Find and graph the first five terms for the sequences. Find the limits of the sequences if they exist:

(a)
$$
\frac{1}{n} \cos\left(\frac{\pi n}{2}\right)
$$
;
(b) $1 - \frac{(-1)^n}{n+1}$.

2. (a) Find the limit L of the sequence a_n , as $n \to \infty$:

$$
a_n = \frac{2n}{3+n}.
$$

Determine how large *n* needs to be to ensure that $|a_n - L| \leq 0.01$.

(b) Show that $\lim_{n\to\infty} a_n = \infty$. Determine how large *n* needs to be to ensure that $a_n \geq 10,000,000$:

$$
a_n = \frac{n^2}{1+n}.
$$

3. Consider the sequence defined by the difference equation:

$$
a_{n+1} = f(a_n)
$$
, $a_1 = 1.1$, where $f(x) = 3x^2/(2 + x^2)$.

- (a) Find the first five terms of the sequence a_n .
- (b) Find all equilibria and sketch a cobwebbing diagram for the given value a_1 .
- (c) Is the function $f(x)$ continuous and increasing? Justify your answer.
- (d) Is the sequence a_n increasing or decreasing? Justify your answer.
- (e) Use the monotone convergence theorem to determine the limit of the sequence: find a closed interval $[A, B]$ that is transformed by f into itself, contains the initial data a_1 and the relevant equilibrium value.
- 4. Determine the limits in the examples below. If the limits do not exist, explain why. Show your work!

(a)
$$
\lim_{x \to -3^+} \frac{|x+3|}{x+3}
$$
 (c) $\lim_{x \to 2} \frac{\sqrt{x+2}-2}{x-2}$ (e) $\lim_{x \to \infty} \frac{3x - x^2}{2 - 3x + x^2}$
\n(b) $\lim_{x \to -3} \frac{|x+3|}{x+3}$ (d) $\lim_{x \to 3} \frac{2x^2 - 5x - 3}{x^2 - 8x + 15}$ (f) $\lim_{x \to -\infty} \frac{3e^x - e^{-x}}{e^{2x} + e^{-x}}$

5. (a) Find the value that needs to be assigned to c, if any, to guarantee that f will be continuous for all $x > 0$: $\overline{50}$

$$
f(x) = \begin{cases} \frac{50}{1+x}, & x < c \\ 2, & x \ge c. \end{cases}
$$

(b) Determine the value that needs to be assigned to k , if any, in order for the function f to be (i) continuous (ii) differentiable for all x :

$$
f(x) = \begin{cases} x^2 - 1, & x \le 1 \\ k(x - 1), & x \ge 1. \end{cases}
$$

6. (a) Use the intermediate value theorem to prove that the following equation has at least one solution:

$$
1 + \sin(x) + x^3 = 0.
$$

- (b) Use a root finding procedure in a graphing calculator to find the solution from part (a), accurate to four decimal places.
- 7. (a) Find the derivative $f'(a)$ by definition ("the long way") or using derivative rules ("the short way"):

(i)
$$
f(x) = x^3 + 2, a = 2;
$$
 (ii) $f(x) = \sqrt{x}, a = 9.$

(b) For the examples in part (a) find the tangent lines to the graphs at $x = a$.

8. Given

$$
f(x) = e^{5x}, \quad a = 0.1.
$$

- (a) Estimate the value $f'(a)$ numerically, using the definition of the derivative. [Give answer accurate to two decimal places.]
- (b) Compare your answer in part (a) to the exact value $(e^{5x})'|_{x=0.1}$.
- (c) Find the equation of the tangent line to the graph $y = f(x)$ about $x = a$; sketch the tangent line and the graph.
- 9. Find the derivatives of the functions (use Derivatives Rules from Section 3.1):
	- (a) $y = 1 + 5x + 3x^7$ (c) $N = 8.3(1.33)^t$ (b) $P = 10.2 Q^{1/3}$ (d) $y = 5\sqrt[3]{x} + \frac{7}{x_1}$ \boldsymbol{x} √ \overline{x} (e) $y =$ $3x - 5x^2$ \boldsymbol{x} (f) $y =$ $3 + e^{2x}$ $\frac{e^x}{e^x}$.
- 10. The function $P(t) = 8.33(1.33)^t$ models the population of the United States (expressed in millions of people) t decades after 1815.
	- (a) Find the average rates of change of $P(t)$ over the intervals [0, 2] and [2, 4].
	- (b) Find the instantaneous rate of change of $P(t)$ at $t = 2$.
	- (c) Determine the units of the quantities computed in parts (a) and (b) and discuss their meaning.
- 11. The number of children newly infected with a particular pathogen has been modeled by the function

$$
N(t) = -0.2t^3 + 3.04t^2 + 44.05t + 200.29,
$$

where $N(t)$ is measured in thousands of individuals per year, and t is the number of years since the beginning of 2000.

- (a) At what rate is the function $N(t)$ changing with respect to time at the beginning of the year 2010?
- (b) When will the number of infected children start to decline?
- 12. The data in the figure below represents a set of measurements relating enzyme activity to temperature in degrees Celsius; the quadratic equation

$$
A(x) = 11.8 + 19.1x - 0.2x^2
$$

provides a good fit to this data.

- (a) Using the definition of the derivative find $A'(50)$.
- (b) Find the same value using the rules of derivatives (sums/differences/powers, etc.)
- (c) Discuss the meaning of the value $A'(50)$ in the context of this problem.
- 13. Find the derivatives of the functions and determine the intervals where the the functions are increasing and decreasing:
	- (a) $f(x) = x^3 x$ $2^2 + 1$ (b) $g(x) = x - x^3$.

Answers:

- 1. (a) The limit is 0, the sequence is squeezed between the graphs of $y = 1/x$ and $y = -1/x$ ($x > 0$). (b) The limit is 1, the sequence is squeezed between the graphs of $y = 1 + 1/(x + 1)$ and $y = 1 - 1/(x + 1)$.
- 2. (a) $L = 2, n \ge 597$; (b) $n \ge 1 + 10^7$.
- 3. (a) $a_n = 1.1, 1.1308, 1.1701, 1.2191, 1.2789$; (b) equilibria $a = 0, 1, 2$; hint: solve $a = 3a^2/(2 + a^2)$; graph $y = x$ and $y = 3x^2/(2 + x^2)$ using window $[0, 3] \times [0, 3]$; (c) continuous: rational function with denominator non-zero, increasing: graphing calculator, or solve the inequality $f(x_1) < f(x_2)$; (d) a_n is increasing; (e) $I = [1.1, 2]$ is transformed into itself (cobwebbing diagram is helpful!), the sequence a_n is contained in I and by the monotone convergence theorem a_n must converge to the equilibrium $a=2.$
- 4. (a) 1; (b) limit does not exist (left and right limits are different); (c) $1/4$; (d) -3.5 ; $(e) -1$; $(f) -1$.
- 5. (i) $c = 24$; (ii) (a) any k works; (b) $k = 2$.
- 6. (a) For instance: $f(0) > 0$, $f(-\frac{\pi}{2})$ $\frac{\pi}{2}) = -(\frac{\pi}{2})$ $(\frac{\pi}{2})^3$ < 0; by the intermediate value theorem there must be a value c in $(-\frac{\pi}{2})$ $(\frac{\pi}{2}, 0)$ such that $f(c) = 0$; (b) $x \approx -0.705694$.
- 7. (a) 12; (b) 1/6.

(b) $f'(0.1) = 5e^{0.5} \approx 8.2436$; the estimate in part (a) is indeed correct to two decimal places; (c) $y = e^{0.5}(5x + 0.5)$.

- 9. (a) $5 + 21x^6$; (b) $3.4 Q^{-2/3}$; (c) $8.3 \ln(1.33)(1.33)^t$; (d) $\frac{5}{3}x^{-\frac{2}{3}} \frac{21}{2}$ $\frac{21}{2}x^{-\frac{1}{2}}$; (e) -5; (f) $-3e^{-x} + e^x$.
- 10. (a) 3.20, 5.66; (b) 4.20; (c) millions of people per year; these are average rates of growth from 1815 to 1835, from 1835 to 1855, and the estimate of the instantaneous rate of growth at the end of 1835.
- 11. (a) 44,850 of individuals per year; (b) 2014.
- 12. (a) $A'(50) = \lim_{h \to 0}$ $\frac{A(50+h)-A(50)}{h}$ = -0.9; (b) $A'(50)$ = 19.1 - 0.4 · 50 = -0.9. (c) The enzyme activity decreases at a rate ≈ 0.9 units per °C as the temperature passes through 50◦C.
- 13. (a) increasing on $(-\infty, 0)$ and $(\frac{2}{3}, \infty)$; decreasing on $(0, \frac{2}{3})$ $(\frac{2}{3});$ (b) increasing on $\left(-\frac{1}{\sqrt{3}}\right)$ $\frac{1}{3}, \frac{1}{\sqrt{2}}$ $\frac{1}{3}$); decreasing on $(-\infty, -\frac{1}{\sqrt{2}})$ $\frac{1}{3}$) and $\left(\frac{1}{\sqrt{2}}\right)$ $_{\frac{1}{3}}, \infty$).