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Outline
• Review last lecture
• Problem of treating realistic geometry
• Use of partial grid cells
• Boundary fitted coordinates
• Unstructured grids
• Grids where all variables are located at 

the same point
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Density-based Solvers
• Density-based solvers traditionally used 

for compressible flows
– Not accurate for low Mach numbers
– Fluent uses a transformation to allow 

density based solvers for low Mach 
number flows

• Density-based solvers can be implicit or 
explicit
– Implicit allows longer time steps while 

preserving stability at higher Courant 
numbers
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Pressure-based Solvers
• Transient finite-volume equation
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What is Time Average?
• Have same choices used for conduction 

equation
– Explicit – use values at old time step
– Implicit – use values at new time step
– Crank-Nicholson – use average of values 

at old and new time steps
• Can also use more accurate time 

derivatives
• Fluent has various options

6
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Explicit or Implicit?
• Explicit  stability limits on time step (set 

by the local Courant number, uΔx/α)
• The Δt required for stability is usually 

much lower than the Δt for accuracy
• Implicit algorithms will generally take 

less computer time
• Moving waves (e. g. shock waves) 

require small time steps so that explicit 
algorithms are preferred here
– Available in Fluent only with density solver
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Other Fluent Options
• Non-iterative time advancement –

simplifies iterations to reduce computer 
time for solution
– Does not do “outer” iteration

• Frozen-flux formulation uses aK
coefficients from previous time step
– Does not update during iterations
– Another item to save computer time
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Geometry
• CFD problems applied to a variety of 

complex geometries: aircraft, engine 
coolant and valve passages, gas turbine 
combustors, rocket engines, etc.

• Accurate modeling of flows requires 
accurate specification of geometries

• Development of geometry model and 
mesh are usually the most time 
consuming part of a CFD calculation
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Approaches to Geometry
• Approaches leaving a regular gird

– Stair step approach giving an approximate 
boundary

– Special grid cells near boundary
• Approaches using coordinate 

transformations
– Boundary fitted coordinates with 

transformed differential equations
– Local coordinate transformations in a finite-

volume approach
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Stair Step Approach
• Only mentioned for historical 

reasons and to contrast with 
next method

• Sometimes used in early CFD 
calculations

• Not used in any realistic 
codes

• Quick and dirty way to get 
different geometry in new 
codes.

Grid

Actual Geometry

Stair step 
boundary
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Boundary Crosses Grid
• Define new δx and δy to 

define boundary
• Use derivative expres-

sions for uneven grid  

δx
δy

– Usually used anyway for CFD
• Programming problems when two 

boundary values have to be stored at 
one node  as in example here

• Gradient boundary conditions must be 
split into components
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Boundary Crosses Grid II
• Grid spacing near boundary will have 

smaller steps than remainder of grid
– Will decrease allowed time step in 

procedures with stability limits
• More accurate than stair step approach
• Generally not favored

– Exception is Flow-3D software by C. W. 
“Tony” Hirt who recommends this procedure

– http://www.flow3d.com/CFD-101/fvsbfc.htm
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Boundary-Fitted Coordinates
• Grid lines are determined by physical 

geometry of object
• Dimensionless coordinate system, ξi = i, 

ηj = j, and ζk = k retains i, j, k notation
• Physical locations corresponding to a 

given (ξi, ηj, ζk) location determined by a 
grid generation program

• Necessary to transform differential 
equations to general coordinate system
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Boundary-Fitted Coordinates II
• To transform Cartesian coordinates, x, 

y, z, into computational ones, ξ, η, ζ
– Write  Cartesian coordinates as x1, x2, and 

x3, and computational coordinates as ξ1, 
ξ2, and ξ3

– Grid (mesh) generation programs define 
physical coordinates x1, x2, and x3, as 
functions of ξ1, ξ2, and ξ3

– Differential equations modified by 
coordinate transformations include terms 
like ∂ξi/∂xj
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Coordinate Transformations
• Mesh generation gives the x, y, and z at 

each point in the computational grid
• It is easy to compute finite difference 

expressions for derivatives like ∂xi/∂ξj
– E.g. ∂z/∂η = (zij+1k – zij-1k)/(2Δη)

• Transformed differential equations 
require derivatives like ∂ξi/∂xj
– Coordinate transformations required for 

these derivatives
• Involve Jacobian determinant, J
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Coordinate Transformations II
• Details in online notes and 

slides at end of presentation
• Matrix based result
• Typical equation below
• Have nine such equations in 

3D (four in 2D)
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Transformed Transport Equation
• Original equation and transformed result 

shown below
– Summation convention hides complexity
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Transformed Convection Terms
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• Have mixed second derivatives that will 
become part of “source” term
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From BFC to Finite Volumes
• Originally for finite-difference 

approaches in complex geometries
• Alternative of finite elements has natural 

system for complex geometries
• Finite-volume approach uses grid 

management systems of finite elements 
with gradients from finite differences

• Fluent gets gradients from vector 
calculus approaches

22

Unstructured Grids
• Grids that do not follow i, j, k 

relationship among neighboring nodes
• Require more bookkeeping for set of 

algebraic equations to be solved
– Equations have more complex structure

• Also requires correct determination of 
average values and gradients

• Generally favored for flexibility in 
applications to complex geometries

23

Choice of Control Volumes
• Control volumes can be an 

individual cell with nodes at 
the center of the control 
volume

• An alternative, vertex-
centered, is to construct 
control volumes around the 
nodes, which are located on 
the vertices of the grid

24

Finite-Volume Equations
• Finite-volume equations for unstructured 

grids derived in same way as for 
structured grids

• Have to consider geometries that are not 
at right angles

• See text for details of convection and 
diffusion terms

• Operations similar to those for boundary-
fitted coordinates, but in a discrete sense



Geometry and grids April 26, 2010

ME 692 – Computational Fluid Dynamics 5

25

Fluent Finite-volume Cells

Fluent Users Manual, 
September 29, 2006, Chapter 6

• Finite volumes or 
cells can have 
different shapes

• Figures at right are 
those available in 
Fluent
– Similar to types 

available in general 
CFD or other 
analysis codes

26

Structured Airfoil Grid
• Structured 

girds have 
fixed 
relationship 
between ξi, ηj, 
and ζk
generalized 
coordinates to 
fit problem 
geometry

Fluent Users Manual, 
September 29, 2006, Chapter 6

27

Unstructured Airfoil Grid
• Unstructured 

grids have no 
relationship 
between ξi, 
ηj, and ζk
coordinates

• Geometry 
coding more 
complex

Fluent Users Manual, 
September 29, 2006, Chapter 6 28

Multiblock Structured Grid
• Overall problem geometry has main grid 

with subdivisions
• Both main 

grid and 
subdivisions 
have  ξi, ηj, 
and ζk
coordinates 

Fluent Users Manual, 
September 29, 2006, Chapter 6
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Unstructured Airfoil Grid
• All visible 

elements in 
this grid 
appear to be 
triangular 
elements
– Most 

flexible 
form for a 
2D grid

Fluent Users Manual, 
September 29, 2006, Chapter 6 30

Unstructured Tetrahedral
• Tetrahedron (solid 

surface with four 
sides) is three-
dimensional analog of 
triangle for gridding
– Most flexible for 

complex three-
dimensional 
geometries

Fluent Users Manual, 
September 29, 2006, Chapter 6
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Tetrahedral Cell Numbering
• In unstructured grids there is no natural 

i, j, k numbering system
• Cells have nodes and faces
• Local numbering 

system

Nodes 3-1-2Face 4
Nodes 2-1-4Face 3
Nodes 4-1-3Face 2
Nodes 3-2-4Face 1

Fluent Users Manual, 
September 29, 2006, Chapter 6 32

Aspect Ratio
• Measure of cell “stretching”
• For square 

cell, aspect 
ratio = 1

• Do not want 
aspect ratios 
too large
– Errors and 

convergence 
problems

Fluent Users Manual, 
September 29, 2006, Chapter 6
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Finite-Volume Approaches
• Use integral equations
• Grid generation approaches more 

closely related to finite elements
– Different types of mesh elements allowed

• Finite differences result in quadrilaterals in two 
dimensions and hexahedrons in three

• Finite-element and finite-volume can use 
triangles in two dimensions and tetrahedrons in 
three dimensions

• Apply gird transformations locally

34

Finite Volume Approaches II
• General integral balance equation over 

volume, Ω, enclosed by surface, Σ

∫∫ ∫∫
ΩΣ ΣΩ

+⋅−⋅−=
∂
∂

=
∂
Φ∂ dVSdSdSdV

tt ϕϕρϕρϕ ndnv

• dφ is diffusive flux of φ = −Γ(φ) grad φ
• n is outward pointing unit normal

– Must construct n for each finite volume cell 
face in complex geometry

35

Areas and Normal Vectors
• Normals are 

perpendicular to 
surface, pointing 
outward from 
enclosed area and 
have unit length

nx

ny

• Grid coordinates known from mesh 
generation routines

• Compute δx and δy terms to compute 
surface “area”
– For 2D area found as (δS)2 = (δx)2 + (δy)2

δxw

δyw

36

Convection Terms
• Evaluate this integral for 

each cell face ∫
Σ

⋅ dSnvρϕ

• The v·n term is found from basic u and 
v velocity components as ±u cos θ ±
v sin θ where θ = tan-1(dx/dy)
– Use plus sign of ± for east and north faces 

and minus sign for west and south faces
• Use midpoint rule to approximate 

integral ( ) SdS centerδρϕρϕ nvnv ⋅≈⋅∫
Σ
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Convection Terms II
• With midpoint rule result we 

have to interpolate values 
to cell face from 
surrounding nodes

• Use interpolation for velocity (v·n)
• Choose differencing scheme (central, 

upwind, QUICK, etc.)for φ a
• Consider higher order interpolation if face 

midpoint is not on line with cell centers

( ) S

dS

centerδρϕ

ρϕ

nv

nv

⋅

≈⋅∫
Σ
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Diffusion Terms
• Use midpoint rule for integral 

( ) SgraddSgraddS centerδφφ φφ
ϕ nnnd ⋅Γ≈⋅Γ=⋅− ∫∫

ΣΣ

)()(

• Use Cartesian coordinates for gradient

( ) yx n
y

n
x

grad
∂
∂

+
∂
∂

=⋅Γ
φφφφ n)(

• Interpolate both φ and coordinates to 
get Cartesian derivatives

• Variety of possible approaches

39

Other Computations
• Can get more accurate expressions by 

considering vector analysis to get 
gradients

• Requires cross diffusion terms, similar 
to terms in boundary-fitted coordinates, 
but done in finite difference form

• Have to analyze geometry of adjacent 
cells to compute gradients and 
convective fluxes

40

Non-Staggered (Colocated) Grids
• Staggered grids are convenient way to 

handle pressure in simple finite-
difference grids

• These become difficult in boundary-
fitted coordinates and unstructured grids

• Alternative approach uses colocated
variables (all variables at same point)

• Need interpolation method to avoid 
problems with pressure

41

Staggered Grid
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Colocated Grid Problem
50              100              50                100          50
●-------|-------●-------|-------●-------|-------●--------|-------●
WW   ww W       w       P        e       E         ee EE

• Oscillating pressures seen if equation 
for uP has pressure gradient (pE – pP)/δx

• Staggered grid solves problem by 
placing u velocities at “e” and “w” node

• Real importance is for continuity-
momentum combination used to solve 
for pressure
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Colocated Grid
• All variables (u, v, p) stored at nodes 

WW, W, P, E, EE
●-------|-------●-------|-------●-------|-------●--------|-------●
WW   ww W       w       P        e       E         ee EE

( ) PPew
nb

nbnbPP bAppuaua
P

+−+= ∑
• Find pe and pw by interpolation
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Colocated Grid II

• Have similar equation for uE
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• Continuity equation needs ue

• Need interpolation for relation of this 
velocity to pressure

45

Rhie and Chow Interpolation

• Can show that added terms amount to a 
third-order error in pressure
– Examine constant d for simplicity
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• Third derivative as first derivative of  
second derivative in finite-difference 
form
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Rhie and Chow Interpolation II

• Compare to previous equation
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• Added pressure terms are equivalent to 
adding a third-order error in pressure
– Higher order than usual first or second 

order error in finite-volume approaches
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Grid Quality
• Non-structured meshes have equations 

that are exact for orthogonal cells, but 
have errors as cells depart from 
orthogonal

• Triangular cells are best when they are 
equilateral triangles

• Use code indicators of mesh quality to 
ensure that meshes are not badly 
structured in your grid

48

Summary
• CFD codes must be able to handle 

complex geometries
• Flow-3D uses FAVORTM method in 

which boundaries cross grid lines
• Most other codes use boundary fitted 

coordinates or fractional volume 
methods

• Finite-element codes, not considered 
here, have own approaches

• Check mesh quality
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Material Not Covered in Class
• The following slides discuss the basic 

coordinate transformations used in 
boundary-fitted coordinates

• These will not be covered in class
• Additional material is available in online 

notes on coordinate transformations
• This is mostly mathematical material to 

provide background for coordinate 
transformations

50

Coordinate Transformations
• Transform Cartesian coordinates, x, y, 

z, into computational ones, ξ, η, ζ
– For derivations, write  Cartesian coordi-

nates as x1, x2, and x3, and computational 
coordinates as ξ1, ξ2, and ξ3

– Grid (mesh) generation programs define 
physical coordinates x1, x2, and x3, as 
functions of ξ1, ξ2, and ξ3

– In principle have two sets of relations: ξi = 
ξi(x1, x2, x3) and xi = xi(ξ1,ξ2,ξ3)

51

Coordinate Transformations II
• The mesh generation step will give the 

values of x, y, and z at each point in the 
computational grid

• From these it is easy to compute finite 
difference expressions for derivatives 
like ∂xi/∂ξj
– E.g. ∂z/∂η = (zijk+1 – zijk-1)/(2Δη)

• Some transformations require 
derivatives like ∂ξi/∂xj
– How do we get these derivatives?

52

Derivative Relationships
• General equation for total differentials 

can use summation convention
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• Use these equations to get relationship 
between ∂xi/∂ξj and ∂ξi/∂xj
– Write equations in matrix form
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Derivative Relationships II
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• The matrices 
must be inverses 
of each other for 
both equations to 
be correct
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Derivative Relationships III
• Inverse matrix relationship
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• Use analytical formula for calculating 
the components of an inverse matrix to 
get necessary derivative relationships
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Derivative Relationships IV
• Formula for matrix inversion, 

B = A-1

• bij = (-1)i+jMji / det(A)
• Mij is minor determinant 

found by eliminating row i 
and column j

• Determinant, called Jacobian 
J, is the ratio of volume 
elements in the two 
coordinate systems

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

ξξξ

ξξξ

ξξξ

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

xxx

xxx

xxx

J

56

Derivative Relationships V
• Example of matrix inverse component
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• To compute ∂ξ2/∂x3, we need M32 
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Derivative Relationships VI
• Have nine relationships like the one at 

the bottom of the previous slide
• See coordinate transformation notes, 

page four
• Note alternative notations
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Transform Transport Equation
• We need to transform the convection 

and diffusion terms in the general 
transport equation

)()( φφ φφρρφ S
xxx

u
t iii

i +
∂
∂

Γ
∂
∂

=
∂

∂
+

∂
∂

• Look at general first derivative term 
(with implied summation) ∂Fi/∂xi

• For convection terms Fi = ρuiφ
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Transform Transport Equation II
• Required transformation equation
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• Two repeated indices (i and j) give two 
implied summations

• Next step is not obvious – multiply by J
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Transform Transport Equation III
• Apply product rule for derivatives
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• Can show that last term vanishes
• See pages 6 and 7 in notes

– Show that this term is zero for i = 1
– Requires substitution of matrix inversion 

relationships for ∂ξi/∂xj in terms of ∂xi/∂ξj
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Transform Transport Equation IV
• Result for ∂Fi/∂xi
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• For convection terms Fi = ρuiφ
• Define Uj = Jui∂ξi/∂xj (implied 

summation) to give following result for 
convection
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Transform Transport Equation V
• Handle diffusion terms next
• Have analog to convection terms
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• We can use result just found for ∂Fi/∂xi in 
analysis of convection terms

• Basic transformation equation for ∂φ/∂xi
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Transform Transport Equation V
• Combine results from previous chart
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• With convection terms analysis result
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Transform Transport Equation VI
• Define coefficients Bkj to simplify 

diffusion terms
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• Transformed diffusion terms now have 
mixed second derivatives

• Full set of diffusion terms shown below
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Transform Transport Equation VII
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Final Transformed Equation
• Substitute transformed convection and 

diffusion terms into general transport 
equation

)()( φφ φφρρφ S
xxx

u
t iii

i +
∂
∂

Γ
∂
∂

=
∂

∂
+

∂
∂

)()(11 φφ

ξ
φ

ξξ
φρρφ SB

J
U

Jt j
kj

kj

j +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

Γ
∂
∂

=
∂

∂
+

∂
∂

i

j

i

k
kj xx

JB
∂
∂

∂
∂

=
ξξ

i
i

j
j u

x
JU

∂
∂

=
ξ



Geometry and grids April 26, 2010

ME 692 – Computational Fluid Dynamics 12

67

Using the Transformed Equation
• Have to store a lot of additional 

information about grid coordinates, 
derivatives, J and Bjk

• Differential equations more complex
• Coordinates fit boundaries and give 

good representation of geometry
– Models gradient fluxes well

• Can have grids with bad aspect ratios
• Small sizes extend throughout grid


