Review Sheet for Midterm Exam

Problem 1. Determine whether the following statements are True or False. Justify your answer.

(a) For $A \in \mathbb{R}^{m \times n}$, range $(A) = \operatorname{range}(A^{\top}A)$

(b) If the vectors a_1 , a_2 and b are orthogonal, then the projection of b onto the plane containing a_1 and a_2 equals $||b||_2$

- (c) $(AB)^+ = B^+A^+$
- (d) The system Ax = b with

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & -1 \\ 0 & 2 & 2 \\ 1 & -3 & -1 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 1 \end{pmatrix}$$

has unique *least squares* solution.

(e) If q_1, q_2, \ldots, q_k are orthogonal vectors in \mathbb{R}^n , and $v \in \mathbb{R}^n$ then

$$r = v - \sum_{i=1}^{k} (v^{\top} q_i) q_i,$$

is orthogonal to $q_i, i = 1, 2, \ldots, k$.

(f) If $AA^{\top} = A^{\top}A$, then $||Ax||_2 = ||A^{\top}x||_2$

(g) Given a vector $\mathbf{u} \in \mathbb{R}^n$, the trace of the matrix $P = \frac{\mathbf{u}\mathbf{u}^\top}{\mathbf{u}^\top \mathbf{u}}$ always equals 1

Problem 2. Suppose the singular value decomposition of $A \in \mathbb{R}^{m \times n}$, $m \ge n$, is $A = U\Sigma V^{\top}$, and denote by A^+ the pseudoinverse of A

(a) Show that the SVD of A^+ is $A^+ = V\Sigma^+ U^\top$

- (b) Describe Σ^+ (*i.e.*, size and entries $\sigma_{i,j}^+$)
- (c) What is the pseudoinverse of A^+ ?

(d) Show that AA^+ is a projector. What subspace does AA^+ projects onto?

Problem 3. Find the projection matrix P onto the space spanned by $\mathbf{u} = (1, 0, 1)^{\top}$ and $\mathbf{v} = (1, 1, -1)^{\top}$

Problem 4. What multiple of a = (1, 1, 1) is closest to the point b = (2, 4, 4)?

Problem 5. In *n* dimensions, what angle does the vector $(1, 1, 1, ..., 1)^{\top}$ make with the coordinate axis? What is the projection matrix *P* onto that vector?

Problem 6. Suppose P is the projection matrix onto the subspace S and Q the projection matrix onto the orthogonal complement S^{\perp}

- (a) What is P + Q?
- (b) What is PQ?
- (c) Show that P Q is its own inverse

Problem 7. Find the matrix that projects every point in the plane onto the line x + 3y = 0.

Problem 8. If the vectors a_1 , a_2 and b are orthogonal, what are $A^{\top}A$ and $A^{\top}b$?

Problem 9. If V is the subspace spanned by $(1, 1, 0, 1)^{\top}$ and $(0, 0, 1, 0)^{\top}$, find

(a) a basis for the orthogonal complement V^{\perp}

(b) the projection matrix P onto V

(c) the vector in V closest to the vector $b = (0, 1, 0, -1)^{\top}$ in V^{\perp}

Problem 10. Let $a_1 = (\frac{2}{3}, \frac{2}{3}, -\frac{1}{3})^{\top}$, $a_2 = (-\frac{1}{3}, \frac{2}{3}, \frac{2}{3})^{\top}$, $a_3 = (\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})^{\top}$, and $b = (0, 3, 0)^{\top}$

(a) Project *b* onto a_1 and a_2 and find its projection onto the plane containing a_1 and a_2 . (b) Find the projection of *b* onto a_3 , then add up the three one-dimensional projections. Why is $P = a_1 a_1^{\top} + a_2 a_2^{\top} + a_3 a_3^{\top} = I$?

Problem 11. Let

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

- (a) Compute $||A^{-1}||_2 = \frac{1}{\lambda_1}, ||A||_2 = \lambda_2, \kappa(A) = \frac{\lambda_2}{\lambda_1}$
- (b) Find a right side b and a perturbation δb so that the error, $\frac{\|\delta x\|}{\|x\|} = \kappa \frac{\|\delta b\|}{\|b\|}$, is largest

Problem 12. Give an asymptotic estimate of the number of *flops* $(+, -, \times, \text{ and } \div)$ in algorithms 10.1, 10.2, and 10.3 in the textbook.