	
	College of Engineering and Computer Science

Computer Science Department
Computer Science 106

 Computing in Engineering and Science

	
	Last update: February 4, 2006 Instructor: Larry Caretto

Binary Numbers and Computer Representation of Numerical Data
Introduction
Most people have heard that a computer is a binary device, but many students in beginning programming courses are not familiar with the details of binary numbers. Because all data is stored in a computer as a binary representation, that is a series of ones and zeros in the electronic circuits of the computer, it is necessary to understand the structure of binary numbers to understand the limitations of the computer representation of data.

These notes first provide a background on binary numbers then discuss how these numbers are used to represent various data types in C++.

Binary numbers
The interpretation of binary numbers is a specific application of the general approach to representing numbers in any base. In out usual base ten, we recognize that the number 132 represents 1 times 102 plus 3 times 101 + 2 times 100. We can create a formula for representing this number in base ten and then generalize if to other bases. To start with we write the three digits in our number (the 1, the 3, and the 2 in the number 132) as the symbol, di, for the digit in position i. We number the digits from right to left, starting with the symbol d0 for the rightmost digit, which is 2 in this example of the number 132. We then say that the first digit to the left of d0 is d1, which is 3 in this example. The next digit to the left is d2, which is 1 in our example. We can represent a general three-digit number by the symbols d2d1d0. Since this is a base-ten number, we can calculate the value of the number as d2(102) + d1(101) + d0(100). Note that the range of digits for a base ten number is zero to nine.

How can we make this more general? We want to represent a number, in any base, with an arbitrary amount of digits in the number. For a base-ten number with N digits, we can write the following equation for the value of the number.

[image: image1.wmf])

10

(

)

10

(

)

10

(

)

10

(

0

0

1

1

2

2

1

1

0

1

2

1

d

d

d

d

d

d

d

d

N

N

N

N

N

N

+

+

+

=

-

-

-

-

-

-

K

K

K

K

Here, we have written the number on the left as a sequence of digits and on the right as the calculation, which gives its value. Note that the subscripts for the digits start with zero for the rightmost digit and range to N-1 for the leftmost digit. This range from zero to N-1 gives us a total of N digits. We can rewrite the equation above using the usual sigma notation for sums.

[image: image2.wmf]å

-

=

-

-

=

1

0

0

1

2

1

)

10

(

N

k

k

k

N

N

d

d

d

d

d

K

K

In this equation, we use ten because that is the base of our usual number system. To consider other number systems such a binary (base 2), octal (base 8), or hexadecimal (base 16), we use the same formula, but we replace the factor to ten by the appropriate base, b.

[image: image3.wmf]å

-

=

-

-

=

1

0

0

1

2

1

)

(

N

k

k

k

N

N

b

d

d

d

d

d

K

K

When want to formally represent the base that we are using for the number, we include it as a subscript following the number. Thus the base-ten number shown above as 132 could be formally written as 13210 to emphasize that this is a decimal (base ten) number.

Note that the value of any “digit”, dk in a given numbering system must be less than the base b. We know that decimal (base ten) digits range from zero to 9; similarly octal digits range from 0 to 7 and binary digits range from 0 to 1. Hexadecimal digits range from 0 to f, where we have the following correspondence between hexadecimal digits and base ten numbers: a16 = 1010; b16 = 1110; c16 = 1210; d16 = 1310; e16 = 1410; f16 = 1510. We can write our example number 13210 in the following bases: 13210 = 100001002 = 2048 = 8416.
The table below shows the numbers in four bases (decimal, binary, octal and hexadecimal) for numbers from 010 to 2310.
	Numbers from 010 to 2310 in Four Bases

	Decimal
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	Binary
	0
	1
	10
	11
	100
	101
	110
	111
	1000
	1001
	1010
	1011

	Octal
	0
	1
	2
	3
	4
	5
	6
	7
	10
	11
	12
	13

	Hex
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	a

	Decimal
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

	Binary
	1100
	1101
	1110
	1111
	10000
	10001
	10010
	10011
	10100
	10101
	10110
	10111

	Octal
	14
	15
	16
	17
	20
	21
	22
	23
	24
	25
	26
	27

	Hex
	b
	c
	d
	e
	10
	11
	12
	13
	14
	15
	16
	17

You can see from studying this table that there is a convenient relationship between binary numbers and octal or hexadecimal numbers that results in their use for computer notation. The table shows that the binary values for 810 and 1610 are, respectively, 10002 and 100002. Since 108 = 10002, one octal digit is equivalent to three binary digits. You can see this pattern in the table. The last three binary digits in 08 to 78 are repeated for as the last three binary digits for 108 to 178 and for 208 to 278. For numbers between 108 and 178, the repeating pattern of three binary digits is preceded by a 1, the binary representation for the leading octal 1 in this sequence of numbers. Similarly, in numbers between 208 and 278, the repeating pattern of three binary digits is preceded by a 10, the binary representation for the leading octal 2 in this sequence of numbers.

For binary numbers the only digits we can have are zero and one. Thus our general-base equation is written as follows for binary (b = 2) numbers.

[image: image4.wmf]å

-

=

-

-

=

1

0

0

1

2

1

)

2

(

N

k

k

k

N

N

d

d

d

d

d

K

K

How large a number can we represent on a computer if we use 16 binary digits? (A binary digit is usually called a bit and eight binary digits or bits are called a byte.) The minimum value of our 16-bit binary number is zero and the maximum occurs when all the bits are one. With N = 16, our sum ranges from k = 0 to k = 15 and we get the following result when all sixteen bits are one.

[image: image5.wmf]å

å

=

=

=

+

+

+

+

=

=

=

=

15

0

0

1

14

15

15

0

0

1

14

15

535

65

2

2

2

2

)

2

(

1

111111

1111111111

1

)

2

(

k

k

k

k

k

k

gives

d

all

that

so

d

d

d

d

d

K

K

K

K

In any case like this one, where all the binary bits are one, we can add one to the number to obtain the following result.

[image: image6.wmf](

)

1

2

1

1

1

1

2

2

0

2

0

0

0

0

1

1

2

1

1

1

1

1

0

1

2

1

1

0

0

1

2

1

1

0

0

1

2

1

-

=

=

+

=

=

+

=

+

-

-

-

=

-

-

-

=

-

-

å

å

N

N

N

N

N

k

k

N

N

N

N

N

k

k

N

N

that

so

K

K

K

K

K

K

We can express this result as follows: the maximum value of a binary number with N digits is 2N – 1. If N = 16, we obtain the result shown previously: the maximum number that we can represent is 216 – 1 = 65 53510. If we wanted to use these 16 bits to represent both positive and negative numbers, we could interpret the electronic bits in the computer so that the binary 0 was the lowest number and 10000000000000002 = 32 76810 would represent zero. In this case our computer circuit would have to subtract 32 76810 from the binary bits stored in memory to give us our actual number. Since our 16-bit number ranges from 0 to 65 53510 in the computer memory, subtracting 32 76810 from this range gives us a range of -32 76810 to 32 76710 for our 16-bit number when we want to have negative numbers.
Of course choosing more or less than 16 bits would affect the range of our number. In the next section we discuss the various C++ data types and show how their allowed ranges are governed by the way in which the numbers are represented as binary information.
C++ data types
C++ has two basic kinds of numerical data types: integer numbers without decimal points and “floating point” numbers which have a decimal point. (Some accounting systems have “fixed point” systems that have a fixed range for decimal numbers.) The C++ standard allows the size of integer data types to be set by the compiler vendors, but there are a set of rules that govern the relationship among the sizes of various data types. The names of the data types shown below are common to all C++ implementations. The ranges shown for each type are those used in Visual C++. However, these ranges are common for many other compilers. (Note that the int data type, according to the C++ standard, can have a range anywhere between the short and the long):

short
a 16-bit integer data type with range -32 768 to 32 767

int
a 32-bit integer data type with range -2 147 483 648 to 2 147 483 647

long
a 32-bit integer data type with range -2 147 483 648 to 2 147 483 647

unsigned short
a 16-bit integer data type with range 0 to 65,535

unsigned int
a 32-bit integer data type with range 0 to 4 294 967 295

unsigned long
a 32-bit integer data type with range 0 to 4 294 967 295

Note that the range for the short and the unsigned short are just the numbers we that we found above when analyzing the 16-bit binary number. For the 32-bit number, the maximum range is from 0 to 232 -1 = 4 294 967 295. This is the range for the unsigned long and unsigned int. When we want negative integers, we use half this range for negative numbers and half for positive numbers and zero.

Floating point data types are represented in the binary equivalent of a power notation. That is we can represent numbers like 6.02x1023 and 1.38x10-16 in terms of their power of ten (called the characteristic) and their prefactor (called the mantissa). We also require a bit to tell us if the number is positive or negative. The formats of floating point numbers used in computer are governed by an international standard that started as IEEE standard 754 in 1985. In this standard a double precision floating point number is stored in eight bytes or 64 bits. These 64 bits are used as follows: 1 sign bit, 11 bits for the (binary) mantissa, and 52 bits for the characteristic.

With 11 bits for the mantissa, we can handle a range from 0 to 211 – 1 = 2047. The maximum value in this range is 22047 (10616. This range is usually divided into a range between 10-308 and 10308. The binary characteristic will always start with a 1. This 1 is not stored so the effective number of bits for the mantissa is really 52 +1 = 53. Fifty-three binary bits can store a number up to 253-1 = 9.007x1015. Thus the characteristic can store almost sixteen significant decimal digits.

C++ has three floating point types float, double, and long double. Each of these data types represents a limited range of positive and negative numbers and zero. The range for float is shown below.

-3.402823466x1038 to -1.175494351x10-38, 0, and 1.175494351x10-38 to -3.402823466x1038
The range for type double is shown next:

-1.7976931348623158x10308 to -2.2250738585072014x10-308, 0, and

2.2250738585072014x10-308 to 1.7976931348623158x10308
In Microsoft Visual C++, there is no difference between a double and a long double. Other compiler vendors, who do offer a difference, usually have has a range of approximately 3.4x10‑4932 to 3.4x10‑4932.

The float data type occupies 4 bytes or 32 bits; the double type occupies 8 bytes or 64 bits; the long double described in the previous paragraph occupies 10 bytes or 80 bits. The number of bits for the mantissa defines the exponent range and the number of bits for the exponent defines the number of significant figures. The float type represents about seven significant figures exactly. Double and long double (in systems where long double uses more than 8 bytes for storage) represent about 15 and 19 significant figures, respectively.

Because of the way that integer data types are stored on the computer you can do something like the following.

short x, y = 32767;
// sets x to maximum int

x = y + 1;

// can we exceed the maximum?

cout << y;

// surprise! Y = -32768!

Adding one to the maximum integer gives the minimum integer. For floating point variables exceeding the maximum or going below the minimum gives you an overflow or underflow error, respectively. These numbers are represented on the computer as 1.#INF and -1.#INF, respectively. Another number you may see displayed on your computer screen is -1,#IND; the IND is an abbreviation for INDefinite; this results from attempted mathematical operations such as dividing zero by zero, raising zero to the zeroth power, etc.

� Note that adding binary numbers is done according to the following addition rules: 0 + 0 = 0; 1 + 0 = 0 + 1 = 1; 1 + 1 = 10. When we add 1 to 11 we get 100. You can check this by using decimal equivalents: 12 = 110, 112 = 310 and 1002 = 410. We can also do this by adding the binary numbers directly, using the conventional idea of carrying a digit when the addition of two single-digit numbers produces a two-difit number Doing this in binary we have the addition shown below:

			11	(Carried digits when addition of 1 + 1 gives 10

			 11	(One of the original numbers 112 = 310

			 1	(The other original number 12 = 110

			100	(The sum 1002 = 410

In the first column the sum of 1 + 1 gives 10 so we enter a zero in the sum and carry a 1. In the second column the 1 or the original first number and the 1 carried gives 10 again so we enter another zero in the sum and carry a 1. In the final column, there are no entries from the original numbers so we add 1 + 0 giving 1. We can generalize this to adding 1 to another binary number that is a string of ones:

			111111	(Carried digits when addition of 1 + 1 gives 10

			 111111	(One of the original numbers 1111112 = 6310

			 1	(The other original number 12 = 110

			1000000	(The sum 10000002 = 6410

The general result is the following: when we add 1 to a binary number that consists of N consecutive ones, the result is a binary number with N+1 digits, having a one in position N+1 and all its remainig digits are zero.

Jacaranda (Engineering) 3333
Mail Code
Phone: 818.677.6448

E-mail: lcaretto@csun.edu
8348
Fax: 818.677.7062

_1092215279.unknown

_1166082291.unknown

_1200516320.unknown

_1166082526.unknown

_1166082164.unknown

_1092215092.unknown

