

College of Engineering and Computer Science
Mechanical Engineering Department

Notes on Engineering Analysis

Larry Caretto November 9, 2017

Numerical Solution of Ordinary Differential Equations

Goal of these notes

These notes were prepared for a standalone graduate course in numerical methods and present
a general background on the use of differential equations. The numerical material to be covered
in the 501A course starts with the section on the plan for these notes on the next page.

Background on differential equations

Many engineering problems are defined in terms of differential equations. Most students
encounter their first application of differential equations to physical problems in the analysis of
motion. Here, there are two common differential equations. The first relates the displacement
along a one-dimensional path, s, to the velocity, v; the second, which is Newton’s second law
relates the displacement to the applied force divided by the mass, F/m. The symbol t indicates
the time.

m

F

dt

sd
v

dt

ds


2

2

 [1]

Another application of differential equations is in electrical circuits. The current, I, in a circuit with
a capacitance, C, an inductance, L, a resistance, R, and an applied voltage, V(t) is governed by
the following differential equation. (In this equation, V(t) is known.)

dt

tdV
I

Cdt

dI
R

dt

Id
L

)(1
2

2

 [2]

Differential equations are classified in terms of the highest order of the derivative that appears in
the equation. Thus, equation [2] is a second order differential equation. The two differential
equations in [1] are, respectively, first-order equation and second-order differential equations.
The equations in [1] and [2] are linear differential equations. In these equations, the dependent
variable, and all its derivatives, appear to the first power only.

We can use the definition of velocity to write Newton’s second law as two first-order differential
equations.

m

F

dt

dv
v

dt

ds
 [3]

Similarly, we can use the definition of voltage drop across the inductor, eL as the Inductance
times the first derivative of the current, to rewrite equation [2] as the following pair of equations.

dt

tdV
I

CR

e

dt

de

dt

dI
Le LL

L

)(1
 [4]

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 2

In this system of equations, we have one independent variable, t, and two dependent variables, I
and eL. This approach of writing second-order equations as sets of first-order equations is
possible for any higher order differential equation. We will use it subsequently to apply algorithms
designed for the analysis of first order equations to systems of higher order equations.

Some differential equations can be solved by simple integration. An example of this is shown
below.

 Cdttvsordttvdsthatsotv
dt

ds
 )()()([4]

The constant of integration, C, can be found if one point in the relationship, typically called an
initial condition, (sinitial, tinitial) is known. With the initial condition, we can find the value of s for any
value of t by the following integration.

  

t

t

initial

t

t

initial

s

s initialinitialinitial

dttvstsordttvssds ')'()(')'([5]

We have used the dummy variable, t’, in the integral to indicate that the final dependence of s(t)
depends on the upper limit of the integral.

We could perform the integration in equations [4] and [5] because the derivative expression was a
function of the time only. We are interested in the more general problem of what happens when
the derivative in equation [4] is a function of both time and displacement. That is, we are
interested in solving the general problem

),(stv
dt

ds
 [6]

We can try to write this as we did in equation [4] or [5], but we cannot perform the integration
because v is a function of both s and t.

 '),'(),( 

t

t

initial

initial

dtstvssordtstvds [7]

There are many cases in which we can solve differential equations like equation [6] analytically.
However, when we cannot do so, we have to find numerical methods for solving this equation.

Plan for these notes

The general approach to the numerical solution of ordinary differential equations defines a
general initial value problem (IVP) which is shown in equation [8].

 00)(:),(yxyconditioninitialknownawithyxf
dx

dy
 [8]

We will develop our algorithms for this simple problem of a single differential equation.

Initially we will describe a general approach for solving the IVP, including a discussion of the
notation and error terms. Next, we will examine some simple algorithms that we can use. These

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 3

simple algorithms will help us see how the solutions proceed in general and allow us to examine
the kinds of errors that occur in the numerical solution of ODEs. We will address considerations
of accuracy and the selection of a step size that provides the desired accuracy.

Next, we will consider applying our algorithms to systems of equations. As discussed above, we
will reduce higher-order equations to systems of first-order equations. In addition to this method
for obtaining systems of equations, we will be able to address engineering problems that involve
systems of differential equations. Many such problems occur in “networks” which may be a
transient electrical circuit, the behavior of a structure in an earthquake, or a transportation
network. In general, codes for the numerical solution of ODEs are written for systems of
equations and can then be applied to any number of equations, including a single equation.

The simple algorithms that we will consider initially are called self-starting algorithms; they require
no information from previous steps for their operation. However, we will want to consider
multistep algorithms which use information from previous steps. These algorithms can obtain
results with similar accuracy to self-starting algorithms with less computational effort. (Of course,
we will need to link these with a self-starting algorithm to start the calculations from the initial
condition.)

The final section of the notes will discuss approaches for more boundary value problems and
eigenvalue problems. Boundary value problems have fixed values of y at two different values of x
(as opposed to initial value problems where we know the value of y and some of the derivatives
of y at an initial value of x). Eigenvalue problems typically occur when the number of boundary
conditions is larger than the order of the differential equation.

General Approach

The general problem for which we will develop an algorithm is called the initial value problem or
IVP. The definition of this problem from equation [8] above is repeated below.

 00)(:),(yxyconditioninitialknownawithyxf
dx

dy
 [8]

We will generally have an equation to compute f(x,y) for any x and y values. We want to find a
numerical approximation to the behavior of the function y(x) between the initial value x0, and
some final (given) value, xmax.

Although the derivative is regarded as a function of x and y, the independent variable in the
differential equation (x in equation [8]) is a variable that we will control to determine the intervals,

x, to which we apply our algorithms. If we could solve the equation analytically we could obtain
y as a function of x. The goal of the numerical solution is to produce a table of numerical results
giving the values of y for a given set of values for x.

All algorithms work by dividing the region between x0 and xmax into a grid of N+1 discrete points at
the locations x = xi, where i ranges from 0 to N. The spacing between the points may be uniform
or non-uniform. The coordinate of the first node, x0 is the same as the initial point, which is also
called x0. The final grid node, called xN, is located at the final value of x, xmax. The spacing
between any two grid nodes, xi and xi-1, has the symbol hi = Δxi. These relations are summarized
below.

 x0 = xmin xN = xmax hi = xi – xi-1 = Δxi [9]

A non-uniform grid, with different spacing between different nodes, is illustrated below.

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 4

 ●---------●------------●------------------●---~ ~-------●----------●------●
 x0 x1 x2 x3 xN-2 xN-1 xN

For a uniform grid, all values of Δxi are the same. In this case, the uniform grid spacing, in a one-
dimensional problem, is given the symbol, h. I.e., h = xi – xi-1 for all values of i.

There are N values of hi, with i ranging from 1 to N in the definition of hi. (There is one more grid
point, xi, than the number of grid steps, hi.) If the grid spacing is uniform, we can calculate the
value of h from the following equation.

N

xx
h 0max  [10]

Furthermore, in this uniform case the value of any x coordinate xi is simply found as follows.

 ihxxi  0 [11]

The user selects an appropriate value of h (or N) to provide the desired accuracy. In more
general algorithms, the value of h is adjusted during the calculation to provide small step sizes in
regions where there is a large variation in f(x,y) and larger step sizes where the variation in f(x,y)
is low.

We use the following notation in discussing the numerical solution of ODEs.

• xi is the value of the x point along the grid. This is determined from the value of h (or the
series of hi values) determined by the user. Since x is the independent variable, it’s value
can always be specified exactly.

• yi is the value of the numerical solution at the point where x = xi.

• fi is the value of the derivative computed from the known value of xi and the numerical
value, yi. I.e., fi = f(xi, yi).

• y(xi) is the exact value of y at x = xi. This value is usually not known. This notation is
used in the error analysis of algorithms.

• f(xi,y(xi)) is the exact value of the derivative at x = xi. This value is generally not known,
but the notation is used in error analysis of algorithms.

• e1 = y(x1) – y1 is the local truncation error; this is defined as the error after the first step
from the initial point, x0, where the initial value of y, y(x0) is known.

• Ej = y(xj) – yj is the global truncation error. Although both the local and global truncation
error appear to have the same definition, we notice that the local error is defined as the
error after one step. That is, the local error is the error in one step from a known initial
condition.

The basic idea for the numerical solution of ODEs is quite simple. If we replace the derivative
term in equation [8] by finite differences over the two points xi+1 and xi, and replace the value of
f(x,y) as some suitable average between points xi and xi+1, we get the following result.

averageiiiaverage

i

ii

ii

ii fhyyf
h

yy

xx

yy
11

1

1

1

1








 






 [12]

The whole approach to solving ODEs numerically is the derivation of equations for faverage that are
both accurate and easy to use.

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 5

We start the numerical process with the known the initial condition, (x0, y0). We then use the
result of equation [12] to take the step from y0 to y1. (The value of x1 is found from equation [9], x1
= x0 + h1.) Once we have a value for x1 and y1. We can then use equation [12] to take the next
step from (x1, y1) to (x2, y2). We continue this process until we reach the desired ending point,
xmax. We now have to address the issue of the computation of faverage.

Euler’s Method

Euler’s method is the simplest algorithm for the numerical solution of ordinary differential
equations. It is never used in practice, but it is helpful to illustrate the general approach used in
solving ODEs numerically.

In Euler’s method, the new value of the independent variable is given by the following equation.

1111),(  iiiiiiii hxxwithyxfhyy [13]

In this approach, we are taking a simple, but crude approximation to faverage. We are assuming
that the value of the derivative at the start of the step, f(xi, yi), is the average value over the entire
step. We use this as a basic tool for analyzing the error in numerical solutions of ordinary
differential equations.

Error in the Solution of ODEs

Two different error terms are defined in the numerical solution of ordinary differential equations.
The first, called the local error, is the error obtained in one step when the starting point is known
exactly. This is usually true only in the first solution step when we are starting from the initial
condition. We are generally more interested in the global error. That is the error after some
number of steps.

We can analyze the error in the Euler method by writing a Taylor series for the exact value of y
after one grid step in terms of the initial value of y. The usual Taylor series for y(x) expressed in
terms of y(a), the value of y at a point where x = a, is shown below.

)-(
!3

1
)-(

!2

1
)()()(3

3

3
2

2

2





ax
dx

yd
ax

dx

yd
ax

dx

dy
ayxy

axaxax

 [14]

We want a Taylor series for the value of y at the end of the first step, y(x0 + h), expressed as a
Taylor series about the initial point, x0. We get this series from equation [14] by setting a = x0 and
x = x0 + h. When we do this the (x – a) terms become (x0 + h – x0) = h. The resulting Taylor
series that we want is shown below.

!3

1

!2

1
)()(3

0

3

3
2

0

2

2

0

00  h
dx

yd
h

dx

yd
h

dx

dy
xyhxy [15]

In the above equation, we use the notation |0 on the derivatives to indicate that they are evaluated
at x = x0. We know that dy/dx has the symbol f for the usual derivative in our initial value
problem. Using this definition, we can rewrite equation [15] and identify the terms that are used in
the Euler Algorithm. The remaining terms are the local truncation error.

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 6

ErrorTruncationorithmAEuler

h
dx

yd
h

dx

yd
xyxhfxyhxy

lg

....
!3

1

!2

1
))(,()()(3

0

3

3
2

0

2

2

0000 
 [16]

We see that the Euler method has a local truncation error that is second order.

)(....
!3

1

!2

1
)(2

0

3

0

3

3
2

0

2

2

001 hOyh
dx

yd
h

dx

yd
yhxye EulerEuler  [17]

We now want to prove the following general result: if the local truncation error for an algorithm is
O(hn), its global truncation error is O(hn-1). To do this we assume that an error like the local
truncation error is produced in each step. Thus, after we take k steps, we have a global error that
is approximately k times the local truncation error. If the local truncation error is O(hn) ≈ Ahn, we
can write the global error, for k steps of size h, as follows.

n

k kAhhkehE )()(1 [18]

If we cut the step size by a factor of r, so that the new step size is h/r, we can rewrite equation
[18] as follows for the new step size.

n

k
r

h
kA

r

h
ke

r

h
E 


























1 [19]

To get to the same value of x with the smaller step size, we have to take kr steps. Thus, the
global error at the same x location is obtained by substituting kr for k in equation [19].

n

kr
r

h
krA

r

h
kre

r

h
E 


























1 [20]

We now examine the ratio of the two global truncation errors, at the same x location, given by
equations [20] and [18].

  1

1

)(






















nn

n

k

kr

rhkA

r

h
krA

hE

r

h
E

 [21]

Equation [20] tells us that when we cut the step size by a factor of r, the error decreases by a
factor of rn-1. This is the result we obtain for an error that has an order n-1. Consequently, we
conclude that a method, which has a local truncation error that is O(hn), has a global truncation
error which is O(hn-1).

An example problem

We will apply Euler’s method to the following simple problem.

 00: 00  xatywithyx
dx

dy
 [22]

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 7

The analytical solution to this equation is shown below. You can verify that this solution satisfies
the differential equation and the initial condition.

 1 xey x
 [23]

Normally we will apply numerical methods to differential equations that we cannot solve
analytically. However, we will use the differential equation in [22] and its analytical solution in
[23], to check the error in our numerical methods.

For purposes of illustration we will pick a constant step size, h = 0.1. We will consider the
problem of selecting step sizes to obtain the accuracy desired by the userl later.

If we compare the specific example in equation [22] with the general problem statement in
equation [8], we see that f(x,y) = x + y in this problem. At the initial condition of x0 = 0 and y0 = 0,
we have f0 = f(x0,y0) = 0 + 0 = 0. So Euler’s method from equation [13] gives us y1 = y0 + hf0 = 0 +
(0.1)(0) = 0. From equation [9] we get x1 = x0 + h = 0 + 0.1 = 0.1.

We next take the step from x1 to x2 = 0.1 + 0.1 = 0.2. At x1, the derivative, f1 = f(x1, y1) = x1 + y1 =
0.1 + 0 = 0.1. The Euler algorithm in equation [13] gives y2 = y1 + hf1 = 0 + (0.1)*(0.1) = 0.01.
The table below shows these first two steps as well as additional steps for the method. The
analytical solution in equation [23] is used to compute the errors.

Table1. Euler method for solution of equation [22]
i xi yi fi yi exact yi error fi exact fi error

0 0 0 0 0 0 0 0

1 0.1 0 0.1 0.005171 0.005171 0.105171 0.005171

2 0.2 0.01 0.21 0.021403 0.011403 0.221403 0.011403

3 0.3 0.031 0.331 0.049859 0.018859 0.349859 0.018859

4 0.4 0.0641 0.4641 0.091825 0.027725 0.491825 0.027725

5 0.5 0.11051 0.61051 0.148721 0.038211 0.648721 0.038211

6 0.6 0.171561 0.771561 0.222119 0.050558 0.822119 0.050558

7 0.7 0.248717 0.948717 0.313753 0.065036 1.013753 0.065036

8 0.8 0.343589 1.143589 0.425541 0.081952 1.225541 0.081952

9 0.9 0.457948 1.357948 0.559603 0.101655 1.459603 0.101655

10 1 0.593742 1.593742 0.718282 0.124539 1.718282 0.124539

Table 1 shows that the error grows with x. This is due to two factors. When we take the initial
steps, we have errors in y. Thus, at a given value of x, our algorithm which is basically computing
a Δy is adding the new Δy to an incorrect value of y. In addition, we are using the incorrect value
of y to compute the derivative, f. Thus the incorrect value of y enters in at two points: (1) as the
value of yi in the equation yi+1 = yi + hfi, and (2) in the computation of fi = f(xi, yi).

Table 1 shows that the Euler method produces a considerable error with the step size, h = 0.1. If
we reduce the step size, we expect to reduce the error. Since the Euler method has a second-
order local truncation error, it should have a first order global truncation error. To verify this, we
examine the errors in the initial step and the final solution for h = 0.1, 0.01, and 0.001 in Table 2.

Table 2 – Euler method errors

Step size Initial step error Final error

h = 0.1 5.17x10-3 1.25 x10-1

h = 0.01 5.02 x10-5 1.35 x10-2

h = 0.001 5.00 x10-7 1.36 x10-3

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 8

The results in this table show that the Euler method has a global error that is first order: cutting
the step size by a factor of ten cuts the error by a factor of ten. Table 2 also shows that the local
truncation error, measured as the error in the initial step, is second order. Cutting the step size
by a factor of ten cuts the error in the first step by a factor of 100.

At this point we can either try to use more steps to reduce our error or try to find a better
algorithm. The latter path is generally the best one to pursue. Some of the simpler algorithms
used in numerical solution of ordinary differential equations, known are Runge-Kutta methods,
are described below.

Runge-Kutta methods

Runge-Kutta methods use two or more evaluations of the derivative over the step from xi to xi+1.
These methods are called self-starting methods because they require no information from
previous data points. However, they do require more work per step than the predictor-corrector
methods listed below, which use information from previous steps.

Runge-Kutta methods come in various orders. The lowest Runge-Kutta methods are second-
order methods, which means that they have a second-order global truncation error. Two of these
methods have individual names. The first of these, known as Heun’s Method, has an initial step
that defines a predicted value of yi+1, called y0

i+1. This value is then used to estimate the
derivative at xi+1. The actual derivative used to get the final value of yi+1 is the average of the two
derivative values.

Huen’s method proceeds in the following steps.

 
2

),(
),(),(

2

),(

0

111

0

10

11

1

1

111

0

1
















iiiii

iiii

i

ii

iiiiiiii

yxfhyy
yxfyxf

h
yy

hxxyxfhyy

 [24]

This follows the general approach outlined in equation [12]. Here we take the average derivative
to be the arithmetic mean of two evaluations at the two end points of the interval. Huen’s method
has a second-order global truncation error.

The other second-order Runge-Kutta method is known as the modified Euler method. This is
similar to the Huen method in that it takes a first step, obtains a new estimate of the derivative,
and then takes the final step. The modified Euler method takes a half step to evaluate y at the
midpoint of the step. This value is called yi+1/2. This value of y, as well was the corresponding
value of x is used to compute the derivative at the midpoint. This derivative value is then used as
the average value of f to compute the new y value. The equations for the modified Euler method
are shown below.

),(

2
),(

2

2
1

2
111

1

2
1

1

2
1























iiiii

i
iiii

i
ii

yxfhyy

h
xxyxf

h
yy

 [25]

The fourth-order Runge-Kutta method is a long-time favorite of numerical analysts for simple
problems, but is not used in modern computer applications. However, it provides a useful
illustration of higher-order methods and their effectiveness. This method uses four calculations of
the derivative over the step: one at each endpoint and two at the midpoint. The weighted results
of these derivative evaluations are then used in the computation of the final y value. The
classical notation for the Runge-Kutta algorithm uses the notation km to denote the product of a

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 9

derivative estimate times the step size. This notation is used below to define the fourth-order
(global truncation error) algorithm for this method.

),(

2
,

2

2
,

2

),(

6

22

3114

21
13

11
12

11

11

4321

1

kyhxfhk

k
y

h
xfhk

k
y

h
xfhk

yxfhk

hxx
kkkk

yy

iiii

i
i

ii

i
i

ii

iii

iiiii










 








 




















 [26]

We can illustrate the application of the fourth-order Runge-Kutta method to the example problem
(and initial conditions) in equation [22]. For this example f(x,y) = x + y. Choosing h = .1 gives the
following steps.

k1 = hf(x0,y0) = h(x0, y0) = (0.1)(0 + 0) = 0

k2 = hf(x0+h/2,y0+k1/2) = h(x0+h/2 + y0+k1/2) = (0.1)(0+0.1/2 + 0+0/2) = 0.005

k3 = hf(x0+h/2,y0+k2/2) = h(x0+h/2 + y0+k2/2) = (0.1)(0+0.1/2 + 0+0.005/2) = 0.00525

k4 = hf(x0+h,y0+k3) = h(x0+h + y0+k3) = (0.1)(0+0.1 + 0+0.00525) = 0.10525

y1 = y0 + (k1 + 2k2 + 2k3 + k4)/6 = 0 + [0 + 2(0.005) + 2(0.00525) + 0.10525]/6 = 0.0051708333

Additional steps would be done in the same manner. Table 3 shows the results of applying the
fourth-order Runge-Kutta algorithm in [26] to the differential equation in [22] for ten steps.

Table 3 – Results from fourth-order Runge-Kutta method for solution of equation [22], h = 0.1

i xi yi k1 k2 k3 k4 Delta y yi exact yi error

0 0 0 0 0.005 0.00525 0.01053 0.00517 0 0

1 0.1 0.00517 0.01052 0.01604 0.01632 0.02215 0.01623 0.00517 8.47x10-8

2 0.2 0.02140 0.02214 0.02825 0.02855 0.03500 0.02846 0.02140 1.87x10-7

3 0.3 0.04986 0.03499 0.04174 0.04207 0.04919 0.04197 0.04986 3.11x10-7

4 0.4 0.09182 0.04918 0.05664 0.05701 0.06488 0.05690 0.09182 4.58x10-7

5 0.5 0.14872 0.06487 0.07312 0.07353 0.08222 0.07340 0.14872 6.32x10-7

6 0.6 0.22212 0.08221 0.09132 0.09178 0.10139 0.09163 0.22212 8.38x10-7

7 0.7 0.31375 0.10138 0.11144 0.11195 0.12257 0.11179 0.31375 1.08x10-7

8 0.8 0.42554 0.12255 0.13368 0.13424 0.14598 0.13406 0.42554 1.37x10-7

9 0.9 0.55960 0.14596 0.15826 0.15887 0.17185 0.15868 0.55960 1.70x10-7

10 1 0.71828 0.17183 0.18542 0.18610 0.20044 0.18588 0.71828 2.08x10-7

Although algorithms like the fourth-order Runge-Kutta look complex to calculate, they are able to
produce accurate solutions with much less computational work. To show this we solve the
following differential equation

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 10

   00   ywithe
dx

dy yx
 [27]

The solution to this differential equation is shown below.

    xxy eeey   00ln [28]

Can you verify that this solution satisfies the differential equation and the boundary conditions?

The error in the numerical solutions of equation [27] by different methods is shown in the log-log
plot below. The first thing to note about this figure is the slope of the log(error) versus log(h) at

the right side of the plot, before the roundoff error enters the calculations. We see that this slope,
which is the order of the error, has the expected values of 1, 2, 2, and 4, respectively for the
Euler, Huen, Modified Euler, and (fourth order) Runge Kutta. The reduction in error by going to a
more complex algorithm is particularly dramatic in these results. Reducing the error from 10-2 to
10-8 for the Euler algorithm requires cutting the step size from h = 0.1 to 0.0000001. This
improvement in error this requires 1,000,000 times as much work for the solution with an error of
10-8. In contrast, keeping the step size the same and switching algorithms from Euler’s method to

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

E
rr

o
r

Step size, h

Error versus Step Size for Simple ODE Solvers

Euler

Huen

Modified
Euler

Runge-
Kutta

01
00
  xxatyywithe

dx

dy yx

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 11

the fourth-order Runge-Kutta reduces the error almost as much without any change in step size.
Of course, the fourth-order Runge-Kutta takes more work per step. A rough evaluation of the
relative computational work of different algorithms is the number of derivative evaluations
required per step. Since the fourth-order Runge-Kutta requires four derivative evaluations per
step, compared to the one evaluation for Euler’s method, the improvement in switching algorithms
provides a million-fold improvement in error with a four-fold increase in computational effort.

Other Runge-Kutta methods are available that include step size control. These methods (known
as Runge-Kutta-Fehlberg and Runge-Kutta-Verner) compute two different estimates of yi+1. The
difference between these two estimates (whose approximations are based on expressions whose
order is different by one) is used as a measure of the error. This error measure is then used to
adjust the step size. In this approach the step size is adjusted continuously. Equation [29] shows
the typical equation that is used for adjusting the step size and the specific example of the
equation that is used for the Runge-Kutta-Fehlberg method. In the general equation, C is a
constant, typically less than one, to provide a conservative decrease in the step size and n is the
overall order of the method.

n

oldnew
errordesired

error
Chh

1









 [29]

The Runge-Kutta-Fehlberg method, which uses two expressions that have a global error of 4 and
5, uses the following set of k.


















 








 








 








 



40
11

4104
1859

2565
3544

2
27

8
,

2

4104
845

513
3680

8
216

432
,

2197
7296

2197
7200

2197
1932

,
13

12

32
9

32
3

,
8

3

4
,

4

),(

543
2

1
6

43
2

1
5

321
4

21
3

1
2

1

kkk
k

k
y

h
xhfk

kk
k

k
yhxhfk

kkk
yhxhfk

kk
yhxhfk

k
yhxhfk

yxhfk

ii

ii

ii

ii

ii

ii

 [30]

With these k values the following expression is used to compute yn+1.

 






   55
7

50
9

56430
28561

12825
6656

135
16 65431

11

kkkkk
yy nn [31]

The k values are also used to compute an estimate of the error (as an absolute value) in the
algorithm.

55

2
5075240

2197
4275

128
60

65431 kkkkk
Error  [32]

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 12

The value of yn+1 is used as the value of the dependent variable at the end of the step. The error
estimate is used to compute a new step size, based on the desired error (also an absolute value).
Note this is an absolute error with the same dimensions as the dependent variable y, not a
relative error

4

1

84.0 









Error

ErrorDesired
hhnew [33]

The basic MATLAB ODE solver, ODE45, uses a similar approach with a combination of a fourth-
order and fifth-order Runge-Kutta algorithm known as the Dormand-Prince pair.1

Multistep Methods

We have previously seen various methods, especially Runge-Kutta methods, which can obtain
accurate solutions for the numerical integration of ordinary differential equations. However, there
methods require a large amount of work per step. Several derivative evaluations are required at
each step and this can increase the work if the derivatives are complex. The large number of
derivative evaluations per step is required in these methods to obtain a high order truncation
error. These methods have the advantage of being self-starting; the integration step from xi to
xi+1 does not require any information from grid points before x – xi.

An alternative approach is to use information from past integration steps to derive a higher order
expression for integration the differential equation. An obvious disadvantage of this approach is
that the resulting methods will not be self-starting. Consequently, it will be necessary to provide
some other method, such as a Runge-Kutta method, to start the integration with a multistep
method.

Multistep methods are usually predictor-corrector methods. We have already seen an example of
a predictor-corrector method in Huen’s method, which was a modification of the Euler method. In
that method we used a predicted value of yi+1 to compute an estimate of the derivative f(xi+1, yi+1).
We then used that estimated derivative to compute a final (corrected) value of yi+1. Multistep
predictor-corrector methods proceed in a similar way, but they use information from previous
steps to get higher order expressions for more accurate results. In addition, the difference
between the predictor and the corrector can be used as an estimate of the error for step-size
control.

A common example of predictor-corrector methods is the fourth-order Adams predictor-corrector
method. The method proceeds from the current value yi at xi to obtain yi+1 at xi+1 in three steps.
First, the most recent values of xi and yi are used to get a fresh estimate of the derivative, fi.

),(iii yxff  [34]

Next, this derivative value and the values of the derivatives at three previous steps are used to
compute a predicted value of y at xi+1.

  iiiii

p

i ffff
h

yy 5559379
24

123

)(

1   [35]

1 https://www.mathworks.com/help/matlab/ref/ode45.html?requestedDomain=www.mathworks.com

https://www.mathworks.com/help/matlab/ref/ode45.html?requestedDomain=www.mathworks.com

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 13

The derivative at xi+1, computed with this predicted yi+1 value, is then used to obtain the final
(corrected) value of yi+1 by the following equation. Note the notation for the estimated derivative
at xi+1 is

  ),(9195
24

)(

1112

)(

1

p

iiiiii

c

i yxffff
h

yy   [36]

The difference between the predictor and corrector is used to provide an estimate of the
truncation error in the new calculation. The error estimate is given by the following equation.

  )(

111
270

19 p

i

c

ii yye   [37]

This error estimate may be used for step size control as described below. Note that the
sequence for the calculation starts, in equation [34], with a fresh evaluation of fi+1 = f(xi+1,yi+1).
The derivative at xi+1, used to calculate the corrected value in equation [36], is not used to start
the new step in the calculation.

Since multistep methods are not self-starting, step-size adjustments for these methods are
usually limited to halving or doubling the step size. When the step size is halved or doubled, it is
necessary to obtain the required values of fi-1, fi-2, and f—3 with the new step size. To see how this
is done we first show the grid used for the step from i to i+1 using the existing step size. Here the
black points (●) represent grid nodes, xi and the hollow points (o) represent midpoints between
the grid nodes used in the calculation.

 i-5 i-4 i-3 i-2 i-1 i i+1
--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------●

If the error estimate found in equation [37] is too large, the value of yi+1 is not accepted and the
step size is halved. The point i remains the same, but the new point i+1 is now midway between
xi and the previous value of xi+1. The grid below shows the previous grid indexing on top and the
new grid indexing, after the step size is halved, below the grid.

Old i-5 i-4 i-3 i-2 i-3/2 i-1 1-1/2 i i+1
--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------●
New i-3 i-2 i-1 i i+1

The values of fi-3 and fi-1 (in the new notation) that are required in equations [35] and [36] have to
be found by interpolation. The following interpolations are consistent with the fourth order
accuracy of the method. In both equations [38] and [39], the old grid numbering is used

  iiiiji
ffffff 3514070285

128

1
1234

2
1  

 [38]

  iiiiji
ffffff   1234

2
3 2454163

64

1
 [39]

When the step size is doubled, the values of xi+1 and yi+1 are accepted and this point is shifted to
the current point xi, yi from which we start our new integration step. The new grid indexing, after
doubling the step size, is shown below the grid in the figure below.

),()(

11

p

ii yxf 

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 14

Old i-5 i-4 i-3 i-2 i-1 i i+1
--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------●--------o--------●
New i-3 i-2 i-1 i

In order to be able to ready for potential doubling of the step size, it is necessary to retain values
of fi-4 and fi-5, even though these values are not required in the algorithm.

Systems of equations

As indicated in the introduction to these notes, the solution of higher order equations is done by
converting the higher order ordinary differential equation to a system of first-order differential
equations. Since we have developed algorithms for solving first order differential equations, we
have to see how we can extend these algorithms to treat systems of equations. This extension is
straightforward. The main idea is that we have to treat all the equations at each step of the
algorithm.

We consider a general system of differential equations where ym represents the mth dependent
variable. We thus have to solve the following system of equations.

0,01

0,30313

3

0,20212
2

0,10111
1

)(),,,(

)(),,,(

)(),,,(

)(),,,(

NNNN

N

N

N

N

yxyyyxf
dx

dy

yxyyyxf
dx

dy

yxyyyxf
dx

dy

yxyyyxf
dx

dy



















 [40]

Here fm denotes an expression that we can evaluate to find the value for dym/dx. In general, fm
can depend on x and all the dependent variables, ym. Equation [40] has the important idea that
each dependent variable has an initial condition, that is a known value, ym,0, at x = x0.

The general differential equation in [40] can be written as follows.

 Nmyxyyyxf
dx

dy
mmNm

m ,,1)(),,,(0,01   [41]

An alternative expression uses the vector notation, y to denote dependent variables in the system
of equations

 00)(),(yyyf
y

 xx
dx

d
 [42]

Let’s use the fourth-order Runge-Kutta algorithm as an example solution of a system of
equations. In this case, we can define the algorithm as follows.

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 15

),,,,(

)2/,,2/,2/,2/(

)2/,,2/,2/,2/(

),,,,(

,,1
6

*2*2

,3,2,3,21,3.1,4

,2,2,2,21,2.1,3

,1,2,1,21,1.1,2

,,2.1,1

,4,3,2,1

,1,

NiNiiimm

NiNiiimm

NiNiiimm

iNiiimm

mmmm

imim

kykykyhxhfk

kykykyhxhfk

kykykyhxhfk

yyyxhfk

Nm
kkkk

yy
























 [43]

In equation [43] all values of k1,m must be computed before any values of k2,m may be computed.
Similarly, all k2,m must be computed before any k3,m are computed. The sample Visual Basic code
shown below applies the fourth-order Runge-Kutta method to a system of equations. This code
uses variables like k1(m) to represent the increments like k1 for the mth variable in the fourth-order
Runge-Kutta algorithm. The VBA code below shows how each step of the algorithm is applied to
each equation before taking the next step. The routine fsub, which is used to compute all the
derivatives at one time, is discussed further below.

For i = 1 to Nsteps ‘Do all steps from x0 to xmax
 Call fsub(x, y, f) ‘Compute all derivatives
 For m = 1 to Neqns ‘Loop over all equations
 K1(m) = h * f(m) ‘Compute all k1 values
 ‘Compute intermediate y values for calling fsub
 YInt(m) = y(m) + k1(m) / 2 ‘
 Next m
 ‘Repeat process in previous loop over all equations
 ‘to compute k2, k3, and k4 arrays
 Call fsub(x+h/2, YInt, f)
 For m = 1 to Neqns
 K2(m) = f * f(m)
 YInt(m) = y(m) + k2(m) / 2
 Next m
 Call fsub(x+h/2, YInt, f)
 For m = 1 to Neqns
 K3(m) = f * f(m)
 YInt (m) = y(m) + k3(m)
 Next m
 Call fsub(x+h, YInt, f)
 For m = 1 to Neqns
 y(m) = y(m) + (k1(m) + 2 * k2(m) +2 * k3(m) _
 + h * f(m)) / 6
 Next m
 X = x + h
Next i ‘End of loop over all steps from x0 to xmax

In this code, the subroutine fsub is used to compute the derivative of all equations for input values
of x and the y array. The values of the derivatives are returned in the f array. For example,
consider the system of three differential equations shown below.

1)0(3

1)0(2

1)0(

321

3

2

2

1
2

1

2

321
1







yyy
dx

dy

yy
dx

dy

yeyyy
dx

dy x

 [44]

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 16

The VBA fsub routine shown below calculates the necessary derivatives for this system of
equations.

Sub fsub(x as Double, y() as Double, f() as Double)
 f(1) = -y(1) + Sqr(y(2)) + y(3) * Exp(2 * x)

f(2) = -2 * y(1)^2
 f(3) = -3 * y(1) * y(2)
End Sub

The same idea – that each step of the algorithm must be applied to each equation – is also true
for multistep methods, like predictor-corrector methods. In predictor-corrector methods, a system
of equations is solved by first applying the predictor to each equation. Then the derivative of
each differential equation is evaluated at the end of the current step based on the predictor
values for all variables. Finally, the corrector is applied to each equation to get the final results for
the step.

Implicit methods

The methods we have discussed so far are called explicit methods. In these methods, the values
at the new step of the independent variable are found in terms of values at previous steps. An
alternative approach uses implicit methods where the values at the end of the new step are used
as part of the algorithm for finding the results at the end of the step. This is best illustrated by the
example of the trapezoid method. In this method, we start with the same Taylor series that we
used for developing the Euler method.

 𝑦𝑛+1 = 𝑦𝑛 + 𝑓𝑛ℎ +
ℎ2𝑦𝑛

′′

2
+ 𝑂(ℎ3) [45]

We next write a similar Taylor series giving the value of yn as an expansion about yn+1.

 𝑦𝑛 = 𝑦𝑛+1 − 𝑓𝑛+1ℎ +
ℎ2𝑦𝑛+1

′′

2
+ 𝑂(ℎ3) [46]

Subtracting equation [46] from equation [45] gives the following result.

 𝑦𝑛+1 − 𝑦𝑛 = 𝑦𝑛 − 𝑦𝑛+1 + 𝑓𝑛ℎ + 𝑓𝑛+1ℎ +
ℎ2(𝑦𝑛

′′−𝑦𝑛+1
′′)

2
+ 𝑂(ℎ3) [47]

We can combine the yn and yn+1 terms and introduce the Taylor series 𝑦𝑛+1
′′

= 𝑦𝑛
′′ + ℎ𝑦𝑛

′′′ +
𝑂(ℎ2) into equation [47]; when we do this all the higher-order terms are of order h3 or higher

which we can represent as O(h3).

𝑦𝑛+1 = 𝑦𝑛 +

𝑓𝑛ℎ+𝑓𝑛+1ℎ
2

+
ℎ

2
{𝑦𝑛

′′−[𝑦𝑛
′′+ℎ𝑦𝑛

′′′+𝑂(ℎ
2

)]}

4
+ 𝑂 (ℎ

3
)

= 𝑦𝑛 +
(𝑓𝑛+𝑓𝑛+1)ℎ

2
−

ℎ
2

[ℎ𝑦𝑛
′′′+𝑂(ℎ

2
)]

4
+ 𝑂 (ℎ

3
) = 𝑦𝑛 +

(𝑓𝑛+𝑓𝑛+1)ℎ

2
+ 𝑂 (ℎ

3
)

 [48]

The problem with this final result is that we have the value of the derivative expression, f, at the
new step, which we do not know yet, in our equation. We can estimate this derivative from a
multivariate Taylor series for the derivative, f.

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 17

 𝑓𝑛+1 = 𝑓𝑛 + (
𝜕𝑓

𝜕𝑥
)

𝑛
ℎ + (

𝜕𝑓

𝜕𝑦
)

𝑛
(𝑦𝑛+1 − 𝑦𝑛) + 𝑂(ℎ2) [49]

Substituting this expression for fn+1 into the final result in equation [48] gives

 𝑦𝑛+1 = 𝑦𝑛 +
𝑓𝑛ℎ

2
+ ℎ [𝑓𝑛 + (

𝜕𝑓

𝜕𝑥
)

𝑛
ℎ + (

𝜕𝑓

𝜕𝑦
)

𝑛
(𝑦𝑛+1 − 𝑦𝑛) + 𝑂(ℎ2)] [50]

Solving this equation for yn+1 gives the following result for the Trapezoid method.

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ𝑓𝑛+(

𝜕𝑓

𝜕𝑥
)

𝑛

ℎ2

2

1−
ℎ

2
(

𝜕𝑓

𝜕𝑦
)

𝑛

+ 𝑂(ℎ3) [51]

We can apply the trapezoid method to a simple example, whose analytical solution we know,
dy/dx = -ay, with y = y0 at x = 0. Here f = -ay so that ∂f/∂x = 0 and ∂f/∂y = -a. For this example,
the general equation in [51] becomes

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ𝑓𝑛+(

𝜕𝑓

𝜕𝑥
)

𝑛

ℎ2

2

1−
ℎ

2
(

𝜕𝑓

𝜕𝑦
)

𝑛

= 𝑦𝑛 +
−ℎ𝑎𝑦𝑛+0

1−
ℎ

2
(−𝑎)

=
𝑦𝑛(1+

ℎ𝑎

2
)−ℎ𝑎𝑦𝑛

1+
ℎ𝑎

2

 [52]

A final rearrangement gives the following result for this example.

 𝑦𝑛+1 = 𝑦𝑛
2−ℎ𝑎

2+ℎ𝑎
 [53]

We will use this result below when we consider the topic of stability.

Stability of numerical solutions of ODEs

A numerical method is said to be stable if the error does not grow without bound. A method for
which this is true regardless of the problem conditions is said to be absolutely stable. A method
for which this is only true under certain conditions is said to be conditionally stable. We know that
the solution of the differential equation dy/dx = ay is y = yoeat. This solution grows without bound
as t increases unless a is negative. The stability of numerical methods is usually tested by being
applied to the differential equation dy/dx = -ay, where a is a positive constant. The solution to this
equation is y = yoe-at. What do we get if we try to solve this equation using Euler’s method, yn+1 =
yn + hfn. In this case we have fn = -ayn so yn+1 = yn + h(-ayn) = yn(1 - ah). We can solve this
equation for different values of ah and obtain the results shown titled “Stability of the Euler
Method on the next page.

The solutions for ah = 0.5 is close to the exact solution, but solutions for ah = 1 and greater and
not physically realistic. The solution for ah = 2 is a series of straight lines, but the solutions
remains bounded. It produces values of either y = -1 (at x = 2, 6, 10, …) or y = 1 (at x = 4, 8, 12,
…). However, this solution is the limit of stability. For ah = 2, the solution, though grossly
inaccurate, does not grow without bound. Beyond ah = 2 (as seen for ah = 2.5 in this plot) the
solution grows without bound.

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 18

In our discussion of the trapezoid method we applied that algorithm to the test problem for
stability just discussed: dy/dx = -ay. Equation [53] showed that yn+1/yn = (2 – ha)/(2 + ha) when
the trapezoid method was applied to dy/dz = -ay. The results of this numerical solution for
different values of ah are shown in the second figure on the next page titled “Trapezoid Method
Stability.”

The “Trapezoid Method Stability” figure shows that the trapezoid method is stable, if not accurate,
for any value of ah. Remember that stability only means that the solution will not grow without
bound. On the scale of this plot, the solutions for ah = 0.5 and ah = 1.0 appear to be almost the
same as the exact solution. Larger values of ah provide solutions where each individual step is
so large that the solutions are a sequence of straight lines; for smaller values of ah, the solutions
are also a sequence of straight lines, but each line in the sequence is so short that the solutions
appear curved. Although, the solutions for larger values of ah are clearly incorrect, they are not
unstable. They do not grow without bound. Hence, we consider the trapezoid method to be
absolutely stable. However, stability, by itself, is not sufficient. We must also have accuracy. In
fact, you might ask why do we even care about stability; isn’t accuracy the only thing we have to
be concerned about? The answer to this question comes in the section below dealing with stiff
systems of equations.

Boundary-value problems

The numerical solutions of differential equations we have considered so far deal with the initial-
value problem. For such problems, we have sufficient initial conditions at a single starting point to
allow us to solve the numerical problem. However, it is also possible to have boundary conditions
where that specify the values of the solution at two different points. A general second-order
differential equation, d2y/dx2 = g(x, y, dy/dx), could have set conditions such as y = a at x = 0 and

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8

y
/y

0

ax

Stability of Euler Method

Exact

ah = .5

ah = 1

ah = 1.5

ah = 2

ah = 2.5

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 19

y = b at x = L. It is even possible to have more complex boundary conditions such as a dy/dx +
by = c at any specified value of the independent variable, x. There are two basic approaches to
the solution of boundary-value problems: shoot-and-try and finite differences. We will consider
each of these in turn.

To discuss the shoot-and-try method, we consider the solution of the following problem:

 Lxatbyandxataywith
dx

dy
yxg

dx

yd









 0:,,

2

2

 [54]

We can convert this equation into a pair of first-order equations as we did for initial-value
problems by defining a new variable z = dy/dx, and getting equations for dy/dx and dz/dx.

   Lxatbyandxataywithzyxg
dx

dz
andz

dx

dy
 0:,, [55]

Here we have the problem that we do not have a value of the first derivative, z, at x = 0. We also
have no ready way to use the boundary condition at x = L to start the problem. The shoot-and-try
method is a trial-and-error method in which we guess a value of the first derivative at x = 0, y’(0) =
z(0), then use any of the methods we have discussed for solving initial value problems to
integrate the equations from x = 0 to x = L. Once we have completed this integration, we can
compare the value we have just found for y at x = L, to the specified boundary condition, y(L).
We can use the difference between these two values to adjust our initial guess for the first
derivative at x = 0. We can continue repeating this process until the difference between the
computed and specified value of y at x = L is less than some specified maximum error.

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8

y
/y

0

ax

Trapezoid Method Stability

Exact

ah = .5

ah=1

ah = 1.5

ah = 2

ah = 2.5

ah=3

ah=4

y' = -ay for a > 0

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 20

To do this process, we define the difference between the computed value at x = L, denoted as
y(m)(L) as the result for the mth trial, and the specified boundary condition, y(L), as the error for
trial m, E(m).

 𝐸(𝑚) = 𝑦(𝑚)(𝐿) − 𝑦(𝐿) [56]

We can define an iterative process that assumes a linear relationship between two trial values of
the initial slope, z(m)(0) and z(m-1)(0), and the corresponding errors in the boundary values at z = L,
E(m)

 and E(m-1); we can use this linear relationship to find the value of the next guess for the initial
slope z(m+1)(0).

 𝑧(𝑚+1)(0) = 𝑧(𝑚)(0) +
𝑧(𝑚)(0)−𝑧(𝑚−1)(0)

𝐸(𝑚)−𝐸(𝑚−1) (𝐸(𝑚+1) − 𝐸(𝑚)) [57]

We want the error on the next iteration, E(m+1), to be zero. Setting E(m+1) equal to zero in [57]
gives the following iteration equation for the new value of the initial slope, z(m+1)(0).

 𝑧(𝑚+1)(0) = 𝑧(𝑚)(0) − 𝐸(𝑚) 𝑧(𝑚)(0)−𝑧(𝑚−1)(0)

𝐸(𝑚)−𝐸(𝑚−1)
 [58]

Because this equation requires two previous trials we have to use other equations, like those in
equation [59], to get the value of the initial slope for the first and second iterations.

 𝑧(1)(0) =
𝑦(𝐿)−𝑦(0)

𝐿
 𝑧(2)(0) =

2𝑦(𝐿)−𝑦(1)(𝐿)−𝑦(0)

𝐿
 [59]

As an example, consider the solution of the following problem.

 1001:0)sin(16
2

2

 Lxatyandxatywithy
dx

yd
 [60]

To solve this, we first have to create a system of two first-order equations

)sin(16 y
dx

dz
andz

dx

dy
 [61]

We know that y(0) = 1 and we can use the first equation in [59] to get z(1) = (0 – 1)/1 = -1. With
this initial guess value of the slope at x = 0 a fourth-order Runge-Kutta calculation with h = 0.005
gives y(1)(L) = -3.8870. Thus the error in this first calculation is E(1) = y(1)(L) - y(L) = -3.8870 – 0 =
-3.8870. We can use the second part of equation [59] to get the next value of the slope at x = 0.

 𝑧(2)(0) =
2𝑦(𝐿)−𝑦(1)(𝐿)−𝑦(0)

𝐿
=

2(0)−(−3.8870)−1

1
= 2.8870 [62]

A second Runge-Kutta calculation gives y(2)(L) = 4.8974 with a corresponding error of 4.8974 – 0
= 4.8974; we can apply equation [58] to get the new value of z(0) for the next iteration.

𝑧(3)(0) = 𝑧(2)(0) − 𝐸(𝑚) 𝑧(2)(0)−𝑧(1)(0)

𝐸(2)−𝐸(1) = 2.8870 −

4.8974
2.8870−(−1)

4.8894−(−3.8870)
= 0.71993

 [63]

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 21

The results after ten iterations of the shoot-and-try give a value of the variable y = 1.23x10-8 at x =
0. This is taken as close enough to the stated boundary condition of y = 0 at x = 1. A plot of the
results of each iteration of the fourth-order Runge-Kutta is shown in the figure below. We see
that the iterations give solutions on either side of the eventual final solution labeled Series10 in
the figure legend.

The finite-difference method is an alternative to the shoot-and-try method. In the finite
difference method, one uses finite-difference expressions for derivatives to develop set of
simultaneous algebraic equations that can be solved for values of the dependent variables in the
differential equation at specific points on a grid. An example of such a grid is shown below.

●-----●--------●-------------●~ ~●-------●---●
 x0 x1 x2 x3 xN-2 xN-1 xN

The grid shown here is a non-uniform grid where the spacing between nodes is not the same.
Such grids are used when there is an expected strong variation in certain areas of the grid and
more nodes are placed in those strong-variation areas to get better resolution there. Uniform
grids have a higher order error, and are generally preferred it there are not specific reason to do
otherwise. Regardless of whether or not the grid is uniform, the basic approach is the same. A
finite-difference expression for each derivative in the differential equation is used to convert the
differential equation into a finite-difference equation at each node in the grid. The set of finite-
difference equations is then solved to find the values at the nodes. It may also be necessary to
use finite-difference expressions for the boundary conditions if they involve gradients.

The use of finite difference equations is best shown by example. Consider the following equation
for one-dimensional heat transfer with a heat source that is proportional to the temperature, T,
with a proportionality constant a2.

 02

2

2

 Ta
dx

Td
 [64]

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 22

We create a finite difference equivalent for this differential equation, at the location x = xi, as

shown below. In this equation, h is the step size, x = (xN – x0)/N.

   0
2 22

2

11 
 

i
iii TahO

h

TTT
 [65]

The O(h2) notation lets us know that the finite difference expression for the derivative is second-
order accurate; we will drop this information in obtaining an equation to solve for the values of
temperatures at all the nodes. Dropping this notation, multiplying by h2, and rearranging terms
gives us the following finite difference equation.

   02 22

11   iii TahTT [66]

Before discussing the solution of this system of algebraic equations we have to discuss the
boundary conditions. In general, there are three possible kinds of boundary conditions. The
first (and easiest) are: fixed value or Dirichlet boundary conditions; these specify values of the
dependent variable at the boundary. They simply say that the values at the boundaries of the
grid, T = T0 and T = TN are known. The second set, called Neumann or gradient boundary
conditions specify the gradient of the dependent variable at the boundary. In heat transfer the
gradient of temperature at the boundary is used to specify a boundary heat flux. The third
boundary condition, sometimes called a mixed boundary specifies a relation between the
dependent variable and its gradient at the boundary.

All three types of boundary conditions can be expressed by the following equation:

 cbT
dx

dT
a  [67]

In this general equation, the case of fixed temperature is determined by the following equations,
using the specified temperatures at the left and right boundary, respectively.

 rightNleft TcTTbaTcTTba  ,1,0,,1,0 0 [68]

In case of a specified gradient the following equations are used in the case of heat transfer,
where k is the thermal conductivity and qleft and qright are the specified heat fluxes. Note that
second-order directional derivatives are used to keep the boundary conditions with the same
(second-order) accuracy as the finite-difference equations.

h

TTT

k

q

h

TTT

k

q
NNNrightleft

2

34

2

34 12012 



  [69]

The third kind of boundary condition would be for a specified convective heat flux.

   

h

TTT

k

TTh

h

TTT

k

TTh
NNNNrightleft

2

34

2

34 120120 








 [70]

In these boundary conditions, the values of hleft, hright, and T∞ are specified constants. (The
values of T∞ could be different on the two sides.)

To talk about solving the system of finite-difference equations, we will limit ourselves to fixed
boundary conditions. We will assume that we are given Tleft = TA = T0 and Tright = TB = TN. We will

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 23

rewrite our finite-difference equations from equation [66] using the shorthand expression  = h2a2,
as shown below.

     0202 11

22

11   iiiiii TTTTahTT  [71]

With fixed boundary conditions, T0 = TA and TB = TN, we will have a set of linear algebraic
equations, written as a matrix equation in equation [7e], below, to solve. The solution is done
using N = 10, TA = Tleft = 0, TB =Tright = 1, a = 2, and L = 1.

For this differential equation, the exact solution is given by the following equation.

 [72]

We see that this set of equations forms a tridiagonal matrix where all terms that are not on the
principal diagonal or the diagonals immediately above or below the principal diagonal are all
zeros.

 [73]

This is a particularly easy set of equations to solve. The process for doing this is discussed in the

appendix. The solutions are shown in the table below for a = 2, L = 1, and  = aL = 2.

We see that the errors are zero, as expected, at the initial and final nodes where the boundary
conditions are specified. We also see that the closer we are to these boundaries, the smaller are
the errors. The largest errors are at the nodes near the center where we are furthest from the
boundaries. It is useful to have a single measure of the overall error. If we regard the error
values as the components of a vector, we can use a vector norm as a measure of the overall
error. The simplest error measure is the zero norm, which is the maximum error. For this

Results of Finite-Difference Calculation

i xi Ti Exact Ti Ti Error

0 0.0 0 0 0
1 0.1 0.21918 0.21849 0.00070
2 0.2 0.42960 0.42826 0.00134
3 0.3 0.62284 0.62097 0.00187
4 0.4 0.79115 0.78891 0.00224
5 0.5 0.92783 0.92541 0.00242
6 0.6 1.02739 1.02501 0.00238
7 0.7 1.08585 1.08375 0.00211
8 0.8 1.10088 1.09928 0.00160
9 0.9 1.07188 1.07099 0.00089
10 1.0 1.0 0 0









































































































B

A

N

N

T

T

T

T

T

T

T

0

0

0

210000

120

100

001210

000121

000012

1

2

3

2

1

































)cos()sin(
)sin(

)cos(
axTax

aL

aLTT
T A

AB 




Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 24

calculation that value is 0.00242. A more common measure is the root-mean-square (RMS) error
defined by the following equation.

 [74]

We can also compute the temperature gradients at the boundaries from the numerical solution
and compare them to the gradients from the exact solution.

 [75]

 [76]

For the results in the table, with a step size h = 0.1, the maximum error shown in the table is
2.42x10-3 and the calculated RMS error is 1.83x10-3. The calculation was repeated with h = .01
resulting in a maximum error of 2.41x10-5 and an RMS error of 1,73x10-5. We see that
decreasing the step size by a factor of 10 reduced the two different error calculations by a factor
of 100. This is consistent with the original second-order finite-difference expressions that were
used to model the differential equation.

The heat flux at the boundaries can be computed by finite-difference expressions. The second
order expressions for these calculations are shown below.

 [77]

The results of these heat-flux calculations (expressed as q/k because k was not specified) are
shown in the table below for both sets of calculations.

We see that the exact value of q/k does not
change as we change the grid size. Because
the differential equation has a heat source term,
the –a2T term implies a heat gain in the region,
regardless of the value of a – there is a heat
loss on both sides of the one-dimensional
region in the calculations. The heat loss at x =
0 is larger in magnitude than the heat loss at x
= 1 because of the larger temperature gradient

at that point. We see that the numerical result for the gradient calculation also displays a second
order error because the error decreases by a factor of 100 when the step size decreases by a
factor of 10.

This simple example of a finite-difference calculation is meant to illustrate the process that is
used. More accurate difference methods can be used and more complex boundary conditions
can be considered.

Stiff systems of equations

A stiff system of differential equations is a system of differential equations whose solutions have
widely different exponential terms. The name arose from structures calculations during the 1940s

x qexact/k h q/k Error

0 -2.1995 .1 -2.2357 .03618

0 -2.1995 .01 -2.1999 .00036

1 .9153 .1 .9332 .01786

1 .9153 .01 .9155 .00021

)sin(

)cos(

0

0
aL

aLTT
ka

dx

dT
kq AB

x

x








 
)sin(

)cos(

aL

aLTTka

dx

dT
kq BA

Lx

Lx








h

TTT
k

dx

dT
kq

xx 2

43 210
0

0




 h

TTT
k

dx

dT
kq NNN

xx

N

N
2

43 21 










N

i

inumericalexact

N

i

iRMS
TT

NN 1

2

1

2)(
11



Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 25

where this phenomenon was first observed. To see how this can occur, consider the following
differential equation.

 0200'101:98012 02

2

  tatyandywithey
dt

dy

dt

yd t
 [78]

You should be able to show that the following equation satisfies the differential equation and the
initial conditions.

tt eey 100100   [79]

In the previous section on stability we saw that differential equations whose solutions had
exponential terms like exp(-at) required low values of ah for stability in numerical calculations.
How does this work in a solution like that in equation [79] where there are two exponential terms
in the solution? After some thought you should realize that if there are two exponential terms, the
one with the largest value of a will determine the stability. A numerical solution of equation [78],
which has the analytical solution shown in equation [79], it is the value of a = 100 that will set the
stability limit on ah, not the value of a = 1. However, the contribution of the exp(-100t) term to the
solution will soon fade to zero. [At t = 0.1, the exp(-100t) term equals 4.54x10-5, and the 100exp(-
t) term equals 90.5; at t = 1, the exp(-100t) term equals 3.72x10-44 and the 100exp(-t) term equals
36.8.] In the numerical solution to a problem with behavior like this, stability would require a very
small step size to keep the exp(-100t) term stable, but after a small initial time, this term would not
contribute to the overall solution. So here is the problem of stiff systems: parts of the solution,
which are exponential terms with large negative exponents, will rapidly go to zero. In principle,
these could be ignored and still provide an accurate solution, but, in practice, the demands of
stability force these terms to control the step size to a very small value. In other words, the
insignificant terms in the solution are governing the required step size for stability!

Gear’s Method

An early procedure for solution of stiff equations was due to C. W. Gear. This method uses a
detailed computer code which adjusts the order of the algorithm and the step size based on a test
of the results during the calculation. It is an implicit method. The basic formula for the method is
given by the following equation.

 [80]

The coefficients in this equation depend on the order, k, of the equation that is being used. This
order is adjusted during the calculation to give more accurate solutions in regions where the
variation is steeper. The coefficients used in this equation are shown in the table on the next
page.

The presence of the derivative at the end of the time step, fn+1, in equation [80] makes the Gear
algorithm an implicit one. Each step has to be solved iteratively to get the derivative term to
match the new value(s) of yn+1.














 





k

j

jnjnn yhfy
0

11 

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 26

Appendix – Solving Tridiagonal Matrix Equations

A general system of tridiagonal matrix equations may be written in the following format.

 Ai xi-1 + Bi xi + Ci xi-1 = Di [A-1]

This provides not only a representation of the general tridiagonal equation; it also suggests a data
structure for storing the array on a computer. Each diagonal of the matrix is stored as a one-
dimensional array. For the most general solution of 100 simultaneous equations, we would have
1002 = 10,000 coefficients and 100 right-hand-side terms. In the tridiagonal matrix formulation
with 100 unknowns, we would have only 400 nonzero terms considering both the coefficients and
the right-hand side terms.

In order to maintain the tridiagonal structure, the first and last equation in the set will have only
two terms. These equations may be written as shown below. These equations show that neither
A0 nor CN are defined.

 B0 x0 + C0 x1 = D0 [A-2]

 AN xN-1 + BN xN = DN [A-3]

The set of equations represented by equation [73] (on page 23) is particularly simple. In that set

of equations, all Ai = Ci = 1; all Bi = (-2 + ), and all Di = 0, except for the first and last values. In
the general form that we are solving here the coefficients in one equation may all be different, and
a given coefficient, say A, may have different values in different equations. To start the solution
process, we solve equation [A-2] for x0 in terms of x1 as follows.

 x0 = [-C0 / B0] x1 + [D0 / B0] [A-4]

The solution to the tridiagonal matrix set of equations, known as the Thomas algorithm, seeks to
find an equation like [A-4] for each other unknown in the set. The general equation that we are
seeking will find the value of xi in terms of xi+1 in the general form shown below.

 xi = Ei xi+1 + Fi [A-5]

By comparing equations [A-4] and [A-5], we see that we already know E0 = -C0 / B0 and F0 =
D0 / B0. To get equations for subsequent values of Ei and Fi, we rewrite equation [A-5] to be
solved for xi-1 = Ei-1 xi + Fi-1, and substitute this into the general equation, [A-1].

 Ai [Ei-1 xi + Fi-1] + Bi xi + Ci xi-1 = Di [A-6]

We can rearrange this equation to solve for xi.

Coefficients in Gear Equation for Different Orders, k

k        

1 1 1 1

2 1/3 2 4 -1

3 1/11 6 18 -9 2

4 1/25 12 48 -36 16 -3

5 1/137 60 300 -300 200 -75 12

6 1/147 60 360 -450 400 -225 72 -10

Numerical solution of ordinary differential equations L. S. Caretto, November 9, 2017 Page 27

1

1
1

1 




 









iii

iii
i

iii

i
i

EAB

FAD
x

EAB

C
x [A-7]

By comparing equations [A-5] and [A-6], we see that the general expressions for Ei and Fi are
given in terms of the already know equations coefficients, Ai, Bi, Ci; and Di, and previously
computed values of E and F.

1

1

1 



 









iii

iii
i

iii

i
i

EAB

FAD
Fand

EAB

C
E [A-8]

We have to get an equation for the final point, xN. We will not calculate xN, until we have
completed the process of computing the values of E and F up through equation N-1. At that
point, we will know the coefficients the following equation:

 xN-1 = EN-1 xN + FN-1 [A-9]

We will also know the coefficients AN, BN, and DN in the original matrix equation, given by [A-3].
We can solve equations [A-3] and [A-9] simultaneously for xN.

1

1










NNN

NNN
N

EAB

FAD
x [A-10]

We see that the right-hand side of this equation is the same as the right-hand side of the equation
for FN in [A-8].

The Thomas algorithm is a simple one to implement in a computer program. The code below
provides a C++ function to implement the calculations shown in this appendix. This function uses
separate arrays for Ei, Fi, and xi. However, it is possible to save computer storage by overwriting
the input arrays with the results for Ei, Fi, and xi. This is possible because the input data are not
required for the TDMA algorithm after their initial use in the computation of Ei and Fi.

void tdma(double *a, double *b, double *c, double *d,
 double *x, int N)
{
 // Generic subroutine to solve a set of simultaneous linear equations that
 // form a tridiagonal matrix. The general form of the equations to be solved is
 // a[i] * x[i-1] + b[i] * x[i] + c[i] * x[i+1] = d[i]
 // The index, i, runs from 0 to N. The values of a[0] and c[N] are not defined
 // The user must define the one-dimensional arrays a, b, c, and d.
 // The user passes these arrays and a value for N to this function.
 // The function returns the resulting values of x to the user.
 // All arrays are declared as pointers in the calling program to allow
 // allocation of the arrays at run time.

 double *e = new double[N+1]; // Allocate storage for working arrays
 double *f = new double[N+1];
 e[0] = -c[0]/b[0]; // Get values of e and f for initial node
 f[0] = d[0]/b[0];
 for (int i = 1; i < N; i++) // Get values of e and f for nodes 1 to N-1
 {
 e[i] = -c[i] / (b[i] + a[i] * e[i-1]);
 f[i] = (d[i] - a[i] * f[i-1]) / (b[i] + a[i] * e[i-1]);
 }
 // All e and f values now found now. Start with calculation of x[N].
 // Then get remaining values by back substitution in a for loop.
 x[N] = (d[N] - a[N] * f[N-1]) / (b[N] + a[N] * e[N-1]);

 for (i = N-1; i >= 0; i--)
 {
 x[i] = e[i] * x[i+1] + f[i];
 }
 delete[] e; // Free memory used for allocated arrays
 delete[] f;
}

