
Jacaranda Hall 3314 Mail Code Phone: N/A
Email: lcaretto@csun.edu 8348 Fax: 818.677.7062

College of Engineering and Computer Science
Mechanical Engineering Department

Mechanical Engineering 309
Numerical Analysis of Engineering Systems

Spring 2014 Number: 15237 Instructor: Larry Caretto

Good Programming Guidelines

These guidelines are intended to provide students with an introduction to good programming
practice. These guidelines assume that you have already written a program that is correct. They
are intended for programs that are relatively small; larger programs require more complex
guidelines. These are intended to be helpful in letting the instructor, other readers, and you better
understand the code you have written.

Good programming practice should include the following considerations:

Good program structure: This means code that is inherently easy to read and understand.
Go to statements are never used, except when required for VBA error trapping. Well-
structured programs have a control flow that can be easily seen by someone reading the
code. Well-structured code does not have many levels of nesting within a single function.
Instead, the overall code is broken up into several functions, each of which performs a small,
distinct task. Some programmers believe that each function should have only one point
where values are returned to the calling function. Others believe that more than one return
point may be okay, if justified by the logic of the function. For example, a function that does
an iterative calculation until convergence is achieved or some maximum number of iterations
is exceeded may have two return points: one for the converged result, the second for a result
that has not converged. (However, it is also possible to write such a function with only a
single return.)

Effective use of comments: These statements describe what the code is supposed to do so
that another person can follow the code. It also makes it easy for the author to review the
code at a later date. Each function should start with an introductory set of comments giving
the programmers name and date and a statement of the purpose of the function. It is
especially important to describe all the arguments in a function or sub, what ones the user
must supply, what ones are returned, and any other information such as the data types and
expected values for each argument. An overall description of the entire program is also
helpful. Avoid comments, which are obvious from reading the code. Comment statements
can be used to define the purpose of each variable. (In this course, comments are judged
not only on their technical content but also on the quality of the writing, including spelling and
grammar.)

Well-formatted output: Your output should be easy to follow and understand. Although it is
possible to use complicated output statements to develop elaborate output, it is also possible
to use simple output (e. g. msgbox “x = “ &, x). This technique provides results that can be
understood although they may not be perfectly formatted. Labeling of results so that they can
be understood is more important that perfection in the output formats.

Meaningful variable names: Variable names should be chosen which make the meaning of
the variables clear. For mathematical software it is usually convenient to use the symbols
that are used in equations for variables. Thus Ohm's Law might be written as e = i * r. This
is just as meaningful as writing voltage = current * resistance. Sometimes Greek letters are

spelled out. For example, the common symbol for density is the Greek letter . Computer
programs can use density or rho as variable names for density.

Long variable names are sometimes separated by an underscore such as average_grade;
an alternative is to capitalize the start of the new word as in averageGrade or
AverageGrade. Symbolic constants are often written in all capital letters such as PI or
MAXIMUM_ELEMENTS.

mailto:lcaretto@csun.edu

Programming Guidelines ME309, L. S. Caretto, Spring 2014 Page 2

There are a variety of naming conventions that may be used to define variables. This usually
involves a prefix that indicates the scope of the variable or the variable type. Such guidelines
are used for the development of complex programs where it is useful to have such
information and where professional programmers are familiar with the notational conventions.

Portability: Always use standard language concepts; do not use special options for a
particular platform. This assures that programs written for one machine can be used on
another machine with a minimum of conversion work. This should not be a problem for the
VBA or MTALAB programs in this course.

Documentation: This includes a discussion of how the overall code and the various
functions work. It also includes a list of all the variables and their meaning. The intention of
program documentation is different from that of user instructions. The latter are intended to
allow another person to use your routine as a black box. Program documentation should
allow another person to be able to understand how your program works and to modify it if
necessary. For VBA codes that require each variable to be assumed a data type, using a
single Dim statement for each variable, followed by a comment describing the variable is a
useful technique.

Neat Appearance of the code: This includes the following: indenting structures such as
loops and if blocks, using blank lines to separate comments and different portions of the
code, using symbols such as rows of asterisks or =equal signs to separate portions of the
code, and using white space in statements. In general any process that makes the code
easier to read and understand should be used. In the example below, the block on the right
is easier to read than the block on the left, even though both blocks accomplish the same
task. For additional examples look at the appearance of the codes provided in the various
laboratory exercises you have been assigned.

The two sets of statements below do exactly the same task. Which of these is easier for you
to read and understand?

If x=3 then z=y+w/x : y=x*x/cos(z) : Else z=y-3*x : End If If x = 3 then
z = y + w / x
y = x * x / cos(z)

Else
z = y - 3 * x;

End If

Generality: This means a program, which can handle as general a problem as possible with
no modifications to the routine. Always use variable names to represent quantities, which
may change in some future application of the program. Use symbolic constants, especially
for array dimensions. Writing general subs and functions allows code for basic calculations
to be reused in later programs.

The items in the above list are given in roughly the order of their importance. The major idea is
that the code should be easy to understand when it is read by someone not familiar with the
code. This includes the code’s author who is viewing the code after several months.

Students enter this course with a wide variety of backgrounds in programming experience.
Students who have no previous experience in programming will be working hard just to complete
the assignments. Those of you with some programming experience should take more time to see
if you can follow all of the guidelines presented here.

All students should be concerned about simple items like meaningful variable names, the use of
white space and indenting portions of the code to show its structure. These items will make your
code easier for you to understand and to debug.

