Midterm Review Sheet I - Linear Algebra

[Sources: Linear Algebra and its Applications, 4th Edition, Gilbert Strang, Brooks/Cole; and Linear Algebra, Geodesy, and GPS, Gilbert Strang and Kai Borre, Wellesley-Cambridge Press]

Exam information:

- Date and Location: The midterm exam will take place on Thursday, October 28, from 10 to 11.50AM at LO 1322
- Topics: Linear Algebra (Chapter 2) and Probability (Chapter 3)
- Notes: You can bring one page of notes, one side of an $8.5 \mathrm{in} . \times 11 \mathrm{in}$. sheet.

Additional Notes in Linear Algebra

Some Examples and Definitions:

- Examples of Vector Spaces:

- \mathbb{R}^{n} Spaces: \mathbb{R}^{2} - all vectors of two real components (including the zero vector), i.e., the plane; \mathbb{R}^{3} - all vectors with three real components; $\ldots ; \mathbb{R}^{n}$ - all vectors of n real components.
- Function Spaces: \mathbf{F} - the space of all real functions $f(x) ; C^{2}$ - the space of all real continuous functions with continuous first and second derivatives.
- Matrix Spaces: M - The space of all real 2 by 2 matrices.
- Other Vector Spaces: Z - The vector space consisting only of a zero vector.

Definition. A subspace or a vector space is a set of vectors (including the zeros vector) of a vector space that satisfies two conditions: If \mathbf{u} and \mathbf{v} are vectors in the subspace, and c is any scalar, then

- $\mathbf{u}+\mathbf{w}$ is also in the subspace
- $c \mathbf{u}$ is also in the subspace

Examples: (1) \mathbb{R}^{2} is a subspace of $\mathbb{R}^{2}, \mathbb{R}^{2}$ consists of all vectors in \mathbb{R}^{3} whose third
component is zero. (2) Any line on the plane through $(0,0)$ is a subspace of \mathbb{R}^{2}. (3) All upper triangular matrices in \mathbf{M} form a subspace of \mathbf{M}.
Definition. The column space of a matrix A consists of all linear combinations of the columns of of A. These combinations are the vectors $A \mathbf{x}$.
Remarks: (1) If $A \in \mathbb{R}^{m \times n}$ its columns have m entries, so the columns belong to \mathbb{R}^{m} and the column space of A is a subspace of \mathbb{R}^{m}. (2) The system $A \mathbf{x}=\mathbf{b}$ has (at least) a solution if \mathbf{b}
is in the column space of A. The solution \mathbf{x} is the vector whose entries are the coefficients of the linear combination.
Definition. The column space of A is called the range of A and it is denoted by $R(A)$.
Example: The column space of the matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
4 & 3 \\
2 & 3
\end{array}\right]
$$

consist of all linear combinations

$$
x_{1}\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right], \quad x_{1}, x_{2} \in \mathbb{R}
$$

These linear combinations define a plane through the origin in \mathbb{R}^{3}, a subspace of \mathbb{R}^{3}.
Definition. The nullspace (or kernel) of a matrix $A \in \mathbb{R}^{m \times n}$ consists of all solutions to $A \mathbf{x}=\mathbf{0}$ and it is denoted by $N(A)$. These vectors \mathbf{x} are in \mathbb{R}^{n}.
Remark: The system $A \mathbf{x}=\mathbf{b}$ has a solution if \mathbf{b} is in the range of A, and the solution is unique if the only element in the nullspace of A is $\mathbf{0}$.
Definition. The row space of a matrix A is the vector space spanned by its rows. It coincides with the range of A^{T}.
Definition. The rank, r, of a matrix A is the number of linearly independent rows/columns of $A ; r \leq \min \{m, n\}$.
Definition. A basis for a vector space is a collection of linearly independent vectors that span the space. The dimension of a space is the number of vectors in any basis of the space.
Definition. The nullity of a matrix A is the dimension of its nullspace
Fundamental Theorem of Linear Algebra $A \in \mathbb{R}^{m \times n}$

1. $R(A)$ - column space of A; dimension r.
2. $N(A)$ - nullspace of A; dimension $n-r$.
3. $R\left(A^{T}\right)$ - row space of A^{T}; dimension r.
4. $N\left(A^{T}\right)$ - nullspace of A^{T}; dimension $m-r$.

Singular Value Decomposition. (SVD) of a matrix $A \in \mathbb{R}^{m \times n}, A=U D V^{T}$, where:

- $U \in \mathbb{R}^{m \times m}$ - orthogonal matrix whose columns are (1) the eigenvectors of $A A^{T}$, (2) its first r columns form a basis for $R(A)$, and (3) its last $m-r$ columns form a basis for $N\left(A^{T}\right)$.
- $D \in \mathbb{R}^{m \times n}$ - diagonal matrix with the r non-singular values of A which are the square root of the nonzero eigenvalues of both $A A^{T}$ and $A^{T} A$.
- $V \in \mathbb{R}^{n \times n}$ - orthogonal matrix whose columns are (1) the eigenvectors of $A^{T} A$, (2) its first r columns a basis for $R\left(A^{T}\right)$, and (3) its las $n-r$ columns form a basis for $N(A)$.
- Note: $A V=U D$. That is, when A multiplies column v_{j} of V, it produces d_{j} times a column of U.

Problems in Linear Algebra

Problem 1. Determine whether the following statements are True or False. Justify your answer.
(a) If $A \in \mathbb{R}^{m \times n}$, then A and A^{T} have the same nullspaces.
(b) If the columns of a matrix are linearly dependent so are the rows.
(c) The column space of a 2 by 2 matrix is the same as its row space.
(d) The columns of a matrix are a basis for its column space.
(e) Suppose the columns of a 4 by 4 matrix are a basis for \mathbb{R}^{4}, then the equation $A \mathbf{x}=\mathbf{0}$ has only the solution $\mathbf{x}=\mathbf{0}$

Problem 2. Describe the column spaces and nullspaces of the matrices

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right], \text { and } C=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 4
\end{array}\right]
$$

Problem 3. For which numbers c and d do this matrices have rank $r=2$?

$$
A=\left[\begin{array}{lllll}
1 & 2 & 5 & 0 & 5 \\
0 & 0 & c & 2 & 2 \\
0 & 0 & 0 & d & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
c & d \\
d & c
\end{array}\right]
$$

Problem 4. Consider the system $A \mathrm{x}=\mathrm{b}$ with

$$
A=\left[\begin{array}{ll}
2 & \alpha \\
4 & 8
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
16 \\
\beta
\end{array}\right]
$$

For what values of α and β does the system have:
(a) No solution?
(b) Infinitely many solutions?
(c) Exactly one solution?

Problem 5. The matrix B has eigenvalues 0,1 , and 2. Find:
(a) The rank of B.
(b) The determinant of $B^{T} B$.
(c) The eigenvalues of $B^{T} B$.
(d) The eigenvalues of $(B+I)^{-1}$

Problem 6. Suppose $A=\mathbf{u v}^{T}$ is a column times a row (a rank-1 matrix)
(a) Show that \mathbf{u} is an eigenvector of A by multiplying A times \mathbf{u}. What is the corresponding eigenvalue?
(b) What are the other eigenvalues of A ? Why?
(c) Compute the trace of A by (i) adding its diagonal entries, and (ii) adding its eigenvalues

Problem 7. Singular Value Decomposition: $A=U D V^{T}$. Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$, and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, are two orthonormal bases for \mathbb{R}^{n}. Construct the matrix that transforms each \mathbf{v}_{j} into \mathbf{u}_{j} to give $A \mathbf{v}_{1}=\mathbf{u}_{1}, \ldots, A \mathbf{v}_{n}=\mathbf{u}_{n}$.
Problem 8. Find $U D V^{T}$ if A has orthogonal columns $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ of lengths d_{1}, \ldots, d_{n}.

