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Numerical Solution of Ordinary Differential Equations 

Goal of these notes 

These notes were prepared for a standalone graduate course in numerical methods and present 
a general background on the use of differential equations.  The numerical material to be covered 
in the 501A course starts with the section on the plan for these notes on the next page. 

Background on differential equations 

Many engineering problems are defined in terms of differential equations.  Most students 
encounter their first application of differential equations to physical problems in the analysis of 
motion.  Here, there are two common differential equations.  The first relates the displacement 
along a one-dimensional path, s, to the velocity, v; the second, which is Newton’s second law 
relates the displacement to the applied force divided by the mass, F/m.  The symbol t indicates 
the time. 
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Another application of differential equations is in electrical circuits.  The current, I, in a circuit with 
a capacitance, C, an inductance, L, a resistance, R, and an applied voltage, V(t) is governed by 
the following differential equation.  (In this equation, V(t) is known.) 
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Differential equations are classified in terms of the highest order of the derivative that appears in 
the equation.  Thus, equation [2] is a second order differential equation.  The two differential 
equations in [1] are, respectively, first-order equation and second-order differential equations.  
The equations in [1] and [2] are linear differential equations.  In these equations, the dependent 
variable, and all its derivatives, appear to the first power only. 

We can use the definition of velocity to write Newton’s second law as two first-order differential 
equations. 
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Similarly, we can use the definition of voltage drop across the inductor, eL as the Inductance 
times the first derivative of the current, to rewrite equation [2] as the following pair of equations. 
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In this system of equations, we have one independent variable, t, and two dependent variables, I 
and eL.  This approach of writing second-order equations as sets of first-order equations is 
possible for any higher order differential equation.  We will use it subsequently to apply algorithms 
designed for the analysis of first order equations to systems of higher order equations. 

Some differential equations can be solved by simple integration.  An example of this is shown 
below.   
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The constant of integration, C, can be found if one point in the relationship, typically called an 
initial condition, (sinitial, tinitial) is known.  With the initial condition, we can find the value of s for any 
value of t by the following integration. 
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We have used the dummy variable, t’, in the integral to indicate that the final dependence of s(t) 
depends on the upper limit of the integral. 

We could perform the integration in equations [4] and [5] because the derivative expression was a 
function of the time only.  We are interested in the more general problem of what happens when 
the derivative in equation [4] is a function of both time and displacement.  That is, we are 
interested in solving the general problem 
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We can try to write this as we did in equation [4] or [5], but we cannot perform the integration 
because v is a function of both s and t. 
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There are many cases in which we can solve differential equations like equation [6] analytically.  
However, when we cannot do so, we have to find numerical methods for solving this equation. 

Plan for these notes 

The general approach to the numerical solution of ordinary differential equations defines a 
general initial value problem (IVP) which is shown in equation [8]. 

 00 )(:),( yxyconditioninitialknownawithyxf
dx

dy
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We will develop our algorithms for this simple problem of a single differential equation. 

Initially we will describe a general approach for solving the IVP, including a discussion of the 
notation and error terms. Next, we will examine some simple algorithms that we can use.  These 
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simple algorithms will help us see how the solutions proceed in general and allow us to examine 
the kinds of errors that occur in the numerical solution of ODEs.  We will address considerations 
of accuracy and the selection of a step size that provides the desired accuracy. 

Next, we will consider applying our algorithms to systems of equations.  As discussed above, we 
will reduce higher-order equations to systems of first-order equations.  In addition to this method 
for obtaining systems of equations, we will be able to address engineering problems that involve 
systems of differential equations.  Many such problems occur in “networks” which may be a 
transient electrical circuit, the behavior of a structure in an earthquake, or a transportation 
network.  In general, codes for the numerical solution of ODEs are written for systems of 
equations and can then be applied to any number of equations, including a single equation. 

The simple algorithms that we will consider initially are called self-starting algorithms; they require 
no information from previous steps for their operation.  However, we will want to consider 
multistep algorithms which use information from previous steps.  These algorithms can obtain 
results with similar accuracy to self-starting algorithms with less computational effort.  (Of course, 
we will need to link these with a self-starting algorithm to start the calculations from the initial 
condition.) 

The final section of the notes will discuss approaches for more boundary value problems and 
eigenvalue problems.  Boundary value problems have fixed values of y at two different values of x 
(as opposed to initial value problems where we know the value of y and some of the derivatives 
of y at an initial value of x).  Eigenvalue problems typically occur when the number of boundary 
conditions is larger than the order of the differential equation. 

General Approach 

The general problem for which we will develop an algorithm is called the initial value problem or 
IVP.  The definition of this problem from equation [8] above is repeated below. 
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We will generally have an equation to compute f(x,y) for any x and y values.  We want to find a 
numerical approximation to the behavior of the function y(x) between the initial value x0, and 
some final (given) value, xmax. 

Although the derivative is regarded as a function of x and y, the independent variable in the 
differential equation (x in equation [8]) is a variable that we will control to determine the intervals, 

x, to which we apply our algorithms.  If we could solve the equation analytically we could obtain 
y as a function of x.  The goal of the numerical solution is to produce a table of numerical results 
giving the values of y for a given set of values for x. 

All algorithms work by dividing the region between x0 and xmax into a grid of N+1 discrete points at 
the locations x = xi, where i ranges from 0 to N.  The spacing between the points may be uniform 
or non-uniform.  The coordinate of the first node, x0 is the same as the initial point, which is also 
called x0.  The final grid node, called xN, is located at the final value of x, xmax.  The spacing 
between any two grid nodes, xi and xi-1, has the symbol hi = Δxi.  These relations are summarized 
below. 

 x0 = xmin              xN = xmax             hi = xi – xi-1 = Δxi [9] 

A non-uniform grid, with different spacing between different nodes, is illustrated below. 
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For a uniform grid, all values of Δxi are the same.  In this case, the uniform grid spacing, in a one-
dimensional problem, is given the symbol, h.  I.e., h = xi – xi-1 for all values of i. 

There are N values of hi, with i ranging from 1 to N in the definition of hi.  (There is one more grid 
point, xi, than the number of grid steps, hi.)  If the grid spacing is uniform, we can calculate the 
value of h from the following equation. 

 
N
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Furthermore, in this uniform case the value of any x coordinate xi is simply found as follows. 

 ihxxi  0  [11] 

The user selects an appropriate value of h (or N) to provide the desired accuracy.  In more 
general algorithms, the value of h is adjusted during the calculation to provide small step sizes in 
regions where there is a large variation in f(x,y) and larger step sizes where the variation in f(x,y) 
is low. 

We use the following notation in discussing the numerical solution of ODEs. 

• xi is the value of the x point along the grid.  This is determined from the value of h (or the 
series of hi values) determined by the user.  Since x is the independent variable, it’s value 
can always be specified exactly. 

• yi is the value of the numerical solution at the point where x = xi. 

• fi is the value of the derivative computed from the known value of xi and the numerical 
value, yi.  I.e., fi = f(xi, yi). 

• y(xi) is the exact value of y at x = xi.  This value is usually not known.  This notation is 
used in the error analysis of algorithms. 

• f(xi,y(xi)) is the exact value of the derivative at x = xi.  This value is generally not known, 
but the notation is used in error analysis of algorithms. 

• e1 = y(x1) – y1 is the local truncation error; this is defined as the error after the first step 
from the initial point, x0, where the initial value of y, y(x0) is known. 

• Ej = y(xj) – yj is the global truncation error.  Although both the local and global truncation 
error appear to have the same definition, we notice that the local error is defined as the 
error after one step.  That is, the local error is the error in one step from a known initial 
condition. 

The basic idea for the numerical solution of ODEs is quite simple.  If we replace the derivative 
term in equation [8] by finite differences over the two points xi+1 and xi, and replace the value of 
f(x,y) as some suitable average between points xi and xi+1, we get the following result. 
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The whole approach to solving ODEs numerically is the derivation of equations for faverage that are 
both accurate and easy to use. 
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We start the numerical process with the known the initial condition, (x0, y0).  We then use the 
result of equation [12] to take the step from y0 to y1.  (The value of x1 is found from equation [9], x1 
= x0 + h1.)  Once we have a value for x1 and y1.  We can then use equation [12] to take the next 
step from (x1, y1) to (x2, y2).  We continue this process until we reach the desired ending point, 
xmax.  We now have to address the issue of the computation of faverage. 

Euler’s Method 

Euler’s method is the simplest algorithm for the numerical solution of ordinary differential 
equations.  It is never used in practice, but it is helpful to illustrate the general approach used in 
solving ODEs numerically. 

In Euler’s method, the new value of the independent variable is given by the following equation. 

 
1111 ),(   iiiiiiii hxxwithyxfhyy  [13] 

In this approach, we are taking a simple, but crude approximation to faverage.  We are assuming 
that the value of the derivative at the start of the step, f(xi, yi), is the average value over the entire 
step.  We use this as a basic tool for analyzing the error in numerical solutions of ordinary 
differential equations. 

Error in the Solution of ODEs 

Two different error terms are defined in the numerical solution of ordinary differential equations.  
The first, called the local error, is the error obtained in one step when the starting point is known 
exactly.  This is usually true only in the first solution step when we are starting from the initial 
condition.  We are generally more interested in the global error.  That is the error after some 
number of steps. 

We can analyze the error in the Euler method by writing a Taylor series for the exact value of y 
after one grid step in terms of the initial value of y.  The usual Taylor series for y(x) expressed in 
terms of y(a), the value of y at a point where x = a, is shown below. 
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We want a Taylor series for the value of y at the end of the first step, y(x0 + h), expressed as a 
Taylor series about the initial point, x0.  We get this series from equation [14] by setting a = x0 and 
x = x0 + h.  When we do this the (x – a) terms become (x0 + h – x0) = h.  The resulting Taylor 
series that we want is shown below. 
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In the above equation, we use the notation |0 on the derivatives to indicate that they are evaluated 
at x = x0.  We know that dy/dx has the symbol f for the usual derivative in our initial value 
problem.  Using this definition, we can rewrite equation [15] and identify the terms that are used in 
the Euler Algorithm.  The remaining terms are the local truncation error. 
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We see that the Euler method has a local truncation error that is second order. 
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We now want to prove the following general result: if the local truncation error for an algorithm is 
O(hn), its global truncation error is O(hn-1).  To do this we assume that an error like the local 
truncation error is produced in each step.  Thus, after we take k steps, we have a global error that 
is approximately k times the local truncation error.  If the local truncation error is O(hn) ≈ Ahn, we 
can write the global error, for k steps of size h, as follows. 
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If we cut the step size by a factor of r, so that the new step size is h/r, we can rewrite equation 
[18] as follows for the new step size. 
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To get to the same value of x with the smaller step size, we have to take kr steps.  Thus, the 
global error at the same x location is obtained by substituting kr for k in equation [19]. 
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We now examine the ratio of the two global truncation errors, at the same x location, given by 
equations [20] and [18]. 

 
  1

1

)( 






















nn

n

k

kr

rhkA

r

h
krA

hE

r

h
E

 [21] 

Equation [20] tells us that when we cut the step size by a factor of r, the error decreases by a 
factor of rn-1.  This is the result we obtain for an error that has an order n-1.  Consequently, we 
conclude that a method, which has a local truncation error that is O(hn), has a global truncation 
error which is O(hn-1). 

An example problem 

We will apply Euler’s method to the following simple problem. 

 00: 00  xatywithyx
dx

dy
 [22] 
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The analytical solution to this equation is shown below.  You can verify that this solution satisfies 
the differential equation and the initial condition. 

 1 xey x
 [23] 

Normally we will apply numerical methods to differential equations that we cannot solve 
analytically.  However, we will use the differential equation in [22] and its analytical solution in 
[23], to check the error in our numerical methods. 

For purposes of illustration we will pick a constant step size, h = 0.1.  We will consider the 
problem of selecting step sizes to obtain the accuracy desired by the userl later. 

If we compare the specific example in equation [22] with the general problem statement in 
equation [8], we see that f(x,y) = x + y in this problem.  At the initial condition of x0 = 0 and y0 = 0, 
we have f0 = f(x0,y0) = 0 + 0 = 0.  So Euler’s method from equation [13] gives us y1 = y0 + hf0 = 0 + 
(0.1)(0) = 0.  From equation [9] we get x1 = x0 + h = 0 + 0.1 = 0.1. 

We next take the step from x1 to x2 = 0.1 + 0.1 = 0.2.  At x1, the derivative, f1 = f(x1, y1) = x1 + y1 = 
0.1 + 0 = 0.1.  The Euler algorithm in equation [13] gives y2 = y1 + hf1 = 0 + (0.1)*(0.1) = 0.01.  
The table below shows these first two steps as well as additional steps for the method.  The 
analytical solution in equation [23] is used to compute the errors. 

Table1. Euler method for solution of equation [22] 
i xi yi fi yi exact yi error fi exact fi error 

0 0 0 0 0 0 0 0 

1 0.1 0 0.1 0.005171 0.005171 0.105171 0.005171 

2 0.2 0.01 0.21 0.021403 0.011403 0.221403 0.011403 

3 0.3 0.031 0.331 0.049859 0.018859 0.349859 0.018859 

4 0.4 0.0641 0.4641 0.091825 0.027725 0.491825 0.027725 

5 0.5 0.11051 0.61051 0.148721 0.038211 0.648721 0.038211 

6 0.6 0.171561 0.771561 0.222119 0.050558 0.822119 0.050558 

7 0.7 0.248717 0.948717 0.313753 0.065036 1.013753 0.065036 

8 0.8 0.343589 1.143589 0.425541 0.081952 1.225541 0.081952 

9 0.9 0.457948 1.357948 0.559603 0.101655 1.459603 0.101655 

10 1 0.593742 1.593742 0.718282 0.124539 1.718282 0.124539 

Table 1 shows that the error grows with x.  This is due to two factors.  When we take the initial 
steps, we have errors in y.  Thus, at a given value of x, our algorithm which is basically computing 
a Δy is adding the new Δy to an incorrect value of y.  In addition, we are using the incorrect value 
of y to compute the derivative, f.  Thus the incorrect value of y enters in at two points: (1) as the 
value of yi in the equation yi+1 = yi + hfi, and (2) in the computation of fi = f(xi, yi). 

Table 1 shows that the Euler method produces a considerable error with the step size, h = 0.1.  If 
we reduce the step size, we expect to reduce the error.  Since the Euler method has a second-
order local truncation error, it should have a first order global truncation error.  To verify this, we 
examine the errors in the initial step and the final solution for h = 0.1, 0.01, and 0.001 in Table 2. 

Table 2 – Euler method errors 

Step size Initial step error Final error 

h = 0.1 5.17x10-3 1.25 x10-1 

h = 0.01 5.02 x10-5 1.35 x10-2 

h = 0.001 5.00 x10-7 1.36 x10-3 
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The results in this table show that the Euler method has a global error that is first order: cutting 
the step size by a factor of ten cuts the error by a factor of ten.  Table 2 also shows that the local 
truncation error, measured as the error in the initial step, is second order.  Cutting the step size 
by a factor of ten cuts the error in the first step by a factor of 100. 

At this point we can either try to use more steps to reduce our error or try to find a better 
algorithm.  The latter path is generally the best one to pursue.  Some of the simpler algorithms 
used in numerical solution of ordinary differential equations, known are Runge-Kutta methods, 
are described below. 

Runge-Kutta methods 

Runge-Kutta methods use two or more evaluations of the derivative over the step from xi to xi+1.  
These methods are called self-starting methods because they require no information from 
previous data points.  However, they do require more work per step than the predictor-corrector 
methods listed below, which use information from previous steps. 

Runge-Kutta methods come in various orders.  The lowest Runge-Kutta methods are second-
order methods, which means that they have a second-order global truncation error.  Two of these 
methods have individual names.  The first of these, known as Heun’s Method, has an initial step 
that defines a predicted value of yi+1, called y0

i+1.  This value is then used to estimate the 
derivative at xi+1.  The actual derivative used to get the final value of yi+1 is the average of the two 
derivative values. 

Huen’s method proceeds in the following steps. 
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This follows the general approach outlined in equation [12].  Here we take the average derivative 
to be the arithmetic mean of two evaluations at the two end points of the interval.  Huen’s method 
has a second-order global truncation error. 

The other second-order Runge-Kutta method is known as the modified Euler method.  This is 
similar to the Huen method in that it takes a first step, obtains a new estimate of the derivative, 
and then takes the final step.  The modified Euler method takes a half step to evaluate y at the 
midpoint of the step.  This value is called yi+1/2.  This value of y, as well was the corresponding 
value of x is used to compute the derivative at the midpoint.  This derivative value is then used as 
the average value of f to compute the new y value.  The equations for the modified Euler method 
are shown below. 
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The fourth-order Runge-Kutta method is a long-time favorite of numerical analysts for simple 
problems, but is not used in modern computer applications.  However, it provides a useful 
illustration of higher-order methods and their effectiveness.  This method uses four calculations of 
the derivative over the step: one at each endpoint and two at the midpoint.  The weighted results 
of these derivative evaluations are then used in the computation of the final y value.  The 
classical notation for the Runge-Kutta algorithm uses the notation km to denote the product of a 
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derivative estimate times the step size.  This notation is used below to define the fourth-order 
(global truncation error) algorithm for this method. 
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 [26] 

We can illustrate the application of the fourth-order Runge-Kutta method to the example problem 
(and initial conditions) in equation [22].  For this example f(x,y) = x + y.  Choosing h = .1 gives the 
following steps. 

k1 = hf(x0,y0) = h(x0, y0) = (0.1)(0 + 0) = 0 

k2 = hf(x0+h/2,y0+k1/2) = h(x0+h/2 + y0+k1/2) = (0.1)(0+0.1/2 + 0+0/2) = 0.005 

k3 = hf(x0+h/2,y0+k2/2) = h(x0+h/2 + y0+k2/2) = (0.1)(0+0.1/2 + 0+0.005/2) = 0.00525 

k4 = hf(x0+h,y0+k3) = h(x0+h + y0+k3) = (0.1)(0+0.1 + 0+0.00525) = 0.10525 

y1 = y0 + (k1 + 2k2 + 2k3 + k4)/6 = 0 + [0 + 2(0.005) + 2(0.00525) + 0.10525]/6 = 0.0051708333 

Additional steps would be done in the same manner.  Table 3 shows the results of applying the 
fourth-order Runge-Kutta algorithm in [26] to the differential equation in [22] for ten steps. 

Table 3 – Results from fourth-order Runge-Kutta method for solution of equation [22], h = 0.1 

i xi yi k1 k2 k3 k4 Delta y yi exact yi error 

0 0 0 0 0.005 0.00525 0.01053 0.00517 0 0 

1 0.1 0.00517 0.01052 0.01604 0.01632 0.02215 0.01623 0.00517 8.47x10-8 

2 0.2 0.02140 0.02214 0.02825 0.02855 0.03500 0.02846 0.02140 1.87x10-7 

3 0.3 0.04986 0.03499 0.04174 0.04207 0.04919 0.04197 0.04986 3.11x10-7 

4 0.4 0.09182 0.04918 0.05664 0.05701 0.06488 0.05690 0.09182 4.58x10-7 

5 0.5 0.14872 0.06487 0.07312 0.07353 0.08222 0.07340 0.14872 6.32x10-7 

6 0.6 0.22212 0.08221 0.09132 0.09178 0.10139 0.09163 0.22212 8.38x10-7 

7 0.7 0.31375 0.10138 0.11144 0.11195 0.12257 0.11179 0.31375 1.08x10-7 

8 0.8 0.42554 0.12255 0.13368 0.13424 0.14598 0.13406 0.42554 1.37x10-7 

9 0.9 0.55960 0.14596 0.15826 0.15887 0.17185 0.15868 0.55960 1.70x10-7 

10 1 0.71828 0.17183 0.18542 0.18610 0.20044 0.18588 0.71828 2.08x10-7 

 

Although algorithms like the fourth-order Runge-Kutta look complex to calculate, they are able to 
produce accurate solutions with much less computational work. To show this we solve the 
following differential equation 
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   00   ywithe
dx

dy yx
 [27] 

The solution to this differential equation is shown below. 

 
    xxy eeey   00ln  [28] 

Can you verify that this solution satisfies the differential equation and the boundary conditions? 

The error in the numerical solutions of equation [27] by different methods is shown in the log-log 
plot below.  The first thing to note about this figure is the slope of the log(error) versus log(h) at 

the right side of the plot, before the roundoff error enters the calculations.  We see that this slope, 
which is the order of the error, has the expected values of 1, 2, 2, and 4, respectively for the 
Euler, Huen, Modified Euler, and (fourth order) Runge Kutta.  The reduction in error by going to a 
more complex algorithm is particularly dramatic in these results.  Reducing the error from 10-2 to 
10-8 for the Euler algorithm requires cutting the step size from h = 0.1 to 0.0000001.  This 
improvement in error this requires 1,000,000 times as much work for the solution with an error of 
10-8.  In contrast, keeping the step size the same and switching algorithms from Euler’s method to 
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the fourth-order Runge-Kutta reduces the error almost as much without any change in step size.  
Of course, the fourth-order Runge-Kutta takes more work per step.  A rough evaluation of the 
relative computational work of different algorithms is the number of derivative evaluations 
required per step.  Since the fourth-order Runge-Kutta requires four derivative evaluations per 
step, compared to the one evaluation for Euler’s method, the improvement in switching algorithms 
provides a million-fold improvement in error with a four-fold increase in computational effort. 

Other Runge-Kutta methods are available that include step size control.  These methods (known 
as Runge-Kutta-Fehlberg and Runge-Kutta-Verner) compute two different estimates of yi+1.  The 
difference between these two estimates (whose approximations are based on expressions whose 
order is different by one) is used as a measure of the error.  This error measure is then used to 
adjust the step size.  In this approach the step size is adjusted continuously.  Equation [29] shows 
the typical equation that is used for adjusting the step size and the specific example of the 
equation that is used for the Runge-Kutta-Fehlberg method.  In the general equation, C is a 
constant, typically less than one, to provide a conservative decrease in the step size and n is the 
overall order of the method. 

 

n
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The Runge-Kutta-Fehlberg method, which uses two expressions that have a global error of 4 and 
5, uses the following set of k. 
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 [30] 

With these k values the following expression is used to compute yn+1. 
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The k values are also used to compute an estimate of the error (as an absolute value) in the 
algorithm. 
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The value of yn+1 is used as the value of the dependent variable at the end of the step.  The error 
estimate is used to compute a new step size, based on the desired error (also an absolute value).  
Note this is an absolute error with the same dimensions as the dependent variable y, not a 
relative error 

 
4

1

84.0 
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Error

ErrorDesired
hhnew  [33] 

The basic MATLAB ODE solver, ODE45, uses a similar approach with a combination of a fourth-
order and fifth-order Runge-Kutta algorithm known as the Dormand-Prince pair.1 

Multistep Methods 

We have previously seen various methods, especially Runge-Kutta methods, which can obtain 
accurate solutions for the numerical integration of ordinary differential equations.  However, there 
methods require a large amount of work per step.  Several derivative evaluations are required at 
each step and this can increase the work if the derivatives are complex.  The large number of 
derivative evaluations per step is required in these methods to obtain a high order truncation 
error.  These methods have the advantage of being self-starting; the integration step from xi to 
xi+1 does not require any information from grid points before x – xi. 

An alternative approach is to use information from past integration steps to derive a higher order 
expression for integration the differential equation.  An obvious disadvantage of this approach is 
that the resulting methods will not be self-starting.  Consequently, it will be necessary to provide 
some other method, such as a Runge-Kutta method, to start the integration with a multistep 
method. 

Multistep methods are usually predictor-corrector methods.  We have already seen an example of 
a predictor-corrector method in Huen’s method, which was a modification of the Euler method.  In 
that method we used a predicted value of yi+1 to compute an estimate of the derivative f(xi+1, yi+1).  
We then used that estimated derivative to compute a final (corrected) value of yi+1.  Multistep 
predictor-corrector methods proceed in a similar way, but they use information from previous 
steps to get higher order expressions for more accurate results.  In addition, the difference 
between the predictor and the corrector can be used as an estimate of the error for step-size 
control. 

A common example of predictor-corrector methods is the fourth-order Adams predictor-corrector 
method.  The method proceeds from the current value yi at xi to obtain yi+1 at xi+1 in three steps.  
First, the most recent values of xi and yi are used to get a fresh estimate of the derivative, fi. 

 ),( iii yxff   [34] 

Next, this derivative value and the values of the derivatives at three previous steps are used to 
compute a predicted value of y at xi+1. 
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1    [35] 

                                                           
1 https://www.mathworks.com/help/matlab/ref/ode45.html?requestedDomain=www.mathworks.com 

https://www.mathworks.com/help/matlab/ref/ode45.html?requestedDomain=www.mathworks.com
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The derivative at xi+1, computed with this predicted yi+1 value, is then used to obtain the final 
(corrected) value of yi+1 by the following equation.  Note the notation for the estimated derivative 
at xi+1 is                 

  ),(9195
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)(

1

p

iiiiii

c

i yxffff
h

yy    [36] 

The difference between the predictor and corrector is used to provide an estimate of the 
truncation error in the new calculation.  The error estimate is given by the following equation. 
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ii yye    [37] 

This error estimate may be used for step size control as described below.  Note that the 
sequence for the calculation starts, in equation [34], with a fresh evaluation of fi+1 = f(xi+1,yi+1).  
The derivative at xi+1, used to calculate the corrected value in equation [36], is not used to start 
the new step in the calculation. 

Since multistep methods are not self-starting, step-size adjustments for these methods are 
usually limited to halving or doubling the step size.  When the step size is halved or doubled, it is 
necessary to obtain the required values of fi-1, fi-2, and f—3 with the new step size.  To see how this 
is done we first show the grid used for the step from i to i+1 using the existing step size.  Here the 
black points (●) represent grid nodes, xi and the hollow points (o) represent midpoints between 
the grid nodes used in the calculation. 

         i-5                  i-4                     i-3                  i-2                    i-1                    i                    i+1 
--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------● 

If the error estimate found in equation [37] is too large, the value of yi+1 is not accepted and the 
step size is halved.  The point i remains the same, but the new point i+1 is now midway between 
xi and the previous value of xi+1.  The grid below shows the previous grid indexing on top and the 
new grid indexing, after the step size is halved, below the grid. 

Old  i-5                  i-4                     i-3                  i-2         i-3/2       i-1     1-1/2     i                    i+1 
--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------● 
New                                                                                   i-3        i-2       i-1         i          i+1 

The values of fi-3 and fi-1 (in the new notation) that are required in equations [35] and [36] have to 
be found by interpolation.  The following interpolations are consistent with the fourth order 
accuracy of the method.  In both equations [38] and [39], the old grid numbering is used 

  iiiiji
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 [38] 

  iiiiji
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3 2454163
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 [39] 

When the step size is doubled, the values of xi+1 and yi+1 are accepted and this point is shifted to 
the current point xi, yi from which we start our new integration step.  The new grid indexing, after 
doubling the step size, is shown below the grid in the figure below. 
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p
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Old   i-5                  i-4                     i-3                  i-2                    i-1                    i                    i+1 
--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------● 
New  i-3                                          i-2                                           i-1                                            i 

In order to be able to ready for potential doubling of the step size, it is necessary to retain values 
of fi-4 and fi-5, even though these values are not required in the algorithm. 

Systems of equations 

As indicated in the introduction to these notes, the solution of higher order equations is done by 
converting the higher order ordinary differential equation to a system of first-order differential 
equations.  Since we have developed algorithms for solving first order differential equations, we 
have to see how we can extend these algorithms to treat systems of equations.  This extension is 
straightforward.  The main idea is that we have to treat all the equations at each step of the 
algorithm. 

We consider a general system of differential equations where ym represents the mth dependent 
variable.  We thus have to solve the following system of equations. 
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 [40] 

Here fm denotes an expression that we can evaluate to find the value for dym/dx.  In general, fm 
can depend on x and all the dependent variables, ym.  Equation [40] has the important idea that 
each dependent variable has an initial condition, that is a known value, ym,0, at x = x0. 

The general differential equation in [40] can be written as follows. 

 Nmyxyyyxf
dx

dy
mmNm

m ,,1)(),,,( 0,01    [41] 

An alternative expression uses the vector notation, y to denote dependent variables in the system 
of equations 

 00 )(),( yyyf
y

 xx
dx

d
 [42] 

Let’s use the fourth-order Runge-Kutta algorithm as an example solution of a system of 
equations.  In this case, we can define the algorithm as follows. 
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 [43] 

In equation [43] all values of k1,m must be computed before any values of k2,m may be computed.  
Similarly, all k2,m must be computed before any k3,m are computed.  The sample Visual Basic code 
shown below applies the fourth-order Runge-Kutta method to a system of equations.  This code 
uses variables like k1(m) to represent the increments like k1 for the mth variable in the fourth-order 
Runge-Kutta algorithm.  The VBA code below shows how each step of the algorithm is applied to 
each equation before taking the next step.  The routine fsub, which is used to compute all the 
derivatives at one time, is discussed further below. 

For i = 1 to Nsteps   ‘Do all steps from x0 to xmax 
 Call fsub( x, y, f )  ‘Compute all derivatives 
 For m = 1 to Neqns  ‘Loop over all equations 
  K1(m) = h * f(m)  ‘Compute all k1 values 
   ‘Compute intermediate y values for calling fsub 
  YInt(m) = y(m) + k1(m) / 2 ‘ 
 Next m 
  ‘Repeat process in previous loop over all equations 
  ‘to compute k2, k3, and k4 arrays 
 Call fsub( x+h/2, YInt, f ) 
 For m = 1 to Neqns 
  K2(m) = f * f(m) 
  YInt(m) = y(m) + k2(m) / 2 
 Next m 
 Call fsub( x+h/2, YInt, f ) 
 For m = 1 to Neqns 
  K3(m) = f * f(m) 
  YInt (m) = y(m) + k3(m) 
 Next m 
 Call fsub( x+h, YInt, f ) 
 For m = 1 to Neqns 
  y(m) = y(m) + ( k1(m) + 2 * k2(m) +2 * k3(m) _ 
                 + h * f(m) ) / 6 
 Next m 
 X = x + h 
Next i   ‘End of loop over all steps from x0 to xmax 

In this code, the subroutine fsub is used to compute the derivative of all equations for input values 
of x and the y array.  The values of the derivatives are returned in the f array.  For example, 
consider the system of three differential equations shown below. 
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The VBA fsub routine shown below calculates the necessary derivatives for this system of 
equations. 

Sub fsub( x as Double, y() as Double, f() as Double ) 
 f(1) = -y(1) + Sqr(y(2)) + y(3) * Exp( 2 * x) 

f(2) = -2 * y(1)^2 
 f(3) = -3 * y(1) * y(2) 
End Sub 

The same idea – that each step of the algorithm must be applied to each equation – is also true 
for multistep methods, like predictor-corrector methods.  In predictor-corrector methods, a system 
of equations is solved by first applying the predictor to each equation.  Then the derivative of 
each differential equation is evaluated at the end of the current step based on the predictor 
values for all variables.  Finally, the corrector is applied to each equation to get the final results for 
the step. 

Implicit methods 

The methods we have discussed so far are called explicit methods.  In these methods, the values 
at the new step of the independent variable are found in terms of values at previous steps.  An 
alternative approach uses implicit methods where the values at the end of the new step are used 
as part of the algorithm for finding the results at the end of the step.  This is best illustrated by the 
example of the trapezoid method.  In this method, we start with the same Taylor series that we 
used for developing the Euler method. 

 𝑦𝑛+1 = 𝑦𝑛 + 𝑓𝑛ℎ +
ℎ2𝑦𝑛

′′

2
+ 𝑂(ℎ3) [45] 

We next write a similar Taylor series giving the value of yn as an expansion about yn+1. 

 𝑦𝑛 = 𝑦𝑛+1 − 𝑓𝑛+1ℎ +
ℎ2𝑦𝑛+1

′′

2
+ 𝑂(ℎ3) [46] 

Subtracting equation [46] from equation [45] gives the following result. 

 𝑦𝑛+1 − 𝑦𝑛 = 𝑦𝑛 − 𝑦𝑛+1 + 𝑓𝑛ℎ + 𝑓𝑛+1ℎ +
ℎ2(𝑦𝑛

′′−𝑦𝑛+1
′′ )

2
+ 𝑂(ℎ3) [47] 

We can combine the yn and yn+1 terms and introduce the Taylor series 𝑦𝑛+1
′′

= 𝑦𝑛
′′ + ℎ𝑦𝑛

′′′ +
𝑂(ℎ2) into equation [47]; when we do this all the higher-order terms are of order h3 or higher 

which we can represent as O(h3). 

 
𝑦𝑛+1 = 𝑦𝑛 +
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−
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′′′+𝑂(ℎ

2
)]

4
+ 𝑂 (ℎ

3
) = 𝑦𝑛 +

(𝑓𝑛+𝑓𝑛+1)ℎ

2
+ 𝑂 (ℎ

3
)

 [48] 

The problem with this final result is that we have the value of the derivative expression, f, at the 
new step, which we do not know yet, in our equation.  We can estimate this derivative from a 
multivariate Taylor series for the derivative, f. 
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Substituting this expression for fn+1 into the final result in equation [48] gives 

 𝑦𝑛+1 = 𝑦𝑛 +
𝑓𝑛ℎ

2
+ ℎ [𝑓𝑛 + (
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𝑛
(𝑦𝑛+1 − 𝑦𝑛) + 𝑂(ℎ2)] [50] 

Solving this equation for yn+1 gives the following result for the Trapezoid method. 

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ𝑓𝑛+(

𝜕𝑓

𝜕𝑥
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𝑛
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𝑛

+ 𝑂(ℎ3) [51] 

We can apply the trapezoid method to a simple example, whose analytical solution we know, 
dy/dx = -ay, with y = y0 at x = 0.  Here f = -ay so that ∂f/∂x = 0 and ∂f/∂y = -a.  For this example, 
the general equation in [51] becomes 

 𝑦𝑛+1 = 𝑦𝑛 +
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 [52] 

A final rearrangement gives the following result for this example. 

 𝑦𝑛+1 = 𝑦𝑛
2−ℎ𝑎

2+ℎ𝑎
 [53] 

We will use this result below when we consider the topic of stability. 

Stability of numerical solutions of ODEs 

A numerical method is said to be stable if the error does not grow without bound.  A method for 
which this is true regardless of the problem conditions is said to be absolutely stable.  A method 
for which this is only true under certain conditions is said to be conditionally stable.  We know that 
the solution of the differential equation dy/dx = ay is y = yoeat.  This solution grows without bound 
as t increases unless a is negative.  The stability of numerical methods is usually tested by being 
applied to the differential equation dy/dx = -ay, where a is a positive constant.  The solution to this 
equation is y = yoe-at.  What do we get if we try to solve this equation using Euler’s method, yn+1 = 
yn + hfn.  In this case we have fn =  -ayn so yn+1 = yn + h(-ayn) = yn(1 - ah).  We can solve this 
equation for different values of ah and obtain the results shown titled “Stability of the Euler 
Method on the next page. 

The solutions for ah = 0.5 is close to the exact solution, but solutions for ah = 1 and greater and 
not physically realistic.  The solution for ah = 2 is a series of straight lines, but the solutions 
remains bounded.  It produces values of either y = -1 (at x = 2, 6, 10, …) or y = 1 (at x = 4, 8, 12, 
…).  However, this solution is the limit of stability.  For ah = 2, the solution, though grossly 
inaccurate, does not grow without bound.  Beyond ah = 2 (as seen for ah = 2.5 in this plot) the 
solution grows without bound. 
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In our discussion of the trapezoid method we applied that algorithm to the test problem for 
stability just discussed: dy/dx = -ay.  Equation [53] showed that yn+1/yn = (2 – ha)/(2 + ha) when 
the trapezoid method was applied to dy/dz = -ay.  The results of this numerical solution for 
different values of ah are shown in the second figure on the next page titled “Trapezoid Method 
Stability.” 

The “Trapezoid Method Stability” figure shows that the trapezoid method is stable, if not accurate, 
for any value of ah.  Remember that stability only means that the solution will not grow without 
bound.  On the scale of this plot, the solutions for ah = 0.5 and ah = 1.0 appear to be almost the 
same as the exact solution.  Larger values of ah provide solutions where each individual step is 
so large that the solutions are a sequence of straight lines; for smaller values of ah, the solutions 
are also a sequence of straight lines, but each line in the sequence is so short that the solutions 
appear curved.  Although, the solutions for larger values of ah are clearly incorrect, they are not 
unstable.  They do not grow without bound.  Hence, we consider the trapezoid method to be 
absolutely stable.  However, stability, by itself, is not sufficient.  We must also have accuracy.  In 
fact, you might ask why do we even care about stability; isn’t accuracy the only thing we have to 
be concerned about?  The answer to this question comes in the section below dealing with stiff 
systems of equations. 

Boundary-value problems 

The numerical solutions of differential equations we have considered so far deal with the initial-
value problem.  For such problems, we have sufficient initial conditions at a single starting point to 
allow us to solve the numerical problem.  However, it is also possible to have boundary conditions 
where that specify the values of the solution at two different points.  A general second-order 
differential equation, d2y/dx2 = g(x, y, dy/dx), could have set conditions such as y = a at x = 0 and 

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8

y
/y

0

ax

Stability of Euler Method

Exact

ah = .5

ah = 1

ah = 1.5

ah = 2

ah = 2.5



Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 19 

 

y = b at x = L.  It is even possible to have more complex boundary conditions such as a dy/dx + 
by = c at any specified value of the independent variable, x.  There are two basic approaches to 
the solution of boundary-value problems: shoot-and-try and finite differences.  We will consider 
each of these in turn. 

To discuss the shoot-and-try method, we consider the solution of the following problem: 

 Lxatbyandxataywith
dx

dy
yxg

dx

yd









 0:,,

2

2

 [54] 

We can convert this equation into a pair of first-order equations as we did for initial-value 
problems by defining a new variable z = dy/dx, and getting equations for dy/dx and dz/dx. 

   Lxatbyandxataywithzyxg
dx

dz
andz

dx

dy
 0:,,  [55] 

Here we have the problem that we do not have a value of the first derivative, z, at x = 0.  We also 
have no ready way to use the boundary condition at x = L to start the problem.  The shoot-and-try 
method is a trial-and-error method in which we guess a value of the first derivative at x = 0, y’(0) = 
z(0), then use any of the methods we have discussed for solving initial value problems to 
integrate the equations from x = 0 to x = L.  Once we have completed this integration, we can 
compare the value we have just found for y at x = L, to the specified boundary condition, y(L).  
We can use the difference between these two values to adjust our initial guess for the first 
derivative at x = 0.  We can continue repeating this process until the difference between the 
computed and specified value of y at x = L is less than some specified maximum error. 
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To do this process, we define the difference between the computed value at x = L, denoted as 
y(m)(L) as the result for the mth trial, and the specified boundary condition, y(L), as the error for 
trial m, E(m). 

 𝐸(𝑚) = 𝑦(𝑚)(𝐿) − 𝑦(𝐿) [56] 

We can define an iterative process that assumes a linear relationship between two trial values of 
the initial slope, z(m)(0) and z(m-1)(0), and the corresponding errors in the boundary values at z = L, 
E(m)

 and E(m-1); we can use this linear relationship to find the value of the next guess for the initial 
slope z(m+1)(0). 

 𝑧(𝑚+1)(0) = 𝑧(𝑚)(0) +
𝑧(𝑚)(0)−𝑧(𝑚−1)(0)

𝐸(𝑚)−𝐸(𝑚−1) (𝐸(𝑚+1) − 𝐸(𝑚)) [57] 

We want the error on the next iteration, E(m+1), to be zero.  Setting E(m+1) equal to zero in [57] 
gives the following iteration equation for the new value of the initial slope, z(m+1)(0). 

 𝑧(𝑚+1)(0) = 𝑧(𝑚)(0) − 𝐸(𝑚) 𝑧(𝑚)(0)−𝑧(𝑚−1)(0)

𝐸(𝑚)−𝐸(𝑚−1)
 [58] 

Because this equation requires two previous trials we have to use other equations, like those in 
equation [59], to get the value of the initial slope for the first and second iterations. 

 𝑧(1)(0) =
𝑦(𝐿)−𝑦(0)

𝐿
     𝑧(2)(0) =

2𝑦(𝐿)−𝑦(1)(𝐿)−𝑦(0)

𝐿
  [59] 

As an example, consider the solution of the following problem. 

 1001:0)sin(16
2

2

 Lxatyandxatywithy
dx

yd
 [60] 

To solve this, we first have to create a system of two first-order equations 

 )sin(16 y
dx

dz
andz

dx

dy
  [61] 

We know that y(0) = 1 and we can use the first equation in [59] to get z(1) = (0 – 1)/1 = -1.  With 
this initial guess value of the slope at x = 0 a fourth-order Runge-Kutta calculation with h = 0.005 
gives y(1)(L) = -3.8870.  Thus the error in this first calculation is E(1) = y(1)(L) - y(L) = -3.8870 – 0 = 
-3.8870.  We can use the second part of equation [59] to get the next value of the slope at x = 0. 

 𝑧(2)(0) =
2𝑦(𝐿)−𝑦(1)(𝐿)−𝑦(0)

𝐿
=

2(0)−(−3.8870)−1

1
= 2.8870 [62] 

A second Runge-Kutta calculation gives y(2)(L) = 4.8974 with a corresponding error of 4.8974 – 0 
= 4.8974; we can apply equation [58] to get the new value of z(0) for the next iteration. 

 

𝑧(3)(0) = 𝑧(2)(0) − 𝐸(𝑚) 𝑧(2)(0)−𝑧(1)(0)

𝐸(2)−𝐸(1) = 2.8870 −

4.8974
2.8870−(−1)

4.8894−(−3.8870)
= 0.71993

 [63] 
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The results after ten iterations of the shoot-and-try give a value of the variable y = 1.23x10-8 at x = 
0.  This is taken as close enough to the stated boundary condition of y = 0 at x = 1.  A plot of the 
results of each iteration of the fourth-order Runge-Kutta is shown in the figure below.  We see 
that the iterations give solutions on either side of the eventual final solution labeled Series10 in 
the figure legend. 

The finite-difference method is an alternative to the shoot-and-try method.  In the finite 
difference method, one uses finite-difference expressions for derivatives to develop set of 
simultaneous algebraic equations that can be solved for values of the dependent variables in the 
differential equation at specific points on a grid.  An example of such a grid is shown below. 

●-----●--------●-------------●~ ~●-------●---● 
  x0     x1         x2              x3    xN-2     xN-1  xN 

The grid shown here is a non-uniform grid where the spacing between nodes is not the same.  
Such grids are used when there is an expected strong variation in certain areas of the grid and 
more nodes are placed in those strong-variation areas to get better resolution there.  Uniform 
grids have a higher order error, and are generally preferred it there are not specific reason to do 
otherwise.  Regardless of whether or not the grid is uniform, the basic approach is the same.  A 
finite-difference expression for each derivative in the differential equation is used to convert the 
differential equation into a finite-difference equation at each node in the grid.  The set of finite-
difference equations is then solved to find the values at the nodes.  It may also be necessary to 
use finite-difference expressions for the boundary conditions if they involve gradients. 

The use of finite difference equations is best shown by example.  Consider the following equation 
for one-dimensional heat transfer with a heat source that is proportional to the temperature, T, 
with a proportionality constant a2. 

 02

2

2

 Ta
dx

Td
 [64] 
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We create a finite difference equivalent for this differential equation, at the location x = xi, as 

shown below.  In this equation, h is the step size, x = (xN – x0)/N. 

   0
2 22

2

11 
 

i
iii TahO

h

TTT
 [65] 

The O(h2) notation lets us know that the finite difference expression for the derivative is second-
order accurate; we will drop this information in obtaining an equation to solve for the values of 
temperatures at all the nodes.  Dropping this notation, multiplying by h2, and rearranging terms 
gives us the following finite difference equation. 

   02 22

11   iii TahTT  [66] 

Before discussing the solution of this system of algebraic equations we have to discuss the 
boundary conditions.  In general, there are three possible kinds of boundary conditions.  The 
first (and easiest) are: fixed value or Dirichlet boundary conditions; these specify values of the 
dependent variable at the boundary.  They simply say that the values at the boundaries of the 
grid, T = T0 and T = TN are known.  The second set, called Neumann or gradient boundary 
conditions specify the gradient of the dependent variable at the boundary.  In heat transfer the 
gradient of temperature at the boundary is used to specify a boundary heat flux.  The third 
boundary condition, sometimes called a mixed boundary specifies a relation between the 
dependent variable and its gradient at the boundary. 

All three types of boundary conditions can be expressed by the following equation: 

 cbT
dx

dT
a   [67] 

In this general equation, the case of fixed temperature is determined by the following equations, 
using the specified temperatures at the left and right boundary, respectively. 

 rightNleft TcTTbaTcTTba  ,1,0,,1,0 0  [68] 

In case of a specified gradient the following equations are used in the case of heat transfer, 
where k is the thermal conductivity and qleft and qright are the specified heat fluxes.  Note that 
second-order directional derivatives are used to keep the boundary conditions with the same 
(second-order) accuracy as the finite-difference equations. 

 
h

TTT

k

q

h

TTT

k

q
NNNrightleft

2

34

2

34 12012 



   [69] 

The third kind of boundary condition would be for a specified convective heat flux. 

 
   

h

TTT

k

TTh

h

TTT

k

TTh
NNNNrightleft

2

34

2

34 120120 








 [70] 

In these boundary conditions, the values of hleft, hright, and T∞ are specified constants.  (The 
values of T∞ could be different on the two sides.) 

To talk about solving the system of finite-difference equations, we will limit ourselves to fixed 
boundary conditions.  We will assume that we are given Tleft = TA = T0 and Tright = TB = TN.  We will 
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rewrite our finite-difference equations from equation [66] using the shorthand expression  = h2a2, 
as shown below. 

     0202 11

22

11   iiiiii TTTTahTT   [71] 

With fixed boundary conditions, T0 = TA and TB = TN, we will have a set of linear algebraic 
equations, written as a matrix equation in equation [7e], below, to solve.  The solution is done 
using N = 10, TA = Tleft = 0, TB =Tright = 1, a = 2, and L = 1. 

For this differential equation, the exact solution is given by the following equation. 

 [72]
  

We see that this set of equations forms a tridiagonal matrix where all terms that are not on the 
principal diagonal or the diagonals immediately above or below the principal diagonal are all 
zeros. 

 

 

 [73] 

 

 

 

This is a particularly easy set of equations to solve.  The process for doing this is discussed in the 

appendix.  The solutions are shown in the table below for a = 2, L = 1, and  = aL = 2. 

 

 

 

 

 

 

 

We see that the errors are zero, as expected, at the initial and final nodes where the boundary 
conditions are specified.  We also see that the closer we are to these boundaries, the smaller are 
the errors.  The largest errors are at the nodes near the center where we are furthest from the 
boundaries.  It is useful to have a single measure of the overall error.  If we regard the error 
values as the components of a vector, we can use a vector norm as a measure of the overall 
error.  The simplest error measure is the zero norm, which is the maximum error.  For this 

Results of Finite-Difference Calculation 

i xi Ti Exact Ti Ti Error 

0 0.0 0 0 0 
1 0.1 0.21918 0.21849 0.00070 
2 0.2 0.42960 0.42826 0.00134 
3 0.3 0.62284 0.62097 0.00187 
4 0.4 0.79115 0.78891 0.00224 
5 0.5 0.92783 0.92541 0.00242 
6 0.6 1.02739 1.02501 0.00238 
7 0.7 1.08585 1.08375 0.00211 
8 0.8 1.10088 1.09928 0.00160 
9 0.9 1.07188 1.07099 0.00089 
10 1.0 1.0 0 0 
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calculation that value is 0.00242.  A more common measure is the root-mean-square (RMS) error 
defined by the following equation. 

 [74]
  

We can also compute the temperature gradients at the boundaries from the numerical solution 
and compare them to the gradients from the exact solution. 

 [75]
  

 
 [76]

  

For the results in the table, with a step size h = 0.1, the maximum error shown in the table is 
2.42x10-3 and the calculated RMS error is 1.83x10-3.  The calculation was repeated with h = .01 
resulting in a maximum error of 2.41x10-5 and an RMS error of 1,73x10-5.  We see that 
decreasing the step size by a factor of 10 reduced the two different error calculations by a factor 
of 100.  This is consistent with the original second-order finite-difference expressions that were 
used to model the differential equation. 

The heat flux at the boundaries can be computed by finite-difference expressions.  The second 
order expressions for these calculations are shown below. 

 [77] 

 

The results of these heat-flux calculations (expressed as q/k because k was not specified) are 
shown in the table below for both sets of calculations. 

We see that the exact value of q/k does not 
change as we change the grid size.  Because 
the differential equation has a heat source term, 
the –a2T term implies a heat gain in the region, 
regardless of the value of a – there is a heat 
loss on both sides of the one-dimensional 
region in the calculations.  The heat loss at x = 
0 is larger in magnitude than the heat loss at x 
= 1 because of the larger temperature gradient 

at that point.  We see that the numerical result for the gradient calculation also displays a second 
order error because the error decreases by a factor of 100 when the step size decreases by a 
factor of 10. 

This simple example of a finite-difference calculation is meant to illustrate the process that is 
used.  More accurate difference methods can be used and more complex boundary conditions 
can be considered. 

Stiff systems of equations 

A stiff system of differential equations is a system of differential equations whose solutions have 
widely different exponential terms.  The name arose from structures calculations during the 1940s 

x qexact/k h q/k Error 

0 -2.1995 .1 -2.2357 .03618 

0 -2.1995 .01 -2.1999 .00036 

1 .9153 .1 .9332 .01786 

1 .9153 .01 .9155 .00021 
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where this phenomenon was first observed.  To see how this can occur, consider the following 
differential equation. 

 0200'101:98012 02

2

  tatyandywithey
dt

dy

dt

yd t
 [78] 

You should be able to show that the following equation satisfies the differential equation and the 
initial conditions. 

 
tt eey 100100    [79] 

In the previous section on stability we saw that differential equations whose solutions had 
exponential terms like exp(-at) required low values of ah for stability in numerical calculations.  
How does this work in a solution like that in equation [79] where there are two exponential terms 
in the solution?  After some thought you should realize that if there are two exponential terms, the 
one with the largest value of a will determine the stability.  A numerical solution of equation [78], 
which has the analytical solution shown in equation [79], it is the value of a = 100 that will set the 
stability limit on ah, not the value of a = 1.  However, the contribution of the exp(-100t) term to the 
solution will soon fade to zero.  [At t = 0.1, the exp(-100t) term equals 4.54x10-5, and the 100exp(-
t) term equals 90.5; at t = 1, the exp(-100t) term equals 3.72x10-44 and the 100exp(-t) term equals 
36.8.]  In the numerical solution to a problem with behavior like this, stability would require a very 
small step size to keep the exp(-100t) term stable, but after a small initial time, this term would not 
contribute to the overall solution.  So here is the problem of stiff systems: parts of the solution, 
which are exponential terms with large negative exponents, will rapidly go to zero.  In principle, 
these could be ignored and still provide an accurate solution, but, in practice, the demands of 
stability force these terms to control the step size to a very small value.  In other words, the 
insignificant terms in the solution are governing the required step size for stability! 

Gear’s Method 

An early procedure for solution of stiff equations was due to C. W. Gear.  This method uses a 
detailed computer code which adjusts the order of the algorithm and the step size based on a test 
of the results during the calculation.  It is an implicit method.  The basic formula for the method is 
given by the following equation. 

 
 
 
 

  [80] 

The coefficients in this equation depend on the order, k, of the equation that is being used.  This 
order is adjusted during the calculation to give more accurate solutions in regions where the 
variation is steeper.  The coefficients used in this equation are shown in the table on the next 
page. 

The presence of the derivative at the end of the time step, fn+1, in equation [80] makes the Gear 
algorithm an implicit one.  Each step has to be solved iteratively to get the derivative term to 
match the new value(s) of yn+1. 
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Appendix – Solving Tridiagonal Matrix Equations  

A general system of tridiagonal matrix equations may be written in the following format. 

 Ai xi-1 + Bi xi + Ci xi-1 = Di [A-1] 

This provides not only a representation of the general tridiagonal equation; it also suggests a data 
structure for storing the array on a computer.  Each diagonal of the matrix is stored as a one-
dimensional array.  For the most general solution of 100 simultaneous equations, we would have 
1002 = 10,000 coefficients and 100 right-hand-side terms.  In the tridiagonal matrix formulation 
with 100 unknowns, we would have only 400 nonzero terms considering both the coefficients and 
the right-hand side terms. 

In order to maintain the tridiagonal structure, the first and last equation in the set will have only 
two terms.  These equations may be written as shown below.  These equations show that neither 
A0 nor CN are defined. 

 B0 x0 + C0 x1 = D0 [A-2] 

 AN xN-1 + BN xN = DN [A-3] 

The set of equations represented by equation [73] (on page 23) is particularly simple.  In that set 

of equations, all Ai = Ci = 1; all Bi = (-2 + ), and all Di = 0, except for the first and last values.  In 
the general form that we are solving here the coefficients in one equation may all be different, and 
a given coefficient, say A, may have different values in different equations.  To start the solution 
process, we solve equation [A-2] for x0 in terms of x1 as follows. 

 x0 = [-C0 / B0] x1 + [D0 / B0] [A-4] 

The solution to the tridiagonal matrix set of equations, known as the Thomas algorithm, seeks to 
find an equation like [A-4] for each other unknown in the set.  The general equation that we are 
seeking will find the value of xi in terms of xi+1 in the general form shown below. 

 xi = Ei xi+1 + Fi [A-5] 

By comparing equations [A-4] and [A-5], we see that we already know E0 = -C0 / B0 and F0 = 
D0 / B0.  To get equations for subsequent values of Ei and Fi, we rewrite equation [A-5] to be 
solved for xi-1 = Ei-1 xi + Fi-1, and substitute this into the general equation, [A-1]. 

 Ai [Ei-1 xi + Fi-1] + Bi xi + Ci xi-1 = Di [A-6] 

We can rearrange this equation to solve for xi. 

Coefficients in Gear Equation for Different Orders, k 

k         

1 1 1 1 
     

2 1/3 2 4 -1 
    

3 1/11 6 18 -9 2 
   

4 1/25 12 48 -36 16 -3 
  

5 1/137 60 300 -300 200 -75 12 
 

6 1/147 60 360 -450 400 -225 72 -10 
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By comparing equations [A-5] and [A-6], we see that the general expressions for Ei and Fi are 
given in terms of the already know equations coefficients, Ai, Bi, Ci; and Di, and previously 
computed values of E and F. 
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We have to get an equation for the final point, xN.  We will not calculate xN, until we have 
completed the process of computing the values of E and F up through equation N-1.  At that 
point, we will know the coefficients the following equation: 

 xN-1 = EN-1 xN + FN-1 [A-9] 

We will also know the coefficients AN, BN, and DN in the original matrix equation, given by [A-3].  
We can solve equations [A-3] and [A-9] simultaneously for xN. 
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We see that the right-hand side of this equation is the same as the right-hand side of the equation 
for FN in [A-8]. 

The Thomas algorithm is a simple one to implement in a computer program.  The code below 
provides a C++ function to implement the calculations shown in this appendix.  This function uses 
separate arrays for Ei, Fi, and xi.  However, it is possible to save computer storage by overwriting 
the input arrays with the results for Ei, Fi, and xi.  This is possible because the input data are not 
required for the TDMA algorithm after their initial use in the computation of Ei and Fi. 

void tdma( double *a, double *b, double *c, double *d, 
           double *x, int N ) 
{ 
    // Generic subroutine to solve a set of simultaneous linear equations that 
    // form a tridiagonal matrix.  The general form of the equations to be solved is 
    //           a[i] * x[i-1] + b[i] * x[i] + c[i] * x[i+1] = d[i] 
    // The index, i, runs from 0 to N.  The values of a[0] and c[N] are not defined 
    // The user must define the one-dimensional arrays a, b, c, and d. 
    // The user passes these arrays and a value for N to this function. 
    // The function returns the resulting values of x to the user. 
    // All arrays are declared as pointers in the calling program to allow 
    // allocation of the arrays at run time. 
 
 
   double *e = new double[N+1];      // Allocate storage for working arrays 
   double *f = new double[N+1]; 
   e[0] = -c[0]/b[0];                // Get values of e and f for initial node 
   f[0] = d[0]/b[0]; 
   for ( int i = 1; i < N; i++)      // Get values of e and f for nodes 1 to N-1 
   { 
      e[i] = -c[i]                   / ( b[i] + a[i] * e[i-1] ); 
      f[i] = (d[i] - a[i] * f[i-1] ) / ( b[i] + a[i] * e[i-1] ); 
   } 
          // All e and f values now found now.  Start with calculation of x[N]. 
          // Then get remaining values by back substitution in a for loop. 
   x[N] = (d[N] - a[N] * f[N-1] ) / ( b[N] + a[N] * e[N-1] ); 
 
   for ( i = N-1; i >= 0; i-- ) 
   { 
      x[i] = e[i] * x[i+1] + f[i]; 
   } 
   delete[] e;                         // Free memory used for allocated arrays 
   delete[] f; 
} 


