
First Midterm Review

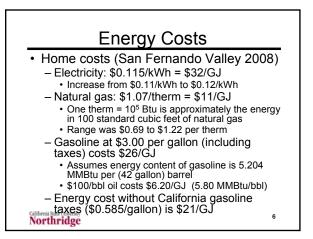
Larry Caretto Mechanical Engineering 483 Alternative Energy Engineering II

March 15, 2010

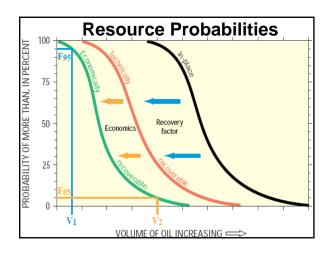
California State University Northridge

Northridge

What is energy
Dictionary definition
Capacity to do work
Energy resources
Energy and power (energy/time) units


Energy units: joules (J), kilowatt·hours (kWh), British thermal units (Btu)
1 Btu = 1055.056 J
Power units: watts (W), Btu/hr
1 W = 1 J/s = 3.412 Btu/hr

Energy Units and Use • Energy units: 1 Btu = 1055.056 J; 1 W = 1 J/s = 3.412 Btu/hr, 1 quad = 10^{15} Btu • Fuel equivalencies: 1 ft³ natural gas \approx 1000 Btu; 1 bbl crude = 5.8 MMBtu; 1 Mtoe oil = 41.868x10¹⁵ J = 0.0387 quads • World energy production (2006) is 466x10¹⁵ Btu = 466 quads (quadrillion Btu) = 491x10¹⁸ J = 491 exajoules • World electricity generation (2006) is 18,930 TWh (terawatt hours)

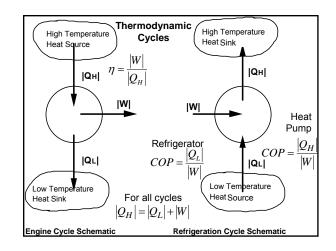

California State University Northridge

3

Energy Information Administration Data on "Heat Rates"					
Coal MMBtu/ton	Petroleum Products MMBtu/bbl				
Production: 21.070	Motor Gasoline: 5.204				
Consumption: 20.753	Jet Fuel: 5.670				
Coke 27.426	Distillate Fuel Oil: 5.825				
Industrial: 22.489	Residual Fuel Oil: 6.287				
Residential and Commercial:	Liquefied Petroleum Gas (LPG):				
23.880	3.603				
Electric Utilities: 20.401	Kerosene: 5.670				
Crude Oil MMBtu/bbl	Natural Gas Btu/ft ³				
Production: 5.800	Production, Dry: 1,027				
Imports: 5.948	Consumption: 1,027				
Electricity Consumption: .	Non-electric Utilities: 1,028				
Btu per kilowatt-hour 3,412	Electric Utilities: 1,019				
	Imports: Btu per cubic foot 1,022				
	Exports: Btu per cubic foot 1,006				
Energy Information Administrat 2000, DOE/EIA-0384(2000) (W	tion (EIA), <i>Annual Energy Review</i> /ashington, DC, August 2001)				

Resources vs. Reserves				
	Known	Unknown		
Economical to Recover	Reserves	Resources		
Not economical to recover	Resources	Resources		
California State University Northridge		7		

Hubbert Peak

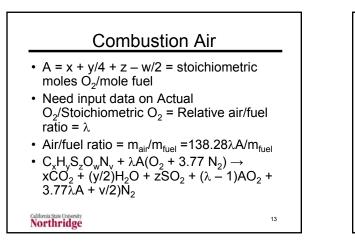

- Analysis due to M. King Hubbert
- Main publications in 1949 and 1956
- Correctly predicted peak in US oil production in early 1970s
- Not so accurate in other predictions
- Some recent applications show world oil production peak in next ten years

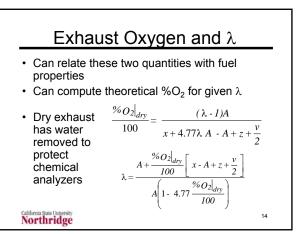
9

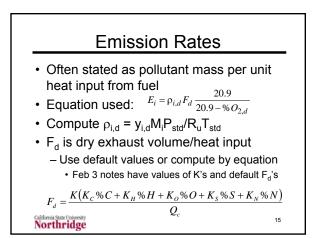
11

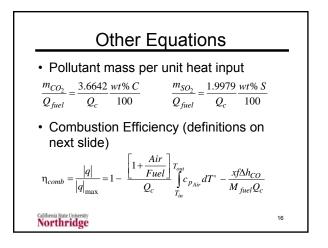
· Many other studies show later peak

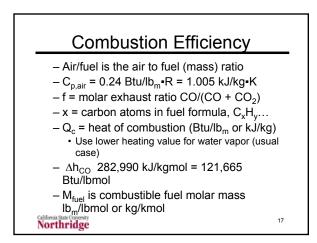
California State University Northridge


Some Cycles

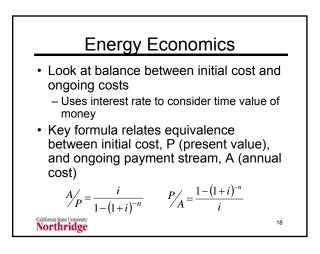

- Rankine cycle steam power plant
- Brayton cycle gas turbine engines
- Combined cycle combination of Brayton and Rankine cycle
- Otto and Diesel cycles for reciprocating engines
- Air standard cycles *versus* consideration of heat addition from fuel
- Refrigerator *versus* heat pump Northridge

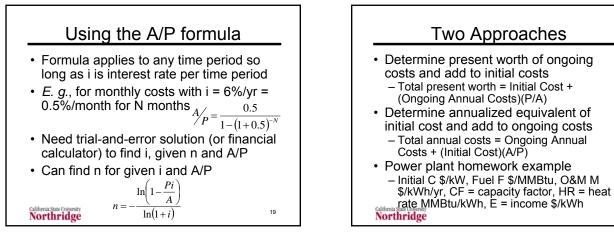

Basic Combustion Analysis General fuel formula: C_xH_yS_zO_wN_v x, y, z, w, and v from ultimate analysis or analysis of gas mixtures Ultimate analyses: x = wt%C/12.0107, y = wt%H/1.00794, z = t%S/32.065, w = wt%O/16.0004, v = wt%N/14.0067, m_{fuel} = 100 M_{fuel} = 12.0107x + 1.00794y + 32.065z + 15.9994w + 14.0067v = m_{fuel}(1 - %MM)

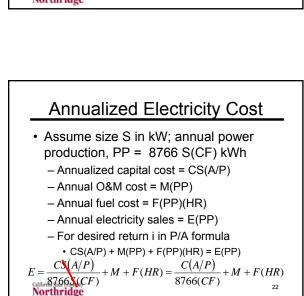

• For mixture of compounds (ω_{k} = mole fraction) $x = \sum \omega_{k} x_{k} \quad y = \sum \omega_{k} y_{k} \quad M_{fuel} = \sum \omega_{k} M_{k}$


California State Intersity
$$\sum O_k A_k \quad y = \sum O_k y \quad in fuel$$

Northridge species species species







20

Electricity Cost Present Worth

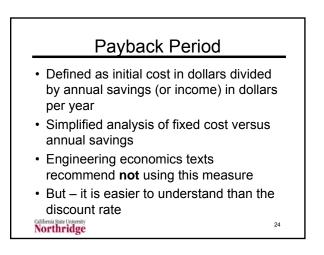
 Assume size S in kW; annual power production, PP = 8766 S(CF) kWh

- O&M present worth = M(PP)(P/A)

- Fuel present worth F(PP)(HR)(P/A)

- For desired return i in P/A formula

- Electricity sales present worth = E(PP)(P/A)

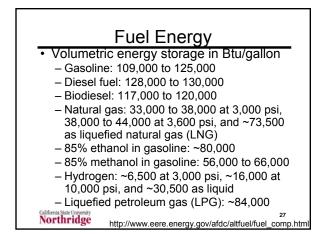

 $\frac{C(A/P)}{87663(CF)(P/A)} + M + F(HR) = \frac{C(A/P)}{8766(CF)} + M + F(HR)$

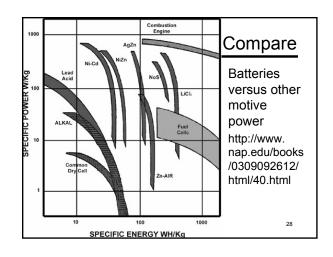
• CS + M(PP)(P/A) + F(PP)(P/A)(HR) = E(PP)(P/A)

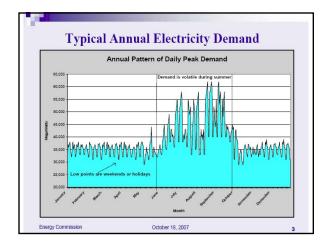
- Initial capital cost = CS

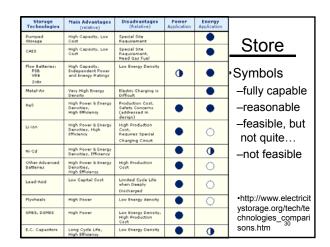
E =

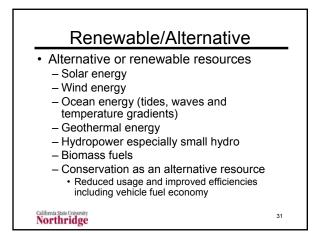
Northridge

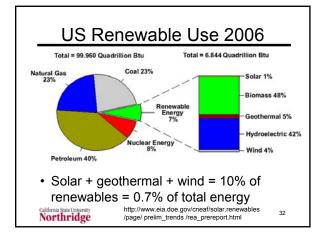


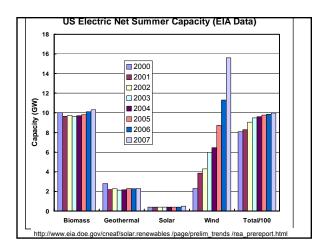

Environmental Aspects

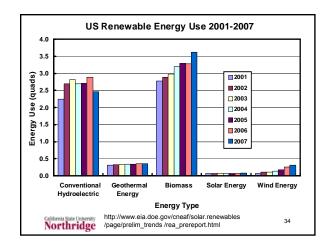

- Multimedia impacts from energy use, development, production, refining
- Air pollution
 - Troposphere: O_3 , CO, NO_x , SO_x , toxics
 - Stratosphere: CFC's reduce ozone layer
 - Global warming: CO₂, N₂O, CH₄, etc.
- Carbon capture and sequestration
- Remove CO₂ from energy use and bury it underground

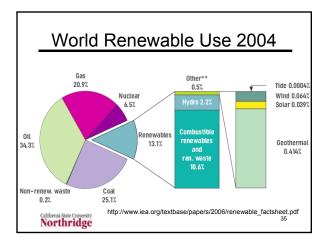

Northridge

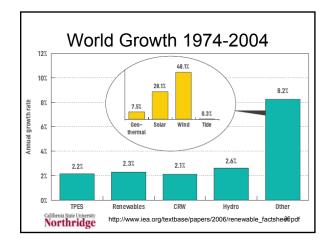

Energy per unit mass (kJ/kg; Btu/lb_m) Energy per unit volume (kJ/m³; Btu/ft³) Rate of delivery of energy to and from storage (kW/kg; Btu/hr·lb_m) Efficiency (energy out/energy in) Life cycles – how many times can the storage device be used Particularly important for batteries

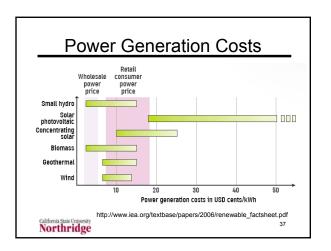


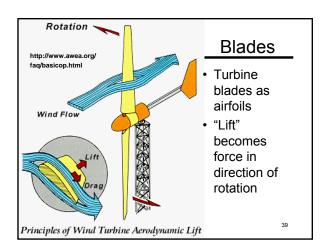


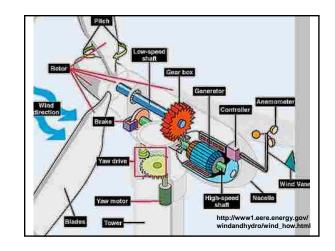


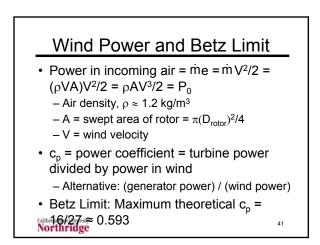


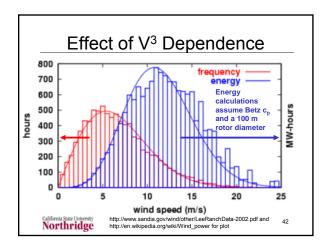


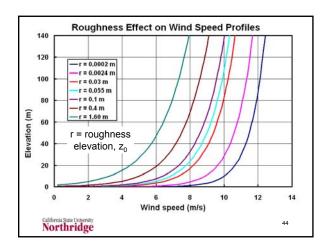


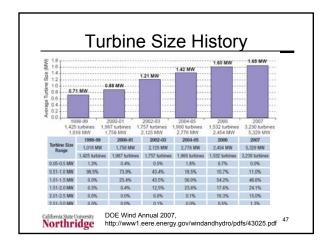


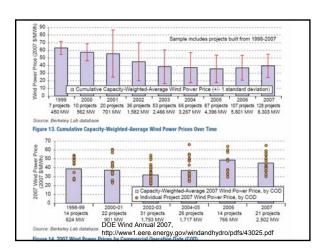


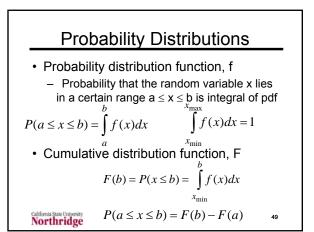


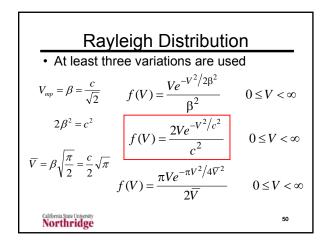


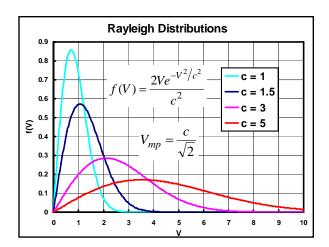


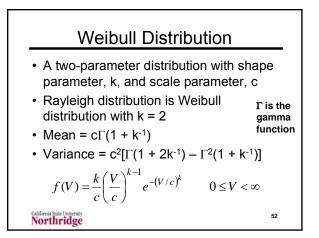

Roughness Parameters

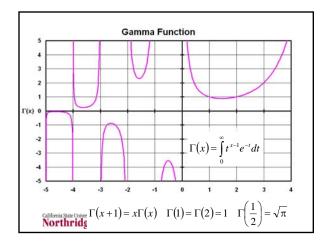

- Open water (r = 0.0002 m)
- Completely open terrain with smooth surface (r = 0.0024 m)
- Agricultural area varying amounts of fences, hedgerows, buildings (r = 0.03 m, 0.055 m, 0.1 m, 0.2 m)
- Small villages (r = 0.4 m)
- Larger cities with tall buildings (r = 0.8 m)
- Very large cities/skyscrapers (r = 1.6 m) California State (Interesty Northridge
 43

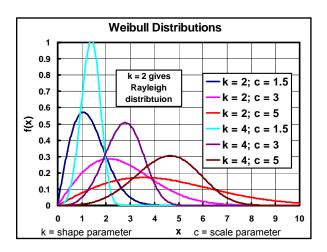


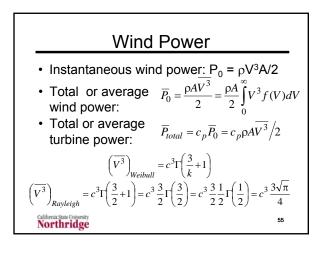

\	Wind Classes (10 m)						
Class	power/area(W/m ²)		Speed(m/s)/(mph)				
	mim	max	min	max			
1	0	100	0	4.4/9.8			
2	100	150	4.4/9.8	5.1/11.5			
3	150	200	5.1/11.5	5.6/12.5			
4	200	250	5.6/12.5	6.0/13.4			
5	250	300	6.0/13.4	6.4/14.3			
6	300	400	6.4/14.3	7.0/15.7			
7	400	1000	7.0/15.7	9.4/21.1			
California State Univer Northridg				45			

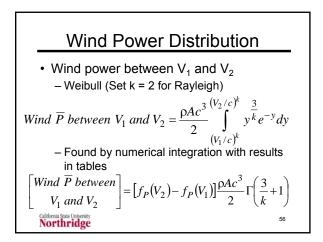

	Wind Classes (50 m)						
С	lass	power/are	ea(W/m ²)	Speed(m/s)/(mph)			
		min	max	min	max		
	1	0	200	0	5.6/12.5		
	2	200	300	5.6/12.5	6.4/14.3		
	3	300	400	6.4/14.3	7.0/15.7		
	4	400	500	7.0/15.7	7.5/16.8		
	5	500	600	7.5/16.8	8.0/17.9		
	6	600	800	8.0/17.9	8.8/19.7		
	7	800	2000	8.8/19.7	11.9/26.6		
California Nort	i State Universit	9			46		

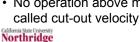


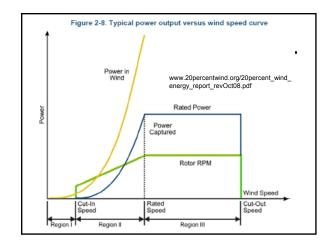


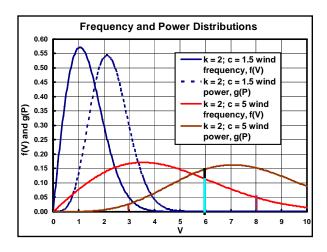


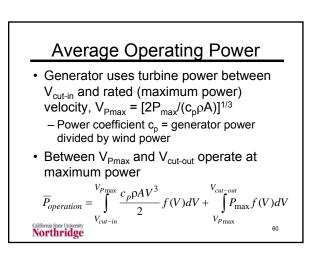


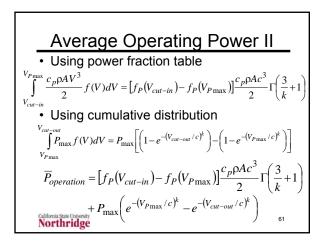


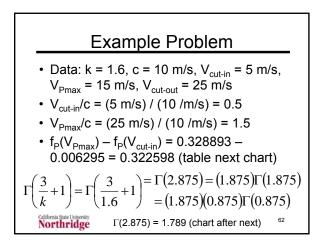


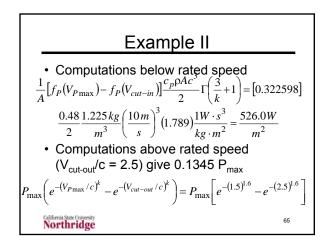


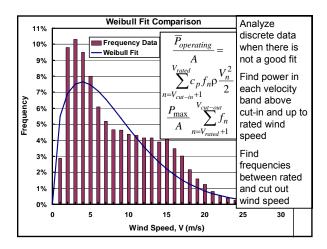

Wind Turbine Operation No operation until wind velocity reaches a minimum called the cut-in velocity Then operate at full turbine output power until turbine output is greater than generator can accept Limit turbine output power to full generator power at high wind speeds · No operation above maximum velocity

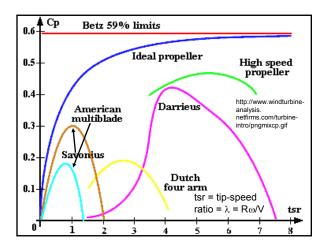

57

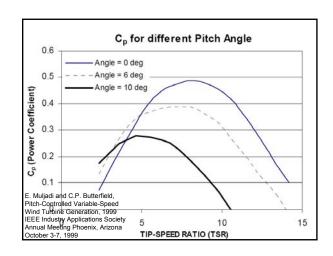


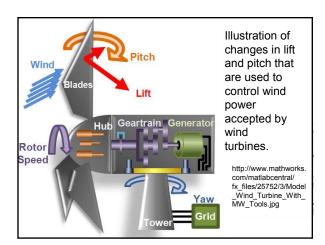


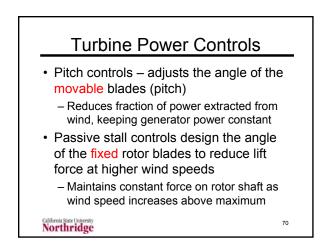


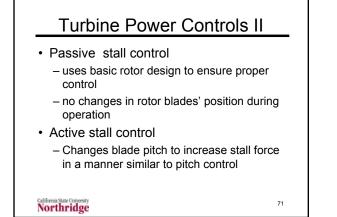





Use of Power Fraction Table							
Fraction of Wind Power Between V = 0 and Given V							
V/c	Fraction for Following Values of k						
V/C	k = 1.4	k = 1.6	k = 1.8	k = 2	k = 2.2	k = 2.4	
0.50	0.004948	0.006295	0.007273	0.007877	0.008149	0.008156	
0.60	0.010169	0.013427	0.016118	0.018147	0.019530	0.020338	
0.70	0.018369	0.024959	0.030868	0.035837	0.039800	0.042794	
0.80	0.030166	0.041893	0.053010	0.063024	0.071728	0.079088	
0.90	0.046036	0.064971	0.083615	0.101180	0.117277	0.131769	
1.00	0.066279	0.094589	0.123163	0.150855	0.177061	0.201517	
1.10	0.091003	0.130760	0.171457	0.211508	0.250044	0.286651	
1.20	0.120122	0.173115	0.227629	0.281520	0.333573	0.383162	
1.30	0.153376	0.220943	0.290233	0.358382	0.423715	0.485322	
1.40	0.190353	0.273260	0.357401	0.439009	0.515849	0.586691	
1.50	0.230519	0.328893	0.427029	0.520117	0.605340	0.681244	


						Table
	Abridg	ed Table	of Gamma	Function	S	
х	Г(х)	х	Г(X)	х	Г(X)	Interpolate for
0.01	99.43259	0.16	5.81127	0.40	2.21816	Г(0.875) =
0.02	49.44221	0.18	5.13182	0.45	1.968136	1.0905565
0.03	32.78500	0.20	4.59084	0.50	1.772454	1.0000000
0.04	24.46096	0.22	4.15048	0.55	1.616124	Г(2.875) =
0.05	19.47009	0.24	3.78550	0.60	1.489192	(1.875)(0.875)
0.06	16.14573	0.26	3.47845	0.65	1.384795	Г(0.875) =
0.07	13.77360	0.28	3.21685	0.70	1.298055	(1.875)(0.875)
0.08	11.99657	0.30	2.99157	0.75	1.225417	(1.0905565) =
0.09	10.61622	0.32	2.79575	0.80	1.16423	1.789
0.10	9.51351	0.34	2.62416	0.85	1.112484	1.705
0.11	8.61269	0.36	2.47273	0.90	1.068629	
0.12	7.86325	0.38	2.33826	0.95	1.031453	
0.13	7.23024		utside the rar			
0.14	6,68869	aty rel	lationship tha	at Γ(x+1) :	= xГ(x)	64





Environmental Impacts

- · Visual impact
- Noise
- · Effect on birds (avian impacts)
- Electromagnetic interference
- Bats
- · Not discussed
- Environmental benefits in reduction of fossil-fuel generated pollutants, including greenhouse gas CO₂
 ⁷²