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We analyze a fully stochastic model of heterogeneous nucleation and self-assembly in a closed
system with a fixed total particle number M , and a fixed number of seeds Ns. Each seed can
bind a maximum of N particles. A discrete master equation for the probability distribution of
the cluster sizes is derived and the corresponding cluster concentrations are found in terms of the
density of seeds, the total mass, and the maximum cluster size. The heterogeneous stochastic self-
assembly process is also analyzed using kinetic Monte-Carlo simulations. Our analytic and numerical
findings are compared with those obtained from classical mass–action equations. We analyze the
discrepancies between the stochastic and mass-action results as a function of model parameters.
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I. INTRODUCTION

The self-assembly of molecules and macroscopic particles
into larger units is a common process in materials science
and cell biology1. In homogeneous nucleation identical
components are able to spontaneously self-assemble to
form; however, in many cases, the growth process may
be catalyzed or even triggered by “seeds” such as an im-
purity, an exogenous particle or a boundary. Such seeds
tend to lower the free energy barrier for particle aggre-
gation so that heterogeneous nucleation is typically more
commonly observed than homogeneous nucleation2.

Within structural biology, a long standing issue has
been that of identifying a “universal nucleant” to in-
duce the rapid growth of protein crystals suitable for X-
ray diffraction to determine the protein’s 3D structure4.
Conversely, the formation of large aggregates of insulin
and other proteins is problematic in drug preparation, de-
livery and storage5. Polymerization of various proteins
and polypeptides into amylodid fibers are also implicated
in the emergence of neurodegenerative disorders such as
Parkinson’s, Alzheimer’s and prion diseases. The typical
mechanism through which proteins self assemble in all
these biological examples is by monomers slowly form-
ing an intermediate size fiber of few units, which then
acts a nucleation site for accelerated absorption of fur-
ther units6,7.

In this paper we will be concerned with systems where
heterogeneous self-assembly occurs in small compart-
ments of finite volumes, such as cells and organelles. This
assumption is appropriate when particle aggregation is
much faster than the typical times for monomers or seeds
to be synthesized or degraded. Moreover, stoichiometry
typically prevents clusters from growing indefinitely. Af-
ter a maximum size is reached, the self-assembly pro-
cess is completed or the dynamics changes. Examples of
such maximum binding limits include oxygen binding to
to a single hemoglobin protein (N = 4), self-assembly
of membrane peptides to form pores (N ≈ 6 − 8)8,
self assembly of capsid proteins to form virus capsids
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FIG. 1: A schematic of the heterogeneous self-assembly pro-
cess in a closed system. The open hexagons represent seed
particles on which the monomers (filled circles) aggregate. In
this example, the total mass, the number of seed particles,
and the maximum cluster size are M = 30, Ns = 6, and
N = 6, respectively.

(N ∼ 100 − 1000)9, or assembly of clathrin triskelion
proteins to form the clathrin-coated pits that arise in en-
docytosis (N ∼ 25− 50)10.
Thus, our problem is described by a self-assembly pro-

cess in a closed system with a total of M particles that
can bind Ns seeds, each of which can accommodate a
maximum of N particles. Given the discreteness of the
system and possible finite size effects, we will consider a
stochastic treatment and our results will be compared to
those derived through classical mean–field equations.
The classical mass–action equations for heterogeneous

nucleation under fixed {M,Ns, N} were previously ana-
lyzed in (Chou and D’Orsogna, 2011), where both lim-
its of reversible and irreversible monomer attachment
and detachment were considered. In this paper we will
present the corresponding master equation for the proba-
bility distribution of cluster sizes, and from these, derive
mean cluster concentrations to be directly compared to
those obtained in (Chou and D’Orsogna, 2011).
We have performed a similar comparison in the case

of homogeneous nucleation where stochastic and mean–
field treatments were shown to yield remarkably different
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results at equilibrium, especially when M and N were of
the same order of magnitude and in the limit of small
detachment15. The origin of the discrepancy was identi-
fied in the non-commensurability between M and N , so
that when M was not a multiple of N , finite-size effects
not captured by the mass action equations could be quite
striking in the stochastic system.
In the heterogeneous problem, we will show that more

subtle discrepancies between results derived from the
stochastic and mean-field approaches arise. In the next
section we will give a brief overview for the classical mass
actions equations for heterogeneous nucleation, as de-
rived in (Chou and D’Orsogna, 2011). In Section III
we will introduce the corresponding Master equation and
derive the average cluster sizes for comparison with the
mean–field values. Analytical and numerical results are
discussed in Section IV and V, respectively.

II. MASS-ACTION KINETICS

In this section we briefly recapitulate results from (Chou
and D’Orsogna, 2011) that will be used for comparison
with the stochastic results that will be later derived in
Section III. We derive mass–action equations for a sys-
tem of total fixed number M of bound and unbound
monomers and a fixed number Ns of seeds where each
seed can accommodate at the most N monomers. Frag-
mentation and aggregation processes that do not involve
monomers are neglected.
Following conventional notation, we denote by ck(t)

the number of clusters of size k at time t. The attachment
of monomers to a cluster of size k depends on an intrinsic
rate pk and on the total number of free monomers m(t),
while detachment from clusters occurs at a rate qk. The
mass–action equations for ck(t) are thus written as

ċ0 = −p0m(t)c0 + q1c1,

ċk = −pkm(t)ck − qkck + pk−1m(t)ck−1 + qk+1ck+1,

ċN = −qNcN + pN−1m(t)cN−1, (1)

where the number of free monomers is contrained by

m(t) ≡ M −

N
∑

k=1

kck(t), (2)

and where conservation of seeds requires

Ns =

N
∑

j=0

cj(t). (3)

Initial conditions are chosen so that m(t = 0) =
M, c0(t = 0) = Ns, ck>0(t = 0) = 0. Eqs. 1 are anal-
ogous to the Becker-Döring equations commonly used

to describe homogeneous nucleation15. Here, we restrict
ourselves to the case of constant detachment rates that
are much smaller than the constant monomer attachment
rates (qk = q ≪ pk = p. We will analyze results for both
the reversible limit and the strictly singular, irreversible
limit q = 0.
The long-time behavior of this process will depend

critically on whether there is an excess or deficiency of
monomers. An important parameter will be the quan-
tity σ ≡ M/NNs. When σ < 1, there is an excess of
seeds and, in the irreversible case (q = 0), monomers
will be depleted before all seeds can be completely filled.
At t → ∞, a distribution of partially completed clus-
ters will arise. For cases where σ ≥ 1 and detachment is
slow, all seeds will be populated to nearly full capacity N
with approximatelyM−NNs free, unattached monomers
remaining. While the specific cluster size distributions
depend independently on M,Ns, and N , we found that
their overall qualitative features are most sensitive to the
magnitude of the combination σ ≡ M/(NsN).
In the strictly irreversible case of q = 0, the choice

σ ≥ 1 implies that all seeds are fully occupied at t →
∞ so that cN (t → ∞) = Ns, ck 6=N (t → ∞) = 0 and
m(t → ∞) = M −NNs. However, if σ < 1, a finite time
t∗ exists at which the pool of free monomers is depleted,
m(t∗) = 0, and the system stops evolving. The final
concentrations c∗k/Ns were found to be11

ck<N (ξ)

Ns
=

ξke−ξ

k!
,

cN (ξ)

Ns
= 1−

N−1
∑

j=0

ξje−ξ

j!
, (4)

where ξ is determined by the real root of the transcen-
dental equation ξNe−ξ+(N−ξ)Γ(N, ξ) = (1−σ)NΓ(N).
For the case of reversible binding, we will stay focussed

on the small ε ≡ q/p regime, where monomers bind
strongly to the clusters. In this limit, the concentrations
ck(t) first approach values close to c∗k before slow detach-
ment eventually allows monomer redistribution and equi-
libration to a new cluster size distribution after a time
scale t ≫ q−1. These equilibrium cluster concentrations,
ceqk , can be found by keeping q > 0 and setting the left
hand side of Eqs. 1 to zero. Upon solving the resulting
algebraic equations along with Eqs. 2 and 3, we find

ceqk
Ns

≡
(z − 1)zk

zN+1 − 1
(5)

where ε ≡ q/p and z satisfies

(

εz

NsN
− σ

)

(z − 1)(zN+1 − 1) + zN+2

−

(

1 +
1

N

)

zN+1 +
z

N
= 0.

Note that since ε multiplies the highest power of the fu-
gacity z in Eq.6, that ε → 0+ constitutes a singular limit.
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When σ < 1, not all binding sites can be filled, and ap-
proximations for the root z can be found for σ ≪ 1 and
σ ≈ 1/2. In (Chou and D’Orsogna, 2011), we performed
numerical estimates of Eq. 6 for σ < 1 showing that for
1/2 < σ < 1, Eq. 6 yields z < 1 implying ceqk+1 > ceqk and
that smaller clusters tend to be favored. On the other
hand, for σ < 1/2, z > 1, ceqk+1 < ceqk and larger clusters
are favored. For σ = 1/2, z = 1 and all cluster sizes are
equally populated.
In the excess seed case, for σ < 1, only the metastable

values c∗k attained during the reversible dynamics for
ε → 0+ are well approximated by the irreversible re-
sults, while the later equilibration values ceqk obtained by
taking the ε → 0+ limit at t → ∞ can be quite different
from the metastable values c∗k obtained by directly set-
ting ε = 0 in Eqs. 1. As an example, we can consider
the case M = 5, Ns = 2 and N = 3, for which σ = 5/6
and Eqs. 1 yield increasing values of ceqk : ceq0 = 0.063,
ceq1 = 0.173, ceq2 = 0.473, ceq3 = 1.291.
When there are excess monomers (σ = M/(NsN) > 1),

all binding sites will be nearly always filled and

ceqk ≈
Ns

(NsN)N−k

εN−k

(σ − 1)N−k
+O(εN−k+1). (6)

Here the difference between reversible and irreversible
binding kinetics vanishes since ceqk 6=N ≈ c∗k 6=N → 0 and

ceqN ≈ c∗N → Ns in the ε → 0+ limit.

III. MASTER EQUATION FOR

HETEROGENEOUS SELF-ASSEMBLY

We now introduce the master equation for our discrete
heterogeneous self-assembly. Denote by P ({n}; t) ≡
P (m|n0, n1, ..., nN ; t) the probability distribution func-
tion for the system to be in a state withm free monomers,
n0 unbound seeds, and ni (1 ≤ i ≤ N) seeds with i bound
monomers. Since each seed can bind at most N particles,
the sequence is arrested at nN . Using the same notation
as in the previous section for the attachment and detach-
ment rates pk and qk respectively, we can write the full
master equation as

Ṗ ({n}; t) = −m
N−1
∑

i=0

piniP ({n}; t)−
N
∑

i=1

qiniP ({n}; t) (7)

+(m+ 1)

N−1
∑

i=0

pi(ni + 1)W+
∗ W+

i W−
i+1P ({n}; t) +

N
∑

i=1

qi(ni + 1)W−
∗ W−

i−1W
+
i P ({n}; t),

where we have implicity assumed that P ({n}; t) = 0 if,
for any i, ni < 0 or m < 0. The W±

i and W±
∗ terms

represent the unit raising or lowering operators on the
number ni of clusters of size i and on the number of free
monomers m, respectively. For example, the operator
W+

∗ W+
i W−

i+1 acting on state P ({n}, t) is defined as

W+
∗ W+

i W−
i+1P ({n}; t) ≡ (8)

P (m+ 1|n0, ..., ni + 1, ni+1 − 1, ..., nN ; t).

As in our analysis of the mass-action kinetics, we will
assume that monomer binding and unbinding occur at
constant, cluster size-independent rates p and q, respec-
tively, and rescale time in units of p−1. The form of the
master equation is identical to that in Eq. 7 except with
the replacements t → p−1t, pk → 1, and qk → ε ≡ q/p.
Note that the stochastic dynamics described by Eq. 7
obeys total mass conservation

M = m+

N
∑

k=1

knk, (9)

and a total cluster number constraint

Ns =

N
∑

k=0

nk. (10)

Eqs. 9 and 10 are the discrete counterparts to the mass-
action equation constraints Eqs. 2 and 3. We assume
that all the monomers are free at t = 0 so that

P ({n}; t = 0) = δm,Mδn0,Nsδn1,0 · · · δnN ,0. (11)

In order to compare results arising from Eq. 7 to the ones
derived from the mean-field Eqs. 1 we define the mean
number of clusters of size k as
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〈nk(t)〉 =
∑

{n}

nkP ({n}; t). (12)

The values of 〈nk(t)〉 derived from the full stochas-
tic treatment in Eq. 12 are the direct counterparts to
the mean–field approximation to ck(t) found by solving
Eqs. 1. This can be most easily seen by by multiplying
Eq. 7 by nk and by summing over all possible states to
give

〈ṅ0(t)〉 = −〈mn0〉+ ε〈n1〉

〈ṅk(t)〉 = −〈mnk〉+ 〈mnk−1〉 − ε(〈nk〉 − 〈nk+1〉)

〈ṅN (t)〉 = 〈mnN−1〉 − ε〈nN 〉, (13)

where 〈mnk〉 ≡
∑

{n} mnkP ({n}; t) represent monomer-

cluster correlations. If we further assume that the
monomer and cluster numbers are uncorrelated (〈mnk〉 =
〈m〉〈nk〉), and identify m ≡ 〈m〉 and 〈nk〉 ≡ ck, Eqs. 13
reduce to the mass–action equations (Eqs. 1).
Differences between the expected cluster numbers

derived from stochastic and mean-field approaches arise
from nonvanishing correlations 〈mnk〉 − 〈m〉〈nk〉 6= 0.
One approach for determining exact cluster numbers
involves enumerating the possible states of the system by
elements of the probability vector P, and solving a large
set of coupled ordinary differential equations Ṗ = AP.
Here, the transition matrix A is to be constructed from
the rates of entering and exiting each configuration. This
approach is feasible only for small values of {M,Ns, N}
where the number of distinguishable configurations is
manageable. For example, consider the simple case of
M = 5, Ns = 2, N = 3, which corresponds to σ = 5/6.
Here, there are nine possible configurations as shown
in Fig. 2, which we enumerate in the order (5|2, 0, 0, 0),
(4|1, 1, 0, 0), (3|0, 2, 0, 0), (3|1, 0, 1, 0), (2|0, 1, 1, 0),
(2|1, 0, 0, 1), (1|0, 0, 2, 0), (1|0, 1, 0, 1), (0|0, 0, 1, 1), so
that P1(t) ≡ P ({5|2, 0, 0, 0}, t). After solving the nine
coupled ODEs for Pk(t) we use Eq. 12 to construct
the expected equilibrium cluster numbers and find for
ε = 10−4, 〈n0(t → ∞)〉 = 0, 〈n1(t → ∞)〉 = 0.0001,
〈n2(t → ∞)〉 = 0.99995, 〈n3(t → ∞)〉 = 0.99995.
In principle, one can construct the transition matrix A

for general values of {M,Ns, N}, but its dimensionality
rapidly increases with increasing system size. For a given
set of {M,Ns, N} the total number of configurations is

[M
N

]
∑

j=0

[M−jN
N−1 ]
∑

k=0

[M−jN−k(N−1)
N−2 ]
∑

ℓ=0

· · · 1, (14)

where [·] indicates the integer part and where there are
N sums to be performed with their respective indeces
subject to the constraints 0 ≤ j + k + ℓ + · · · ≤ Ns and

(5 | 2,0,0,0)

(4 | 1,1,0,0)

(3 | 0,2,0,0) (3 | 1,0,1,0)

(2 | 0,1,1,0)

(1 | 0,0,2,0) (1 | 0,1,0,1)

(0 | 0,0,1,1)

(2 | 1,0,0,1)

FIG. 2: State space for a self-assembling system consisting
of M = 5 total monomers, Ns = 2 seeds, and a maximum
cluster size of N = 3. In this example, σ = M/(NsN) = 5/6.

M−Nj−(N−1)k−(N−2)ℓ−· · · ≤ Ns. As can be veri-
fied numerically, the sum increases dramatically even for
moderate values of {M,Ns, N}. For such larger systems,
kinetic Monte-Carlo (KMC) simulations of the stochastic
process described by Eq. 7 can be straightforwardly per-
formed. We discuss our numerical and analytical results,
as well as how they relate to the classical Becker–Döring
mean cluster sizes, in the next section.

IV. RESULTS AND DISCUSSION

We first show results for obtained by simulating the
stochastic process described by the Master equation 7.
In order to compare our simulated stochastic results from
those obtained from mass-action kinetics we plot 〈nk(t)〉
together with the the solutions ck(t) of the Becker–
Döring Eqs. 1.
In Fig. 3, we compare mean cluster numbers derived

from numerical solutions of Eqs. 1 with those derived
from KMC simulations of the process described by the
Master Eq. 7. We consider a system with Ns = 10 seeds
that can bind up to N = 5 monomers. The mean clusters
numbers 〈nk(t)〉 are plotted as a function of time for in-
creasing total mass M ((a)-(d)). For M < NsN , we find
the expected intermediate metastable configuration that
lasts on order of t ∼ 1/ε, before reorganizing into an equi-
librium configuration. Upon comparing KMC simula-
tions with the mass-action results, we find that generally,
both methods give qualitatively similar results. However,
deviations of mass-action kinetics from the simulated and
exact results depend primarily on σ ≡ M/(NsN).
Our simulations show that correlations between
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FIG. 3: Mean cluster sizes 〈nk(t)〉 obtained from averaging 105 KMC simulations of the stochastic process in Eq. 7 with N = 5,
Ns = 10, and ε = 10−5. The dashed curves represent solutions from BD equations for comparison. (a) M = 5 corresponding
to σ = 0.1. (b) M = 15 corresponding to σ = 0.3, and (c) M = 25 (σ = 1/2).

monomers and larger clusters are relatively more impor-
tant when M is very small or almost close – but not equal
– to the total available cluster vacancy. This to be ex-
pected, since in both these cases of σ & 0 and σ . 1
the number of monomers is incommensurate with the to-
tal cluster vacancy and in addition to fully completed
clusters there will be a few spurious monomers that may
dramatically affect the total cluster distribution, under-
lining finite size effects, as illustrated above in the case
of M = NNs − 1. On the other hand when σ ∼ 1/2
the number of spurious monomers is large enough for
a broader distribution to emerge, closer to the Becker–
Döring results.
Note that the trend predicted by the Becker–Döring

equations, of smaller clusters being more populated than
larger ones for 0 < σ < 1/2 is reflected and amplified in
our stochastic system. Similarly for 1/2 < σ < 1 larger
clusters are favored according to our Becker–Döring re-

sults, as confirmed and magnified in our stochastic sim-
ulations.

In order to more efficiently analyze the discrepancies
between exact solutions and those from mass-action ki-
netics, we now develop some analytic approaches. For
the metastable cluster numbers 〈n∗〉, we preclude de-
tachment by setting ε = 0. As shown in previous work11,
the final quenched configurations in this case will depend
on the initial cluster distribution. Analytic progress can
be made by using combinatoric analyses for the related
“urn” problem where the number of ways to distribute
M balls into Ns bins is enumerated. Here, we must also
consider a maximum capacity for each bin of N balls. We
can also map the problem onto a Tonks gas and use sim-
ilar techniques12. Using simple combinatorial arguments
based on the inclusion-exclusion principle illustrated in
the Appendix, we find

〈n∗
k〉 =

b{k,M,Ns}N
M
s +

[ M
N+1

]
∑

i=1

(−1)i
(

Ns

i

) M
∑

j1=N+1

· · ·

M−
∑i−1

ℓ=1 jℓ
∑

ji=N+1

b{k,M−
∑

i
ℓ=1 jℓ,Ns−i}

(Ns − i)M−
∑i

ℓ=1 jℓM !

(M −
∑i

ℓ=1 jℓ)!
∏i

ℓ=1 jℓ!

NM
s +

[ M
N+1 ]
∑

i=1

(−1)i
(

Ns

i

) M
∑

j1=N+1

· · ·

M−
∑i−1

ℓ=1 jℓ
∑

ji=N+1

(Ns − i)M−
∑

i
ℓ=1 jℓM !

(M −
∑i

ℓ=1 jℓ)!
∏i

ℓ=1 jℓ!

, (15)

where b{k,M,Ns} is the average number of clusters of size
k assuming M particles can be distributed in Ns seeds
without any constraints

b{k,M,Ns} = Ns

(

M

k

)(

1−
1

Ns

)M−k (
1

Ns

)k

. (16)

Eq. 15 leads to the same results as the previously-found
recursion relation15.

Expressions for the true equilibrium cluster numbers
〈neq

k (t ≫ ε−1)〉 must be constructed using detailed bal-
ance among the lowest free energy states, just as done
for the homogeneous case15. For small detachment rates
and ε → 0+, the lowest energy states are those contain-
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ing no free monomers. We can enumerate such states
and find their relative weights by invoking the appro-
priate, single-monomer connecting states, and applying
detailed balance. For example, in the specific case of
M = 5, N = 10 and N = 4 the states that carry the most
weight are (0|8, 1, 0, 0, 1), (0|8, 0, 1, 1, 0), (0|7, 2, 0, 1, 0),
(0|7, 1, 2, 0, 0), (0|6, 3, 1, 0, 0) and (0|5, 5, 0, 0, 0). The
states are connected via intermediate states of order ε
built by detaching one particle from the existing clus-
ters and reattaching it to any of the Ns seeds. For
instance, detachment from the cluster of size four of
state (0|8, 1, 0, 0, 1) leads to state (1|8, 1, 0, 1, 0) with a
free monomer, that may reattach to any of the eight
free seeds to create state (0|7, 2, 0, 1, 0). Similarly,
any one of the two monomers can detach from the
latter state, leading to the single-monomer configura-
tion (1|8, 1, 0, 1, 0). This free monomer can then at-
tach to the trimer and lead to the state (0|8, 1, 0, 0, 1).
Detailed balance among the two states with m =
0 leads to 8εP (0|8, 1, 0, 0, 1) = 2εP (0|7, 2, 0, 1, 0), so
that 4P (0|8, 1, 0, 0, 1) = P (0|7, 2, 0, 1, 0). Similar ar-
guments can be applied to all equilibration states to
find their relative weights. Upon normalizing, one
can derive the exact probability for each state to oc-
cur. In the above case of M = 5, Ns = 10, N =
4 and ε → 0+, we find P (0|8, 1, 0, 0, 1) = 15/332,
P (0|8, 0, 1, 1, 0) = 15/332, P (0|7, 2, 0, 1, 0) = 60/332,
P (0|7, 1, 2, 0, 0) = 60/332, P (0|6, 3, 1, 0, 0) = 140/332
and P (0|5, 5, 0, 0, 0) = 42/332. These weights lead to

〈neq
0 〉 = 2130

332 = 6.416, ceq0 = 6.5927

〈neq
1 〉 = 525

332 = 1.5813, ceq1 = 2.2673

〈neq
2 〉 = 275

332 = 0.8283, ceq2 = 0.7797

〈neq
3 〉 = 75

332 = 0.2259, ceq3 = 0.2682

〈neq
4 〉 = 15

332 = 0.04518, ceq4 = 0.0922

(17)

As expected, these agree with results from our KMC
simulations, but differ significantly from results derived
from the Becker–Döring mass-action equations, shown to
the right.
One can extend the detailed balance method to larger

systems, however state space becomes increasingly larger
as {M,Ns, N} increase and the enumeration process
much more difficult. Therefore, we have implemented a
computational algorithm that determines the allowable
transitions between various states (n0, n1..., nN ), allow-
ing for single monomer detachment as an intermediate
state, and reattachment, under the fixed seed number
constraint. First, we enumerate all possible states for a
given set of {M,Ns, N}. Next, we determine the set of
all allowable transitions, and determine the probabilities
between various states by detailed balancing. As there
is degeneracy in the system of equations for the prob-

FIG. 4: The relative error ∆(t) as a function of time, obtained
from averaging 105 KMC simulations of the stochastic process
in Eq. 7, and from numerically solving Eq. 1. Parameters
used were ε = 10−4, Ns = 10, and N = 5. Different curves
represent systems with total mass of M = 5, 10, 15, and 25,
corresponding to σ = 0.1, 0.2, 0.3, 0.5.

abilities between the various states, as becomes mani-
fest for large M , we consider only a linearly indepen-
dent set of equations. The probabilities between the
various states are determined using detailed–balancing
arguments, as discussed in Section ?. We solve the lin-
ear system of equations exactly using LU -decomposition,
and after normalizing to the total probability of the vari-
ous states, we determine the equilibrium weights 〈neq

k 〉 by
weighting by the probability of the various enumerated
states.
In order to systematically quantify the discrepancies

between the mass-action cluster size estimates ck(t) and
the stochastic exact value 〈nk(t)〉, we introduce the
system-size-averaged variation in for the expected cluster
numbers:

∆(t) ≡
1

N + 1

N
∑

k=0

∣

∣

∣

∣

〈nk(t)〉

Ns
−

ck(t)

Ns

∣

∣

∣

∣

2

. (18)

∆(t) provides the relative error averaged over all k clus-
ters.
In Fig. 4 we plot ∆(t) for different values of M for

Ns = 10, N = 5 (the same parameters as used in Fig. 3).
The error vanishes at initial times but increases during
evolution the nucleation process.
In Fig. 5(a) we plot the relative error in the metastable

and equilbrium regimes as a function of σ. In Fig. 5(a),
we used Eq. 15 to compute 〈n∗

k〉 and Eq. 4 to find c∗k, and
constructed ∆∗ according to Eq. 18. Values for different
sets of {M,ns, N} are plotted. Note that ∆∗ vanishes as
M → 0 and M → NsN as expected. We find that the
maximum error typically occurs for σ
sim0.8 − 0.9. In Fig. 5(b), we used Eqs. 5 and 6 to
find ceqk and KMC simulations to estimate 〈neq

k 〉 in the
construction of ∆eq. Here, do to particle hole symmetry,
the error is a symmetric function about M = NsN/2, but
is also typically maximal near σ ∼ 0.1, 0.9.
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FIG. 5: The overall error of mass-action kinetics. (a) The
error during the metastable regime ∆∗. (b) The error ∆eq in
the equilibrium limit t ≫ ε−1 ≫ 1

V. CONCLUSIONS

We have derived the fully stochastic Master equations
associated with heterogeneous self-assembly in a closed
system with a maximum cluster size constraint. Results
for cluster concentrations derived from classical mass-
action equations were computed and compared with cor-
responding results from analysis of the discrete problem.

VI. APPENDIX

In this Appendix we illustrate the steps taken to derive
Eq. 15, for general {M,Ns, N}. We will frame our discus-
sion by referring to M as balls and to Ns as bins within
the context of the “balls in bins” problem with finite
capacity N , since this is a well known topic in combina-
torics. It is straightforward to note that our heteroge-
neous cluster size distribution at equilbrium must reduce
to the “balls in bins” results in the limit of ε = 0 when

no detachment is allowed. Altough the problem is well
defined, to the best of our knowledge there are no known
results for the average occupancy distribution under the
limited capacity constraint.

We start by considering the case of M ≤ N . Here,
bins will never be filled to capacity so that b{k,M,Ns},
the average number of bins occupied by k balls without
contraints and assuming there are M balls to distribute,
is given by the well known result

b{k,M,Ns} = Ns

(

M

k

)(

1−
1

Ns

)M−k (
1

Ns

)k

. (19)

The above expression is derived by noting that out of M
possible balls k must occupy one specific bin out of a total
of Ns, while the other M−k balls must occupy a different
one. Eq. 19 is also the mean cluster size 〈nk(t → ∞)〉 at
equilibrium for our heterogeneous problem, in the limit
of ε = 0 for M ≤ N , or equivalently σ ≤ 1/Ns.

Using the particle-hole duality, we may also write a
mirror expression for M ′ = NNs − M ≤ N , or equiva-
lently for σ ≥ 1− 1/Ns so that

b{N−k,M,Ns} =

(

NNs −M

k

)(

1−
1

Ns

)NNs−M−k (
1

Ns

)k

.

(20)

We can now use Eq. 19 to find the average number of bins
occupied by k balls b{k,M,Ns,N} where each bin cannot
exceed capacity N and assuming there are M balls to
distribute. We first consider the case of N < M ≤ 2N +
1 where there will be at the most one bin occupied to
capacity. One possible way of evaluating b{k,M,Ns,N} is
to consider the general distribution without constraints
given by Eq. 19 for general M,Ns and discard from this
evaluation any configurations with bins where there are
more thanN balls present. We do this by enumerating all
possible configurations in the unconstrained case, given
by NM

s since all balls can be placed in any of the Ns

bins, subtracting the contribution of all configurations
that exceed bin capacity and renormalizing by the total
number of configurations within the constraint. We thus
find, for N < M ≤ 2N + 1

b{k,M,Ns,N} =

b{k,M,Ns}N
M
s −

∑M

j=N+1 b{k,M−j,Ns−1}Ns(Ns − 1)M−j

(

M

j

)

NM
s −

∑M

j=N+1 Ns(Ns − 1)M−j

(

M

j

) . (21)

Here, b{k,M,Ns} is the average number of bins of size k
for M balls in Ns bins, not subject to any constraints.

Similarly b{k,M−j,Ns−1} is the average number of bins of
size k for M − j particles in Ns − 1 bins, not subject to
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any constraints. Both are given by Eq. 19. Note that if
M ≤ N , Eq. 21 reduces to the unconstrained distribution
in Eq. 19.
In Eq. 21, the sum that appears in the numerator is to

isolate and discard configurations with bin occupancy of
size j ≥ N +1. Since at the most one bin can exceed ca-
pacity the remaining M − j balls are distributed without
constraints among the other Ns− 1 bins. The denomina-
tor is a normalizing factor calculated on the total number
of viable states under the capacity constraint.
Within our heterogeneous nucleation framework,

Eq. 21 represents 〈nk(t → ∞)〉 for 1/Ns < σ ≤ 2/Ns +
1/NNs and ε = 0. Eq. 21 can can also be recast using the
particle-hole duality with N < M ′ = NNs−M ≤ 2N+1,
or equivalently 1 − 2/Ns − 1/NNs ≤ σ < 1 − 1/Ns. For
instance, in the case M = 6, Ns = 3, N = 4 Eq. 21 yields
〈n0〉 = 5/23 〈n1〉 = 18/23, 〈n2〉 = 24/23, 〈n3〉 = 16/23,
and 〈n4〉 = 6/23.
We can now extend this result to larger values of M >

2N , by invoking the exclusion-inclusion principle.
Given general {M,Ns, N}, at the most there can be

[M/(N + 1)] clusters that exceed capacity, where [·] de-
notes the integer part. We will progressively eliminate
the contribution of all of them from the unconstrained
evaluation of bk,Ns,N , as done above for Eq. 21 when
[M/(N + 1)] = 1.
Assume, for instance that [M/(N + 1)] = 2. In this

case, there can be at the most two bins that exceed ca-
pacity. We must then eliminate from the configurations
that led to Eq. 21 – where we have only included the
possibility that one bin and one bin only exceeds capac-

ity – the ones where a second bin may be filled beyond
capacity.

These configurations are characterized by two bins
populated by j1, j2 ≥ N + 1 particles, thus beyond ca-
pacity, and by M − j1 − j2 particles distributed within
capacity among the remanining Ns−2bins. We thus pick
two bins from the Ns that are available, , j1 ≥ N+1 from
the M population, and j2 ≥ N +1 from the M − j1 left.
We find that the collective weight of these configurations,
for all possible j1, j2 ≥ N + 1 is

M
∑

j1=N+1

M−j1
∑

j1=N+1

(

Ns

2

)(

M

j1

)(

M

j2

)

(Ns − 2)M−j1−j2 (22)

This is the extra term that appears in the denomina-
tor of Eq. 15 for [M/(N + 1) = 2]. The numerator
will contain the distribution of the remaining particles
within the remaining bins associated to these configura-
tions, bk,M−j1−j2,Ns−2, with their proper weights.

The same enumeration process can be iterated for gen-
eral {M,Ns, N} and for increasing values of [M/(N+1)].
At every step of the iteration, we need to subtract con-
figurations from the previous terms, resulting in an al-
ternating series. A careful evaluation results in Eq. 15,
which can be easily verified, for example, in the case
2N + 1 ≤ M ≤ 3. In particular Eq. 15 reduces to
Eq. 21 for [M = (N + 1)] = i = 1 and to Eq. 19 for
[M = (N + 1)] = i = 0.
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