Wind Power

Wind Power

Excel NORMDIST Function Normal distribution computed in Excel by the function NORMDIST(x, μ, σ, q)

- -x is the value for which the distribution value f(x) or F(x) is required
- $\,\mu$ and σ are the distribution parameters
- q is true to get F(x), false to get f(x)
 q may be omitted when finding F(x)
- What is the probability that a variable x from a normal distribution with $\mu = 3$ and $\sigma = 2$ lies between 1 and 2?

• For normal distribution the arithmetic mean, $\bar{\mathbf{x}}$ is an estimate of the true mean, μ • Maximum Likelihood Estimator (MLE) $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$ $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$ MLE for σ^2 • For the Rayleigh distribution the MLE for the parameter c is given by $\hat{c} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} V_i^2}$

ME 483 – Alternative Energy Engineering II

