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Motivated by the recent surge of violence in the Middle East, we model radicalization in
a society comprised of two competing religious, ethnic, or political groups. Each of the

“sects” is divided into moderate and radical factions, with intra-group transitions occur-

ring either spontaneously or through active propaganda. We also include the possibility
for violent attacks from one group to the other. The intra-group transition rates are mod-

eled to explicitly depend on the actions and characteristics of the other group, including

violent episodes, effectively coupling the dynamics of the two sects. We use a game the-
oretic framework and assume that radical factions may tune “strategic” parameters to
optimize given utility functions aimed at maximizing their ranks while minimizing the
damage inflicted by their rivals. Constraints include limited overall resources that must
be optimally allocated between internal propaganda efforts and external attacks on the

other group. Various scenarios are considered, from symmetric sects whose behaviors
mirror each other, to totally asymmetric ones where one sect may have a larger popula-

tion or a superior resource availability than the other. We discuss under what conditions
sects preferentially employ propaganda or violence, the resulting radical population lev-
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els, and how allowing sects to readjust their strategies in response to the choices made
by the other differs from the search for pure Nash equilibria.
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1. Introduction

The past few decades have seen a remarkable change in the motivations leading to

armed conflicts worldwide, in how and by whom populations are being mobilized,

and in the ways violence unfolds in societies 1. The character of present warfare

is increasingly civil, internal, and sectarian as opposed to the more international,

external wars fought until the mid-twentieth century. The latter were mostly driven

by economic, imperialistic, and expansionistic intents – such as the two world wars

– or by nationalistic and ideological motives – such as the quest for independence of

former colonies, or the attempt to forcefully establish capitalism over communism.

Contemporary conflicts on the other hand are marked by ethnic, cultural, or reli-

gious undertones that were not a source of full fledged rivalry or hostility between

groups until triggered by specific political or military events. Examples include the

Balkan and Rwandan civil wars, the secessionist conflict in Chechnya, the Darfur

war, the Lebanese civil war, and religious conflicts in Northern Ireland. In more

recent years, the Middle East has experienced a dramatic surge in tension between

the Sunni and Shia denominations of Islam, particularly in Iraq and Syria 2,3.

While each of these past or present conflicts must be placed in its own historical

context and carries its unique raison d’être, a few common threads can be found.

Most arise as small, local conflicts, often building on denominational or cultural

divisions that had been simmering for years but that had been reigned in by a

legitimate or de facto authority: occupying forces, the government, or a dictator.

The collapse or fall of the latter, especially in societies with less concern for human

rights, has often led to chaotic free–for–all states, marked by widespread abuse,

violence against civilians, and terror. Dormant identity divisions have resurged as

a need and a way to protect one’s own. Emerging sectarian groups are often led by

fanatics, rebels or irregular militiamen that, within a failed nation state, are able

to expand their reach and influence without restraint, such as in the case of the

Islamic State 4. Divisions and hostility are often deepened by the continued use

of propaganda and identity arguments, whether constructed or factual, to recruit

militants and sympathizers and to present the “other” as an enemy or a scapegoat.

Against this backdrop, and often exacerbated by poverty and lack of education

and opportunity, the radicalization of communities drives individuals that had once

lived side by side in relative harmony towards segregation and to the ever increasing

glorification of violence.

Being able to understand how individuals and societies become radicalized 5,6,7

is an important step in trying to prevent extremism in volatile, unstable societies

that are not yet completely polarized, and for the development of possible, effective
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anti-radicalization strategies in those that are. The goal of this paper is to develop a

mathematical model to study the radicalization of sectarian communities. We aim to

incorporate several sociologically relevant factors: active propaganda by established

radicals, psychological responses to attacks, and possible de-radicalization efforts.

Within the general context of political or religious radicalization, previous popu-

lation models grouped individuals depending on level of zeal 8,9, allowing individuals

to become more or less fanatic depending on their interactions with others. Network

models 10,11 and applications to specific cases such as the radicalization of Basques

by the ETA terrorist organization 12 have also been studied. Models targeted to

specifically describe the Middle East include the study of public support towards

occupying forces in Iraq via population based 13 or lattice type models 14,15 where

sites are populated with civilians and insurgent agents in proportions derived from

ethnic maps of Baghdad 16. Attacks, migrations, and safety issues are included, as

well as policing strategies to mitigate violence.

In our current work we consider two opposing populations, each comprised of

a more and less radical component that respond to and/or cause attacks and/or

disseminate propaganda. As we shall describe in the next section, the model we

present has a more dynamic and adversarial character than the mostly “opinion”

models introduced so far, since we include the possibility of moderates radicalizing

not only in response to internal propaganda, but also in direct response to the

offensive actions carried out by the opposing party. Indeed, we allow the radical

component of one group to take advantage of the actions of the other for their own

proselytizing efforts. Several parameters will be introduced, for example to describe

the willingness of one faction to carry out attacks on the other, or the degree of

de-radicalization. Each of these parameters will embody given tactical possibilities

or societal reactions, so that different regimes can be associated to different types

of sects and antagonism between them. Parameters can also change due to the

intervention of policing forces, the international community, or pacifying groups,

so that our equations can describe a variety of situations. We use utility functions

that radicals seek to optimize by selecting relevant “strategies” as they interact

with each other. Using game-theoretic ideas we study how societal dynamics unfold

depending on the choices made. The insights gained by our work may be useful

in understanding why radical groups behave as they do, why certain archetypal

rivalries persist, and may help identify ways to disrupt mounting cycles of violence.

2. The model

For concreteness, we frame our model in terms of religious extremism, although

the discussion that follows can be readily applied to any political or nationalistic

ideology that causes “violent” rivalries. We consider a total population of individuals

that can adhere to belief A or B, and be radical or moderate within each group.

Here, radicals are defined by their willingness to “attack” members of the opposite

group, via direct physical violence, the dissemination of incendiary comments, or
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Table 1. Parameter list for sects i = A,B

Ni Total faction population

λi Spontaneous radicalization rate

µi Spontaneous de-radicalization rate

pi Propaganda rate

ki Attack rate

ωi Maximum radical activity rate

the desecration of religious symbols for example. At time t the population is thus

divided into rA(t) radicals of faith A, rB(t) radicals of faith B, nA(t) moderates of

faith A, and nB(t) moderates of faith B. We also assume the total population for

factions A and B to be set at NA and NB respectively, so that rA(t) + nA(t) = NA

and rB(t) + nB(t) = NB . These conditions can be relaxed, but we use them as a

starting point. The entire population is denoted by N = NA +NB . Given the fixed

sect population assumption, we only need to study the dynamics of the rA and rB
radicals.

Let us focus on sect A, and consider radicalization and de-radicalization within

this sect. Our first assumption is that these processes are modulated by a collec-

tive “sensitivity” parameter sA: as sA increases so does radicalization, while de-

radicalization decreases. This quantity may be viewed as a state of alertness, or as

the propensity of members of sect A to radicalize; for example sA will be low in

situations of calm but may increase under hostilities perpetrated by members of

sect B.

Radicalization will take two forms: either as a spontaneous process or after per-

sonal discussions, social media, or mass propaganda campaigns that expose an indi-

vidual to already radicalized ones. On the other hand, de-radicalization is assumed

to occur as a spontaneous process only: we assume there are no active attempts by

non-radicals to change the minds of the radicals. We can thus write an expression

for the time evolution of the number of radicals rA as follows

ṙA = nA

[
λAsA + pAsA

rA
NA

]
− µAf(sA)rA. (2.1)

The first term on the right hand side of Eq. 2.1 represents spontaneous radicalization

described by the intrinsic rate λA and modulated by the sensitivity parameter sA.

The second term represents radicalization in response to propaganda as spread

by the rA/NA fraction of active radicals at rate pA, and similarly modulated by

sA. Finally, we assume de-radicalization occurs at an intrinsic rate µA modulated

by a sensitivity-dependent function f(sA) that decreases with sA so that a highly

sensitive population is more unlikely to de-radicalize. The dynamics of the rB(t)

radicals are described in the same way, with all labels A replaced with B in Eq. 2.1,
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and where rates λB , pB , µB , and the population NB , may differ from their A

counterparts. Our complete model thus consists of two coupled equations for rA, rB
where the two factions may or may not be symmetrically balanced in their strengths

and responses.

Note that we have not yet specified the form of sA. If this quantity is selected

to be a numerical value independent of the dynamics of sect B, the two factions

are effectively uncoupled and the dynamics of rA(t) are completely determined by

Eq. 2.1 once the initial condition and the form for f(sA) are set. Interactions arise

only when the sensitivity of sect A depends on the actions of sect B members and/or

vice-versa. Within the scenario of a functional dependence of sA on rB and/or of sB
on rA, we assume that members of a given sect adjust their responses to propaganda

and their spontaneous radicalization and de-radicalization depending on the actions

taken by the other sect. For example, we can model “attacks” from one sect to the

other and assume that the sensitivity of the victim sect will depend on the intensity

or frequency of these attacks. In the next sections we will look first at the simple

case of non interacting sects, where sA is a numerical value independent of sect B,

and the more complex case of interacting sects, where the notion of attacks will be

quantified and functional forms for sA(rB) and sB(rA) will be introduced. We will

determine steady states, stability, and bifurcations. Furthermore, we will identify

parameters that can be adjusted either by radicals or by external forces, such as the

intensity of propaganda or the frequency of attacks, and study how changes in these

parameters affect the dynamics and societal outcomes through the aid of objective

functions to be optimized.

3. Non-interacting sects

As a starting point and benchmark for more complex scenarios, we first consider

non-interacting sects where sA is a constant on [0, 1]. Here, the radicalization of

sect A individuals does not depend on the dynamics or actions of sect B members.

This is plausible if the latter are incapacitated or choose not to engage with sect A

members. For mathematical simplicity we set

f(sA) = 1− sA. (3.1)

Under these assumptions, the model in Eq. 2.1 reduces to a simple ODE for rA:

ṙA = (NA − rA)

[
λAsA + pAsA

rA
NA

]
− µA(1− sA)rA. (3.2)

Note that the choice sA = 0 leads to a vanishing radical population rA(t→∞) = 0,

while setting sA = 1 leads to a society saturated with radicals rA(t → ∞) = NA

regardless of initial conditions, assuming λA and µA are nonzero; we will assume

λA, µA > 0 from here onward, unless specifically noted otherwise. For 0 < sA < 1 we

non-dimensionalize Eq. 3.2 by rescaling time via t′ ≡ µA(1−sA)t and by considering

fractional populations so that r′ANA ≡ rA and n′ANA ≡ nA. We also redefine
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p′A ≡ pAsA/µA(1 − sA), λ′A ≡ λAsA/µA(1 − sA). Using these substitutions and

dropping prime indices and sect labels for simplicity, Eq.3.2 can be rewritten as

ṙ = −pr2 + gr + λ , (3.3)

where

g = p− λ− 1 . (3.4)

The above equation can be solved exactly, as it is in the form of a Riccati equation.

Specifically, if at t = 0 there are r(0) = δ radicals, Eq. 3.3 has solution

r(t) =
r1(δ − r2)− r2(δ − r1)e−p(r1−r2)t

(δ − r2)− (δ − r1)e−p(r1−r2)t
(3.5)

where

r1,2 =
g ±

√
g2 + 4λp

2p
, (3.6)

and the labels 1, 2 apply to the plus and minus signs respectively. Note that, in

order to be physically acceptable, the above solutions must satisfy the constraint

0 ≤ r ≤ 1, since the renormalized r is now a fractional population. It can be shown

that for λ, p > 0, r1,2 are such that 0 < r1 < 1 and r2 < 0. Since r1 > r2, at steady

state the exponential terms in Eq. 3.5 vanish and r(t→∞) = r1, independently of

the initial condition δ. We thus find that a radical population will always emerge,

even if δ = 0, as long as λ, p > 0. For p = 0, at steady state r(t→∞) = λ/(λ+ 1),

while for λ = 0, r(t→∞) = r1 = 1−1/p if p > 1, else r(t→∞) = 0. Therefore, the

only case where no radicalization occurs is for λ = 0, p ≤ 1. In dimensional units,

this is λ = 0, and ps < µ(1− s); that is, radicals will always emerge unless there is

no spontaneous radicalization and de-radicalization is always stronger than radical

persuasion. In this case, the presence of radicals is short lived at best. For all other

dimensional parameters λ, p, µ, radical groups will emerge and persist. Furthermore,

since r1 increases with p, the number of radicals at steady state will also increase

with p. Hence, for non interacting sects, if radicals aim to increase their ranks, the

best “strategy” is to choose the largest propaganda rate p possible.

4. Interacting sects

We now consider the case where sects interact with each other through interdepen-

dent sensitivity functions sA(t) and sB(t). As described above, we assume that the

propensity of sect A members to radicalize depends on acts of aggression coming

from sect B, such as military raids, the dissemination of incendiary materials, or

the desecration of religious symbols. We assume these “attacks” are performed or

instigated solely by the rB(t) radicals within sect B. Our basic modeling assumption

is that the higher the incidence of these aggressions from the opposite faction, the

higher the propensity for individuals to self-radicalize and to respond to internal



March 23, 2017 16:34 WSPC/INSTRUCTION FILE Sects˙final

7

fanatic propaganda. In this context, sensitivity is an “external” drive, as it modu-

lates radicalization within a group in response to the actions or characteristics of

the other.

To formalize our mathematical definition of sA(t) we introduce kB , the rate

of radical attacks against sect A performed by each radical member of sect B, so

that sA(t) is proportional to kB rB(t). We assume that due to finite preparation

times, logistic difficulties, and/or limited resources, kB cannot exceed a maximum

threshold ωB . Correspondingly, sect A radicals attack sect B members at rate kA
per radical with an upper limit set at ωA. To complete our definition of sA(t), we

posit that the effects on sA(t) of attacks by sect B are mitigated by the attack

capabilities of sect A itself, expressed as the entire population NA being mobilized

and counterattacking at maximal rate ωA. We thus assume sA(t) is also inversely

proportional to ωANA and write

sA(t) ≡ kB rB(t)

ωANA
=
ωBNB

ωANA

kBrB(t)

ωBNB
≡ xkBrB(t)

ωBNB
. (4.1)

As expressed by Eq. 4.1, the externally driven sensitivity sA(t) is given as the ratio

between the number of attacks per unit time the rB(t) radicals actually impart on

sect A members, and the hypothetical maximal attack rate members of sect A could

inflict on members of sect B in retaliation or in defense. In this context, sensitivity

is a measure of the relative aggression capabilities of the two groups.

The last product on the right hand side of Eq. 4.1 recasts sA(t) in a slightly

different manner: the dimensionless term kBrB(t)/ωBNB is the ratio between the

total attack rate of sect B members and their own maximal aggression rate given by

ωBNB . It is a term controlled solely by the dynamics and parameters of members

of sect B. The dimensionless quantity x ≡ ωBNB/ωANA measures the aggressive

capability of sect B per unit time with respect to sect A. It is the ratio between

the respective maximal aggression rates of the two sects if attacks were carried out

by their entire populations. This representation of sA(t) will prove to be useful in

analyzing our model and will provide a better interpretative context in the following

sections.

So far the model contains several rates to describe the actions taken per unit

time by members of a given sect: for sect A these are λA, µA, pA and kA, repre-

senting respectively the intrinsic radicalization and de-radicalization rates and the

propaganda and attack rates; similarly for sect B. We now assume that the first two,

λA and µA are inherent to sect A, and cannot be changed at will neither by radicals

nor nonradicals. At most, they can be modulated by the sensitivity as described

earlier. On the other hand, we assume that radicals can select their attack and

propaganda rates kA and pA to optimize their intent, which may be, for example,

to maximize the number of radicals or to inflict the highest damage to members of

the opposite sect. Resource constraints however pose a limit on these activities, so

that if propaganda is favored, attacking becomes less of a priority and vice-versa.
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In this respect ωA represents the total amount of resources available per unit time

to radicals of sect A to carry out their activities. We thus pose

kA + pA ≤ ωA (4.2)

so that the maximal attack rate kA = ωA can be attained only if there is no

active propaganda and pA = 0. In principle, Eq. 4.2 could include a relative weight

to measure how resource expenditure for propaganda compares to that for attack

activities. This would allow us to explore cases where using internal propaganda

may be more or less resource intensive than attacking the opposite sect. However,

it can be shown that once introduced, this relative weight can be subsumed in the

non-dimensional parametrization that we illustrate later, so we omit it for simplicity.

We shall refer to the combination of (pA, kA) values under the constraint in Eq. 4.2

as the “strategy” of sect A, and similarly for sect B.

The definition for sB(t) is the same as Eq. 4.1 with the A and B subscripts

switched, so that

sB(t) ≡ kA rA(t)

ωBNB
=

1

x

kArA(t)

ωANA
. (4.3)

For simplicity and without loss of generality, we will later assume that sect A has

a maximal aggression rate ωANA that is at least as large as that of sect B, so that

x =
ωBNB

ωANA
≤ 1. (4.4)

This assumption also implies that the stronger sect A is inherently less sensitive to

radicalization than the weaker sect B 18,19. Indeed, Eqs. 4.1, 4.3 and 4.4 imply that

0 ≤ sA ≤ x while 0 ≤ sB ≤ 1/x. Similarly, we assume that kB obeys the analogue

to Eq. 4.2 where all subscripts A are switched to B. We complete our model by

proposing a simple form for f(si), for i = A,B

f(si) = 1− xsi, (4.5)

which allows f to be decreasing and non-negative, since xsi ≤ 1 for i = A,B. Our

model is now completely specified by Eqs. 2.1 , 4.1, and 4.5 and the corresponding

equations for sect B, which we now non-dimensionalize for simplicity. Similarly

to above, we define r′i = ri/Ni for both sects i = A,B and rescale t by the de-

radicalization time scale of sect A so that t′ = µAt. We also define k′i = ki/ωi,

λ′i = λi/µA, p′i = pi/µA, ω′i = ωi/µA for i = A,B and µ′B = µB/µA. Using these

definitions, and dropping the prime symbol for simplicity, we find
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ṙA = xkBrB(1− rA)(λA + pArA)− rA + x2kBrArB (4.6)

ṙB =
kArA
x

(1− rB)(λB + pBrB)− µBrB + µBkArBrA. (4.7)

coupled with the dimensionless resource constraint

ki +
pi
ωi
≤ 1 for i = A,B. (4.8)

We will refer to Eq. 4.8 with the strict equal sign as the constraint line.

4.1. Fully symmetric, non constrained sects

We first consider the case of two completely symmetric sects where all parameters

and initial conditions for the two factions coincide, such that rA(t) = rB(t) = r(t)

for all t and x = 1. We can drop all sect subscripts from our notation in this case

and write

ṙ = −pkr(r2 −Br + C) , (4.9)

where

B =
p− λ+ 1

p
, C =

1− λk
pk

. (4.10)

We first analyze these equations without the constraint in Eq. 4.8; later we will

introduce the constraint and determine regions of validity.

Eq. 4.9 allows for the “pacified” solution r = 0, where no radicals arise in ei-

ther sect. Alternatively, radical populations will be described by the roots of the

quadratic term in Eq. 4.9, where solutions must satisfy the condition 0 ≤ r ≤ 1,

as r is a fractional population. Given an initial radicalization r(t = 0) = δ, exact

solutions are given by

r∆12
(r − r1)r2

(r − r2)r1
= δ∆12

(δ − r1)r2

(δ − r2)r1
e−pkCt∆12 , (4.11)

where

r1,2 =
B ±

√
B2 − 4C

2
, (4.12)

∆12 ≡ r1 − r2 =
√
B2 − 4C. (4.13)

We have labeled r1,2 so that the plus sign corresponds to r1 and the minus sign to

r2. Together with r = 0, r = r1,2 are the zeros of the right hand side of Eq. 4.9,
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representing possible steady states of the system. Instead of analyzing Eq. 4.11 we

consider the stability of the possible steady state solutions arising from Eq. 4.9. In

particular, whether the r = 0, r = r1,2 solutions are physical and/or stable at steady

state depends on the values of the chosen parameters. A straightforward analysis

allows us to distinguish four regimes in terms of k and p. Let

K(p) =
4p

p2 + (1− λ)2 + 2p(1 + λ)
. (4.14)

We find

• If k < K(p), then r1,2 are complex and unphysical, leaving r = 0 as the

only steady state. Here, sects are not aggressive enough to entice a stable

radical population. Radicalization efforts fail and at equilibrium the unique

stable state is r = 0.

• If K(p) ≤ k < 1/λ and p < |1 − λ| then r1,2 are real, but are not in the

range of physically allowed values. Here, attacks between sects are vigorous,

enhancing both spontaneous and persuasive radicalization on both sides,

and decreasing de-radicalization. However, attacks alone are not sufficient

to maintain radicalization, and levels of propaganda are too low to com-

pensate. At steady state, r = 0 for all initial conditions.

• If K(p) ≤ k < 1/λ and p ≥ |1 − λ| then r1,2 are real, and are both in

the range of physically allowed values. Attacks between sects are vigor-

ous, enhancing both spontaneous and persuasive radicalization on both

sides, and propaganda is significant. De-radicalization efforts may or may

not be enough to halt the process and the presence of radical factions

at steady state will depend on initial conditions. For small enough radi-

cal factions 0 ≤ δ < r2, radicalization is not sustainable as t → ∞ and

r(t → ∞) = req = 0. A finite steady state radical population will arise at

r(t → ∞) = req = r1 only if initial radicalization is large enough, with

r2 < δ ≤ 1.

• If k ≥ 1/λ, both r1,2 roots are real with r2 < 0 and 0 < r1 ≤ 1. Sects are

aggressively attacking each other and are highly prone to radicalization, so

that regardless of the propaganda activity p of the already radicalized frac-

tion, a radical population will emerge and persist. Note that if we impose

k ≤ 1, this scenario can arise only if λ ≥ 1, which in dimensional form is

λ ≥ µ; i.e., the intrinsic rate of spontaneous radicalization must be higher

than that of de-radicalization. The unique stable state for the fraction of

radicals is r(t→∞) = req = r1 for all initial conditions.

The same behavioral regimes can be identified by working directly with Eq. 4.11



March 23, 2017 16:34 WSPC/INSTRUCTION FILE Sects˙final

11

and by considering different long time trends as a function of C, r1,2. We can thus

conclude that an active radical population will persist for t → ∞ if the radicals

are either i) very violent, in which case the propaganda level is immaterial; or ii)

moderately violent while employing enough propaganda. All other conditions lead

to no radical populations at steady state.

4.2. Fully symmetric, constrained sects

We now consider the two fully symmetric sects being subjected to limited resources

and analyze the above results under the (p, k) constraint in Eq. 4.8. We illustrate

our results in Fig. 1 and consider two cases: λ > 1 in Fig. 1(a) and λ ≤ 1 in Fig. 1(b).

In both cases, the constraint line k = 1− p/ω given by Eq. 4.8 is depicted as a red

dashed line, while the solid black curve is the function k = K(p) given by Eq. 4.14

for p ≥ |1− λ| and min(1,1/λ) for p < |1− λ|.
For λ > 1, the curve k = K(p) attains its maximum at (λ − 1, 1/λ), and the

black curve of Fig. 1(a) intersects the constraint line k = 1 − p/ω only once, at

p = pmax. For ω ≥ λ this intersection occurs at pmax ≥ λ − 1; vice-versa for

ω < λ at pmax < λ − 1. In Fig. 1(a) we assume ω > λ. We can now use the

results from subsection 4.1 to determine behaviors in (p, k) space subject to the

constraint. For 1/λ ≤ k ≤ 1 − p/ω radical groups will emerge at steady state,

regardless of initial conditions. This region is blue-shaded in Fig. 1(a). For K(p) ≤
k ≤ min(1/λ, 1 − p/ω), radical groups will also persist at steady state, but only if

initial conditions are chosen so that r(t = 0) = δ with r2 < δ ≤ 1 with r2 defined

in Eq. 3.6. This region is red-shaded in Fig. 1(a) and exists only if the k = K(p)

curve and the k = 1 − p/ω constraint intersect for values of pmax ≥ λ − 1, that

is for ω > λ as shown in Fig. 1(a). Thus, if the initial radical population is large

enough, a sustained radical population will arise at steady state for all values of

0 ≤ p ≤ pmax, as depicted by the union of the blue and red-shaded areas in Fig. 1(a).

Our analysis leads to the conclusion that for symmetric sects characterized by large

intrinsic radicalization rates λ and subject to the constraint in Eq. 4.8, nonzero

radical populations may persist at steady state if p ≤ pmax and reciprocal attacks

as determined by k are large enough. For k > 1/λ and p < ω(1 − k), radical sects

will emerge regardless of initial conditions; for k ≤ 1/λ, only if initial conditions

are favorable. If propaganda rates p > pmax are too large at the expense of k, no

sustained levels of radicals may emerge.

For λ ≤ 1, the curve k = K(p) attains its maximum at (1 − λ, 1). The black

curve in Fig. 1(b) defined as K(p) for p ≥ 1 − λ and as min(1, 1/λ) for p < 1 − λ,

will intersect the non-dimensional constraint line k = 1 − p/ω at (p, k) = (0, 1).

However, this intersection will lead to vanishing radical populations at steady state,

as discussed in the previous sub-section. For values of p > 1 − λ the curve k =

K(p) will cross the constraint line k = 1 − p/ω either zero, one, or two times,

depending on the magnitude of ω for a given λ. If there are no intersections, following

the results derived in the previous sub-section, no radical populations will persist
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Fig. 1. General feasible strategies (p, k) (shaded regions) that lead to sustained radical populations
for (a) λ > 1 and (b) λ < 1. Blue shading represents regions where any initial condition will lead
to sustained radicalization; red shading indicates regions where only large enough initial radical

populations lead to sustained radicalization. In both panels, the dashed red line is the constraint
line defined by Eq. 4.8, while the solid black curve is K(p) for p ≥ |1− λ| and the lesser of 1 and

1/λ for p < |1 − λ|. Note that in scenario (a), there are always feasible strategies that lead to

a non-zero radical population, namely those in which k > 1/λ, regardless of ω. In scenario (b),
feasible strategies arise only if ω is sufficiently large for a given λ.

at steady state, regardless of initial conditions, since k < K(p) for all values of

(p, k) subject to the constraint in Eq. 4.8. If there are two intersections, which we

label (pmin, kmin) and (pmax, kmax), all values of (p, k) chosen between them such

that K(p) ≤ k ≤ 1 − p/ω lead to finite radical populations at steady state, but

only under the proper initial conditions. This scenario is shown in Fig. 1(b), where

the red-shaded region contains all (p, k) values associated to the emergence of two

intersections. The transition between the zero intersection and two intersection cases

occurs when the chosen ω and λ values lead to a single intersection between k = K(p)

and k = 1−p/ω. To find these values we impose K(p) = 1−p/ω and K′(p) = −1/ω.

These equations yield a critical value ωc(λ) such that for ω ≥ ωc(λ) two intersections
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may be found, while for ω < ωc(λ) none arise. Importantly, ωc(λ) is an increasing

function of λ, and ωc(0) = 4 while ωc(1) = (11 + 5
√

5)/2. Thus, if ω < 4, there

will never be any intersections between the constraint line and k = K(p) for any

λ < 1 and no radical population can be sustained at steady state. On the other

hand, values of ω ≥ (11 + 5
√

5)/2 will result in two intersections for any λ < 1 so

that long-term radical populations may persist given a large enough initial radical

population and proper (p, k) choices. We can thus conclude that for moderate self-

radicalization rates λ, a large radical population will be sustained only if enough

resources ω are available, if there is an initial, nucleating group of enough radicals,

and if propaganda and attack rates are judiciously balanced.

We now turn to identifying the optimal strategy (p, k) that radical groups should

adopt. So far, we have tacitly assumed that the goal of the two radical factions

is to simply perpetuate their existence at steady state so that any (p, k) points

within the shaded regions of Figs. 1(a) and (b) could be employed, conditioned

on starting with the proper initial conditions. We denote those shaded areas as

feasible sets. However, radical groups may have much more nuanced goals. Let us

now introduce an objective function that radical populations seek to optimize, by

identifying the best (p, k) values. We propose a relatively simple objective function,

given in dimensionless parameters for radicals in sect A by

UA(pA, kA; pB , kB) = req
A −

NB

NA
kBr

eq
B . (4.15)

Similarly, UB(pB , kB ; pA, kA) for radicals of sect B is given by exchanging the labels

A and B in Eq. 4.15. The above choice for UA implies that radicals seek to expand

their ranks, through the req
A term, while minimizing attacks from their rival group,

represented by kBr
eq
B and modulated by the ratio of their respective populations

NB/NA. For example, if sect B has a larger population that sect A, the objective

of sect A radicals is skewed towards preventing attacks, while if sect B has a lower

population that sect A, the objective of the sect A radicals is biased toward max-

imizing radicalization in sect A. Because of the interdependent sect dynamics, the

two terms in Eq, 4.15 are related to each other in a non-trivial way. For example,

an increase in the population of sect A radicals will be accompanied by an increase

in the number of attacks against sect B members. This will in turn spur the growth

of a larger radical population within sect B, who will now engage in more hostile

activities against sect A. Of course, this is counter to the objective of sect A rad-

icals. Hence, determining what the optimal (pA, kA) strategy is, is not necessarily

straightforward.

For the symmetric case we are considering in this sub-section, the objective

function for both sects reduces to

U(p, k) = (1− k)req . (4.16)

Despite its simple form, much can be understood by maximizing Eq. 4.16. First,
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we note that, for a fixed value of k < 1, maximizing U(p, k) over p is equivalent

to maximizing req = r1 in Eq. 4.12 over p. However, r1 is an increasing function

of p for any k < 1, leading the optimal p to be chosen as large as possible, which

is along the constraint line Eq. 4.8. We can thus recast our optimization problem

in one dimension along the constraint line k = 1 − p/ω, using either p or k as an

independent variable; we choose p for this task. Eq. 4.16 can thus be rewritten as

U(p) =
p+ 1− λ

2ω
+

√
p

ω2

(
1

K(p)
− 1

1− p/ω

)
. (4.17)

At any point within the feasible sets shown in the shaded areas of Figs. 1(a) and

(b), U(p) is well defined. In order to determine whether a maximum exists, note

that U ′(p) will diverge at any endpoints of the feasible sets where the constraint line

intersects the k = K(p) curve, due to the square root term. Additionally, if these

endpoints are approached from below (increasing p) the derivative will diverge to

−∞, while if approached from above (decreasing p) the derivative will diverge to

+∞. For λ > 1, the feasible set is 0 ≤ p ≤ pmax. Here, U ′(p = 0) = 1 and

U ′(p→ p−max) = −∞. Since the derivative is continuous in between these endpoints,

there will be at least one value 0 < p∗ < pmax between them where U ′(p∗) = 0 and

U(p∗) attains a maximum. In this case, the optimal strategy is given by the values

(p∗, 1− p∗/ω) on the constraint line. Similarly, for λ ≤ 1 since the feasible set (if it

exists) lies in a pmin ≤ p ≤ pmax range, U ′(p → p+
min) = +∞ and U ′(p → p−max) =

−∞. Once more, due to the continuity of U ′(p) between these endpoints, there

will be at least one value pmin < p∗ < pmax for which U ′(p∗) is zero and U(p∗)
is a maximum. The end result of this analysis is that, for the objective function

proposed in Eq. 4.16, the optimal strategy for radicals is to not to use the largest

feasible p nor the largest feasible k, but rather intermediate values that use all the

resources ω and where enough attacks and propaganda are employed.

The above arguments for the existence of an optimal strategy on the interior of

the feasible set fail if the initial conditions do not allow the radical population to

evolve towards req = r1; for example if the optimal (p, k) values determined above

fall in the red-shaded domains of the feasible sets, and the initial conditions are

such that r(t = 0) = δ < r2, then at steady state req = 0. For λ > 1, however,

radicals can take the following “two step” approach to maximize their objective

function. First, they may select k > 1/λ and a corresponding p such that this

temporary strategy falls within the blue-shaded area of Fig. 1(a). Since in this regime

r(t→∞) = r1 > r2, once the radical population reaches a larger than r2 threshold,

the strategy can be switched to the optimal one. From Fig. 1(a) it is clear that this

temporary strategy is characterized by a higher k and lower p than the optimal one.

Hence, for λ > 1, a radical group that starts with few members and that wishes to

optimize objective function Eq. 4.15 should utilize relatively high violence k and low

propaganda p rates; later, as the group approaches its equilibrium size, it should

progress towards more intense propaganda and less violence. For λ ≤ 1, however, if
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the initial size of the radical group δ is smaller than the smallest r2 in the feasible

set, no strategies for the emergence of radical populations at steady state exist.

4.3. Strategy asymmetric sects

We now consider partially symmetric sects with equal intrinsic parameters λ, µ, ω,

equal total population Ni, and equal initial conditions rA(t = 0) = rB(t = 0) =

δ. Radical factions, however, are now allowed to choose their (pi, ki), i = A,B

strategies independently of each other, and possibly asymmetrically. We further

assume that the chosen initial conditions lead to a nonzero req at steady state for

both groups, if the overall parameter set allows for a req 6= 0 to emerge. Finally, we

assume that the utility function of each sect is still given by Eq. 4.15. The major

motivation behind studying this particular case is to place our model within a

game-theoretic scenario, whereby players (radical factions) choose their strategies

independently of each other. By doing so, we can attempt to identify the Nash

equilibria (NE) of the “game”, defined as combinations of strategies (pA, kA) and

(pB , kB) whereby neither sect can increase its utility by unilaterally changing to a

different strategy. That is, if (pNE
A , kNE

A ) and (pNE
B , kNE

B ) together represent a Nash

equilbrium, then for all other possible strategies (pA, kA), UA(pA, kA; pNE
B , kNE

B ) ≤
UA(pNE

A , kNE
A ; pNE

B , kNE
B ), and the same is true for sect B’s utility.

To determine the Nash equilibria of this game, we first note that equilibrium

radicalization levels are given by the intersections of the two nullclines defined by

Eqs. 4.6 and 4.7

rB =
rA
kB

(
λ+ rA(pA + 1− λ)− pAr2

A

)−1
,

rA =
rB
kA

(
λ+ rB(pB + 1− λ)− pBr2

B

)−1
,

(4.18)

where we have kept the distinction (pi, ki) between i = A,B sects.

We begin by considering the possibility of symmetric Nash equilibria whereby

the two sects play the same strategy (pi, ki) = (p, k) for i = A,B, leading to the

nonzero equilibrium radical population rA = rB = req as given by Eq. 4.12. A

necessary, but not sufficient, condition for any Nash equilibria is that the strategy

chosen by each sect leads to a local maximum in its utility function, such that an

infinitesimal unilateral strategy change would not lead to utility increase. Without

loss of generality, we focus on sect A. To determine the effects of unilateral changes

in its strategy on UA(pA, kA; pB , kB) we differentiate Eq. 4.15 with respect to pA
and kA using Eqs. 4.18 where pB and kB are kept constant. Once the derivatives

are taken we calculate them at pA = pB = p and kA = kB = k. We find
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∂UA

∂pA
=
kr2

1 (1− r1) (1− k + β)

β(β + 2)
,

∂UA

∂kA
=
r1 (1− k − βk)

kβ(β + 2)
,

(4.19)

where β is defined as

β = pkr1

√
B2 − 4C, (4.20)

with B,C given in Eq. 4.10, and r1 in Eq. 3.6. Note that β ≥ 0 and that since r1 ≤ 1

and k ≤ 1, ∂UA/∂pA ≥ 0; hence, any symmetric Nash equilibria must have maximal

p, if all other parameters are fixed, and lie along the constraint line kA = 1− pA/ω
in Eq. 4.8. Utilizing the constraint we can evaluate the total derivative of UA with

respect to pA as

dUA

dpA
=
∂UA

∂pA
+
∂UA

∂kA

dkA
dpA

, (4.21)

and, once calculated, express the RHS above as a function of pA = p and kA =

1− p/ω. Using Eqs. 4.19 we find

dUA

dpA
=

1

2 + β

dU(p)

dp
+

h(p)

2 + β
. (4.22)

Here dU(p)/dp is the derivative of Eq. 4.17, and h(p) is defined as

h(p) ≡ (1− p/ω) r2
1(p) [1− r1(p)] . (4.23)

Note that in Eq. 4.23, r1(p) is written only in terms of p due to the constraint and

that 0 ≤ h(p) ≤ 1. To find symmetric Nash equilbria in the current context, where

we allow radical factions to independently choose their strategies (pi, 1 − pi/ω)

for i = A,B and only later impose symmetry, we set dUA(pA)/dpA = 0; in the

symmetry-enforced case discussed in subsection 4.2, where strategies are forced to

be symmetric throughout the optimization phase, the condition for optimality was

to set dU(p)/dp = 0. The two are related via Eq. 4.22.

Since dU(p)/dp = 0 at the symmetry-enforced optimum value 0 < p∗ < pmax

discussed earlier, and since h(p∗) > 0, necessarily dUA/dpA > 0 at (p∗, 1−p∗/ω). We

can thus conclude that the optimal strategy in the symmetry-enforced case, where

both radical factions choose strategy (p∗, 1 − p∗/ω), cannot also be a symmetric

Nash equilibria in the case where the two sects are free to choose their own strategy.

In fact, following the above analysis, we have shown that if the two radical groups

were playing the symmetry-enforced optimum at p∗, each group would be tempted to

increase its p, and therefore decrease its k due to the constraint in Eq. 4.8. Thus our

game theoretic analysis shows that sects that carry symmetric intrinsic parameters,

but that are free to choose their propaganda and attack strategies independently
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Fig. 2. Numerically determined Nash equilibria (NE) for i = A,B asymmetric sects whose defining

parameters and initial conditions are the same. All (pi, ki) strategies satisfy the constraint defined

by Eq. 4.8 and may be chosen independently by the two sects. Dashed black curves represent the
symmetry-enforced optimum strategy discussed in Sect. 4.2; solid black curves correspond to the

symmetric Nash equilibria; long-dashed blue and dash-dot red curves correspond to the asymmetric
Nash equillibria for the two sects. Note that the latter asymmetric Nash equillibria emerge only

for large enough values of λ. The left hand panels (a) and (c) display the Nash equilibria attack

rate kNE
i for i = A,B; the corresponding propaganda rates may be derived from the constraint

pi = ω(1−ki). The right hand panels (b) and (d) show the relative equilibrium radical population

reqi for i = A,B. In panels (a) and (b) ω = 16; in panels (c) and (d) ω = 160.

of each other, will be less violent than if they were colluding to enforce symmetric

strategic choices.

We may still ask if there exists the possibility of a symmetric Nash equilibria

at p∗ < pNE < pmax, for which dUA/dpA must vanish so that U ′(pNE) = −h(pNE).

As discussed in the previous section U ′(p) decreases continuously from 0 to −∞
for p∗ < p < pmax, while −h(p) is continuous and bound between −1 and 0.

Therefore, U ′(p) and −h(p) must cross at least once for p∗ < pNE < pmax,

thus yielding at least one potential symmetric Nash equilibria at pNE. Multiple,

symmetric Nash equilibria could arise if the curves intersected more than once.

While the argument above proves that there must exist one or more symmetric
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strategies that are at least potentially Nash equilibria, it does not conclusively

show that they are so, as (pNE, 1 − pNE/ω) would have to be global maxima of

UA(pA, 1 − pA/ω; pNE, 1 − pNE/ω), as a function of pA with all other parameters

fixed, and not merely local maxima. It also does not address the potential for

Nash equilibria that are asymmetric in strategies, where (pNE
A , kNE

A ) 6= (pNE
B , kNE

B ).

To explore these factors, we turn to numerical investigations. Here, we make the

assumption that any Nash equilibria of the game will occur along the constraint

curves of the two sects, as is true for symmetric Nash equilibria. We further assume

that initial conditions always allow for a non-zero equilibrium radicalization value,

if parameters allow for it. We proceed by determining for each radical faction the

best response curve to the other’s strategy, and find the intersections of these best

response curves, which are Nash equilibria Note that this method provides only

pure Nash equilibria, in which each sect plays a definite strategy, and does not

include mixed strategy Nash equilibria that would allow radical factions to play

probabilistic combinations of strategies.

We present our results in Fig. 2 where the Nash equilibria values for ki and

the corresponding values of req
i are determined as a function of λ for i = A,B.

These results, obtained for symmetric sects free to play their own strategies

(pi, ki = 1 − pi/ω), are compared and contrasted with those obtained in subsec-

tion 4.2 where the (p∗, 1 − p∗/ω) strategies were constrained to be symmetric. We

examine the case of small and large overall resource rates ω = 16 and ω = 160

respectively. As can be seen from all panels of Fig. 2, and as predicted, we do find

symmetric Nash equilibria that exhibit higher propaganda rates pNE, lower attack

rates kNE = 1 − pNE/ω and lower radical population ratios r1(pNE) compared to

those evaluated at the symmetric optimum p∗. In Figs. 2(a) and (c) we also find

that kNE decreases from a finite value as λ → 0 towards zero as λ → ∞. At the

same time, Figs. 2(b) and (c) reveal that the symmetric Nash equilibria r1(pNE) is

an increasing function of λ. Also note that for lower λ values, only the symmetric

Nash equilibria (pNE, kNE) exists, while higher λ values display an additional single

asymmetric Nash equilibria in which one sect is extremely violent, with high k val-

ues, and the other’s attack rate approaches zero. Due to symmetry, which sect plays

which role is arbitrary. Note, though, that the very violent sect is also characterized

by a very small radical population, while the moderately violent sect is marked by

a larger radical population, whose numbers may even exceed those found in the

symmetric optimal case p∗. We thus find that for large values of spontaneous rad-

icalization λ, a radical group may achieve a Nash equilibria with their rival group

either through a small radical faction engaging in very violent activities, or through

a large number of radicals performing only moderately violent aggressive acts to-

wards the other sect as long as the other sect adopts the alternate role. Finally, we

find that higher resource rates ω lead to lower levels of violence but higher radi-

calization at the Nash equilibra, as can be seen by comparing panels (c) and (d)

versus panels (a) and (b) in Fig. 2.
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4.4. Fully asymmetric sects

We now study the dynamics of Eqs. 4.6 and 4.7 for arbitrary parameters. While a full

analytical treatment is infeasible, we can find all equilibrium points by determining

the intersections of the nullclines

rB =
rA
xkB

(
λA + rA(pA + x− λA)− pAr2

A

)−1

rA =
xµBrB
kA

(
λB + rB(pB + µBx− λB)− pBr2

B

)−1
.

Upon substitution and after discarding the trivial solution rA = rB = 0, we find

the following quartic equation for rA

c4r
4
A + c3r

3
A + c2r

2
A + c1rA + c0 = 0 (4.24)

where

c4 = λBp
2
A , (4.25)

c3 = −2λBpA(pA + x− λA)− pA
xkB

(pB + µBx− λB), (4.26)

c2 = −2λBλApA + λB(pA + x− λA)2

+
1

xkB
(pB + µBx− λB)(pA + x− λA)− pB

x2k2
B

+
pAµB

kAkB
, (4.27)

c1 = 2λBλA(pA + x− λA)

+
λA
xkB

(pB + µBx− λB)− µB

kAkB
(pA + x− λA), (4.28)

c0 = λBλ
2
A −

λAµB

kAkB
. (4.29)

Eq. 4.24 has at most four non-trivial solutions that can be found explicitly using the

quartic formula. Not all of them are physically acceptable since we must impose 0 ≤
ri ≤ 1 for i = A,B. By constructing a trapping region and applying the Poincaré–

Bendixson Theorem 20, we can however find parameters that will guarantee the

existence of at least one non-trivial, physically acceptable, equilibrium point for the

two competing sects. The boundary of [0, 1]× [0, 1] in (rA, rB) space almost works

as a trapping region, with the exception of the corner at the origin. To construct

our trapping region, we must then show that the [0, 1] × [0, 1] box from which the

origin is excised will still trap trajectories. In particular, we must show that the

vector field along the boundary of our trapping region points into the trapping

region itself so that any trajectory that starts within our trapping region will never

leave it. It is simple to show that if rA = 1 then ṙA < 0 and if rA = 0, rB 6= 0 then

ṙA > 0. If rA = rB = 1, then both ṙA < 0 and ṙB < 0 hold. Similarly, if rA = 0

and rB = 1, then ṙA > 0 and ṙB < 0. Similar relationships hold upon exchanging
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Fig. 3. Numerically determined Nash equilibria (NE) for asymmetric sects whose defining param-
eters and initial conditions are the same with the exception of either their sizes NA > NB (a) or
their resources ωA > ωB (b). All (pi, ki) strategies satisfy the constraint defined by Eq. 4.8. The

blue curves correspond to the (numerically or resource-wise) weaker sect B and the red curves to
the stronger sect A. The solid, dashed, and dash-dotted lines indicate three distinct (kA, kB) equi-

libria pairs; for instance the solid red and solid blue curves together describe the most asymmetric

outcome. Parameters are set at λ = 10, and ωA = ωB = ω = 16 in (a); and at λ = 10, ωB = 16 in
(b). Note that since NA and NB always appear as a ratio in Eqs. 4.15 and in the definition of x,

we do not need to explicitly set their numerical values in the right hand panel where NA = NB .

the A,B labels. We now show that for certain parameter values, the equilibrium at

the origin can be made unstable. We linearize Eqs. 4.6 and 4.7 near the origin to

determine its stability. The Jacobian matrix J at (0, 0) is given by

J =

[ −1 xλAkB
λBkA/x −µB

]
(4.30)

and has at least one stable eigendirection, since its trace is negative. The origin will

be an unstable saddle point if the determinant, the product of the eigenvalues, is

negative, a condition that is satisfied for λAλBkAkB > µB . A simple matrix calcula-
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tion shows that the stable eigendirection lies in the second and fourth quadrant, out

of our trapping region. Hence, the condition λAλBkAkB > µB is enough to guaran-

tee that trajectories close to the origin in the first quadrant are repelled away from

it. Since they are also trapped in the (0, 1] × (0, 1] region, at least one physically

relevant equilibrium must exist. The constraint λAλBkAkB > µB is the asymmetric

analogue to the condition k > 1/λ from subsection 4.1. Specifically, if both attack

and spontaneous radicalization rates are high enough, a non-zero radical population

will persist for all time, regardless of initial condition.

Though completely understanding all facets of the problem for general asym-

metric parameters would be impractical, we can focus on a few key parameters that

might shed light on some of the fundamental behaviors of the system in the gen-

eral case. In particular, we consider sects that have different levels of “strength”,

measured by N (strength in numbers) and ω (strength in resources). Hence, we will

compare and contrast sects with large and small Ni, and large and small ωi, for

i = A,B while keeping the spontaneous radicalization and de-radicalization rates

the same, so that λA = λB = λ and µB = 1 in the dimensionless Eqs. 4.6 and 4.7.

We begin by numerically determining the pure Nash equilibria of the system using

the same approach as described above. We select specific parameter values that

allowed for both symmetric and asymmetric Nash equilibria to arise in subsection

4.3: ω = 16 and λ = 10.

First, we explore how the Nash equilibria of the system change when sects have

the same resources ωA = ωB = ω but different sizes NA > NB , so that x < 1 in

Eq. 4.4. Our results are shown in Fig. 3(a) where we plot the Nash equilibria attack

rates ki, for i = A,B corresponding to a given size asymmetry NA/NB−1 > 0. The

corresponding values of pi can be obtained through the constraint line in Eq. 4.8.

As can be seen from Fig. 3(a) if the size asymmetry is small, three separate Nash

equilibria exist: one near the symmetric Nash equilibria (dash-dotted lines), and

two near the possible asymmetric Nash equilibria (dashed and solid lines) discussed

previously. For asymmetries approaching 10% in size, however, the Nash equilibria

that corresponded to the symmetric case approaches one of the asymmetric Nash

equilibria and they annihilate, leaving only a single pure Nash equilibria in which the

radical faction of the larger sect A is more engaged in violent attacks than radicals

from the smaller sect B. Upon evaluating the corresponding radical populations ri
for i = A,B at the Nash equilibria we find that rA � rB . These results are a direct

consequence of the large size asymmetry and the definition of the utility functions

Ui, for i = A,B. The larger sect A will be mostly concerned with maximizing rA,

while the focus of sect B will be to minimize the violence from sect A radicals. Since

the only way for sect B to reduce attacks from A is to decrease rA by minimizing its

own attacks, sect B’s optimal strategy is to choose low kB values, as our numerical

Nash equilibria estimates show. On the other hand, rA will increase with increasing

rB , which can be spurred by sect A radicals employing a large attack rate kA. Our

current analysis leads to the conclusion that larger sects are expected to carry a

smaller population of radicals who are very violent, while smaller sects cannot afford
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Fig. 4. Time dependent optimal strategies and radical population dynamics for asymmetric sects
whose defining parameters and initial radical population sizes are the same. Initial conditions are

set to r0i = 0.3 in panels (a) and (d), to r0i = 0.4 in panels (b) and (e) and to r0i = 0.6 in

panels (c) and (f) for i = A,B. Non-dimensional parameters are fixed at ∆i = µB = 1, λi =
3, Ni = 1000, ωi = 1 for i = A,B ; initial strategic conditions are set as k0A = 0.25, p0A = 0.25

in all panels. Top row: optimal strategies (pji , k
j
i ) for i = A,B evolving over the τj time epochs.

Circles represent strategic changes. The blue colored B sect is the first to optimize its strategy
at time t0. For all parameter choices displayed here, one sect tends to display more violence and

less propaganda than the other. Bottom row: resulting (rjA, r
j
B) phase plane dynamics. Initial

conditions are marked with a blue circle; end points with a black square. The solid blue line
refers to a sect B update over a time period ∆A, the dashed red curve corresponds to a sect A

update over a time period ∆B . The inset magnifies the phase diagram in the later stages of the

optimization process as the system approaches the black square end point. In the left and center
panels we used a finer grid for the optimization search (200 points) than in the right panels (100
points). The size of the corresponding limit cycles in the three insets does not seem to be affected
by the finer or coarser grid sizes used during the optimization.

extreme levels of violence, as they would be the target of repeated attacks inflicted

by their opponent.

In Fig. 3(b) we explore how the Nash equilibria of the system change when the

sects have the same sizes NA = NB = N but different resource availability ωA > ωB

so that in Eq. 4.4, x < 1. Results are similar to those described in Fig. 3(a), with the

roles of the two sects switched. Large ωA/ωB−1 asymmetries lead radicals from the

weaker group B to display greater violence than those from the more resourceful

sect A; similarly the weaker group is less radicalized than the stronger one. The

resource asymmetry does not directly affect the utility functions the same way the

size asymmetry did, but does play a role through the resource constraint 4.8. A
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Fig. 5. Time dependent optimal strategies and radical population dynamics for asymmetric sects

whose defining parameters and initial radical population sizes are the same. Organizational times

are set at ∆i = 0.1 in panels (a) and (c) and at ∆i = 10 for panels (b) and (d) for i = A,B.
Initial conditions are chosen as r0i = 0.4. Other non-dimensional parameters and initial strategic

conditions are set as in Fig. 4. Top row: optimal (pji , k
j
i ) strategies evolving over the τj time epochs.

The notation is the same as in Fig. 4. Bottom row: resulting (rjA, r
j
B) phase plane dynamics. The

central panels of Fig. 4 may be used to compare and contrast the above plots with the intermediate

organizational time ∆i = 1.

relatively large ωA allows for larger propaganda pA, which will lead to an increase

in rA, as desired in the utility function, and to a decrease in kA due to Eq. 4.8.

4.5. Optimal control for competing sects

We have thus far ignored a critical aspect of the formation and stabilization of

radical factions. Specifically, our model does not include a sect’s ability to organize

or to optimize a strategy in response to an evolving situation and then share this

strategy with its members. However, the ability to quickly disseminate strategic

decisions to a group’s constituency is essential for radical extremists to establish

power. Many revolutions arose from student groups where a large body of similarly

idealistic and disillusioned people could rapidly circulate ideas through physical or

virtual proximity, such as in the case of the 1979 Iran Revolution, or the formation

of the Taliban in Afghanistan in the late seventies 21. As a more modern example,

the Islamic State in Syria and Iraq has used social media to effectively spread

their radical agenda. Different groups may greatly vary in their ability to organize
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Fig. 6. Time dependent optimal strategies and radical population dynamics for sects whose initial

radical population sizes and defining parameters are the same, with the exception of their sizes Ni

(left panels) or their resource availability ωi (right panels). Top row: optimal (pji , k
j
i ) strategies

over several time epochs τj ; Bottom row: resulting (rjA, r
j
B) phase plane dynamics. In all panels,

∆i = µB = 1, λi = 3, and (p0A, k
0
A) = (0.25ωA, 0.25). In the left panels (a) and (c) differential sect

sizes are NA = 1000 and NB = 100; available resources are equal and set at ωi = 1 for i = A,B.

In the right hand panels (b) and (d) sect sizes are the same at Ni = 1000 for i = A,B and

differential resources are set at ωA = 160 and ωB = 32. The notation is the same as in Fig. 4. The
inset magnifies the phase diagram in the later stages of the optimization process, as the system

approaches the black square end point.

attacks and disseminate propaganda, even as the parameters used in our model to

quantify them may be the same. We now introduce a small variant in Eqs. 4.6 and

4.7 to include a faction’s ability to organize and disseminate policy in the dynamic

framework for radical faction formation and consolidation.

We start by assuming that sects A and B have different power structures and

organizational capabilities. To be concrete, we assume that at time t < t0 radical

factions of the two sects begin with random, possibly asymmetric strategies. At

time t = t0 sect B radicals unilaterally modify their strategy to optimize their

utility given the current strategy used by sect A radicals; for example at t = t0,

sect B radicals may increase their attack rate and decrease their propaganda. Sect

A radicals will notice this change, craft an optimal response strategy, coordinate

and mobilize their members, and finally enact their new, optimal policy. We denote

the time interval between sect B’s strategy change and sect A’s response by ∆A so
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Fig. 7. Time dependent optimal strategies and radical population dynamics for asymmetric sects
whose initial radical population sizes and defining parameters are the same, with the exception of
their organizational times ∆i. In all panels, parameters are µB = 1, λi = 3, Ni = 1000, ωi = 1 for

i = A,B and initial conditions are set as r0A = r0B = 0.7. Top and middle rows: optimal (pji , k
j
i )

strategies over several time epochs τj . In panel (a) (p0A, k
0
A) = (0.25, 0.25) and ∆A = 4,∆B = 2;

in panel (b) (p0A, k
0
A) = (0.25, 0.25) and ∆A = 2,∆B = 4; in panel (c) (p0A, k

0
A) = (0, 1) and

∆A = 4,∆B = 2; in panel (d) (p0A, k
0
A) = (0, 1) and ∆A = 2,∆B = 4. Bottom row: each panel

traces two distinct trajectories corresponding to different initial strategies for sect A. Panel (e)
contains the two (rjA, r

j
B) trajectories corresponding to the (pji , k

j
i ) optimal strategies shown in

panels (a) and (c), both characterized by ∆A = 4, ∆B = 2. The trajectory that veers from the
initial point towards the right corresponds to (k0A, p

0
A) = (0.25, 0.25) and to panel (a); the one

that veers towards the left to (k0A, p
0
A) = (0, 1) and to panel (c). Similarly, the trajectories in

panel (f) are characterized by ∆A = 2, ∆B = 4. Here, the trajectory that veers from the initial
point towards the right corresponds to (k0A, p

0
A) = (0.25, 0.25) and to panel (b); the one that veers

towards the left to (k0A, p
0
A) = (0, 1) and to panel (d).
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that sect A’s new strategy is in effect at t1 = t0 + ∆A. Sect B radicals may now

modify their strategy in return, optimizing their attack and propaganda parameters

in response to the new policies enacted by sect A. We assume changes in sect B’s

strategies are enacted at time t2 = t1 +∆B where ∆B is the equivalent time for sect

B to reorganize after sect A’s strategic changes. Since decision and implementation

times for the two sects may differ we allow ∆A 6= ∆B . Sect dynamics thus unfold

according to Eqs. 4.6 and 4.7 under initial values (p0
A, k

0
A) selected randomly and

(p0
B , k

0
B) determined as the optimal strategy in response to (p0

A, k
0
A) at time t =

t0. The system continues to evolve via a cascade of alternating dynamic strategic

updating at tj = t0 + [(j + 1)/2]∆A + [j/2]∆B where [.] is the integer part. We can

thus define a sequence of epochs τj = tj+1 − tj during which strategies (pji , k
j
i ) for

i = A,B are used.

The framework we have just introduced is related to two well established game

theoretic scenarios. The first is that of Stackleberg games, where a preset leader

and follower are defined: the leader’s strategy is optimized with respect to how the

follower is expected to respond; the follower optimizes its strategy in response to

the leader’s 22. The second scenario is that of mean field games 23,24,25,26: partial

differential equations used to understand the behavior of many interacting agents,

where each is seeking to optimize a given function but is also constrained by the

choices of others. In general, mean-field games may involve solving both a forward-

in-time propagation problem and a backwards-in-time optimization one.

Our optimization problem is somewhat of a hybrid between a Stackleberg and

a Mean Field game, with leaders and followers alternating and behaviors described

via the differential equations in Eqs. 4.6 and 4.7. To complete its formulation, we

must introduce the proper objective function to be maximized. Before doing so, we

note that since the τj epochs are finite and the strategies within it are enacted for

a finite time period, an equilibrium state will not be reached within any τj time

interval. Since sect B radicals are the first to optimize their strategy, we introduce

the following objective function for sect B over the τj epoch

U j
B (pB , kB) =

∫ tj+1

tj

[
ṙB −

NA

NB
kAṙA

]
dt, (4.31)

where kB is subject to the constraint in Eq. 4.8, and where j is even. Specifically,

we assume that sect B radicals have knowledge of sect A’s intrinsic parameters

and strategic choices, including their reaction times ∆A. At time tj sect B radicals

modify their (pB , kB) strategies by maximizing the integral in Eq. 4.31 over the

future time interval ending at tj+1 = tj + ∆A, when sect A radicals are expected

to react to such modifications. The values of j in Eq. 4.31 are even, since the first

period of optimization begins at t0 and ends at t1 = t0 + ∆A, alternating with sect

A in future cycles. A similar objective function U j
A can be defined for sect A by

interchanging the A,B labels and using j odd as the first optimization interval for

sect A radicals begins at t1 and ends at t2 = t1 + ∆B .
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We first analyze two distinct limits. If ∆B → ∞ the objective function defined

in Eq. 4.31 will be dominated by near equilibrium dynamics and U j
B(pB , kB) can be

approximated as

U j
B ≈

[
reqB −

NA

NB
kAr

eq
A

]
−
[
rB(tj)−

NA

NB
kArA(tj)

]
. (4.32)

Optimizing Eq. 4.31 is thus equivalent to optimizing Eq. 4.15 since the quantities

evaluated at the lower bound tj are fixed and do not depend on the (pB , kB) values

we are optimizing over. Similar considerations hold for U j
A if ∆A → ∞. In the

opposite limits ∆A � 1 and ∆B � 1 Eq. 4.31 can be approximated as

U j
B ≈ ∆A

(
ṙB −

NA

NB
kAṙA

)
. (4.33)

Since ∆A is fixed, our task is to maximize the term in parenthesis in Eq. 4.33 through

Eqs. 4.6 and 4.7 under the constraint defined in Eq. 4.8. The resulting equation is

linear in kB and pB , so it can be trivially shown that if kA, rA 6= 0 and rB 6= 0, 1,

Eq. 4.33 is maximized by (kB , pB) = (0, ωB) for all j. If kA = 0, however, all strat-

egy decisions for B are equivalent, and regardless of which strategy is chosen, rB
will exponentially decay to zero. Similarly, we can show that under the same condi-

tions described above for sect B, sect A radicals will follow an analogous updating

strategy (kA, pA) = (0, ωA). As a result, for short update times, we expect both

sects to very quickly fix their strategies to display no violence. The corresponding

propaganda values will set at arbitrary values. In this case, there is no dynamic

strategy updating and eventually the two radical groups disappear. Note that here

our game defines a classic prisoner’s dilemma: individually, each i = A,B sect max-

imizes its utility by selecting ki = 0, but if both sects choose the no attack strategy,

the outcome is less optimal for both than if they had chosen ki 6= 0.

Intermediate values of ∆i for i = A,B yield intricate dynamics as can be seen in

Figs. 4-7. In these figures, all optimizations were performed using a grid search with

typically 100 points along the (pi, ki) axes for i = A,B, except where otherwise

indicated. Thus, at each epoch τj , radical factions may select their new strategy

from a space of 100 × 100 (pi, ki) possible configurations subject to the constraint

in Eq. 4.8. We select t0 = 0 and assume that the initial strategy for sect A radicals

is set at (p0, k0) = (0.25, 0.25) unless otherwise specified.

In Fig. 4 we show the results of our alternating optimization process for ∆i = 1

and for several sets of symmetric initial conditions r0
i = 0.3, 0.4, 0.6 for i = A,B. All

other parameters are kept the same and are explicitly given in the figure caption.

In the upper row of Fig. 4 we plot the optimal values of (pji , k
j
i ) over each τj epoch.

As can be seen, one sect will select higher propaganda, the other higher violence

depending on the initial conditions and in ways that are not easily predictable. The

two sects selecting opposite strategic choices is a general trend that persists for

other initial conditions and parameters not shown here, similar to the asymmetric
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Nash equilibria discussed in subsection 4.4. It is interesting to note that while we

do not impose that the (pi, ki) strategies must lie on the constraint line defined

by Eq. 4.8, the radical factions will typically maximize their utility functions by

settling on the constraint line. Indeed, apart from a few initial time epochs τj , the

constraint kji + pji/ωi = 1 is satisfied throughout the optimization process for all j

and for i = A,B. In the bottom row of Fig. 4 we follow the dynamics of the radical

populations and note that the system will evolve towards final values that depend

dramatically on initial conditions. In particular, by comparing the upper and lower

panels of Fig. 4 we note that sects with a larger radical faction are associated with

lower levels of violence and vice-versa. We find that this too is a general, robust

trend that persists over initial conditions and parameters choices, again falling in

line with what was observed in subsection 4.4. Finally, one common feature of the

long time dynamics observed in all panels of the lower row of Fig. 4 is a push-pull

trend between the two sects that leads to limit cycles, as can be seen in the insets.

The exact size of these limit cycles may depend on our coarse optimization routine.

To examine this possibility we allowed different grid sizes while searching for the

optimal strategies. In particular, the grid size used in the left and center panels of

Fig. 4 is twice as large (200 points) as that used in the right panels (100 points). We

notice that the typical width of the limit cycles in all three panels are comparable,

indicating that the grid discretization plays a minor role in the emergence of the

limit cycles shown in Fig. 4.

To study how the symmetric organizational timescales ∆i affect sect dynamics

we plot the optimal (kji , p
j
i ) for various ∆i values for i = A,B in Fig. 5. In particular,

in Figs. 5(a) and (c) we set ∆i = 0.1 while in Figs. 5(b) and (d) ∆i = 10. Initial

conditions are fixed at r0
i = 0.4 for i = A,B. The resulting curves should be

compared with the ones displayed in the central panels of Fig. 4 for which ∆i = 1

with all other parameters and initial conditions the same as in Fig. 5. Panels (b)

and (d) confirm that strategic choices are dominated by near equilibrium behavior

for very large ∆i values, while panels (a) and (c) show that very small ∆i yield

ki ≈ 0 for both groups, as anticipated above. Note that although in Fig. 5(a) we

stop at t = 1 and the corresponding endpoint in Fig. 5(c) is (rA, rB) = (0.15, 0.19)

upon letting t→∞ asymptotically ri → 0 for i = A,B.

In Fig. 6 we explore how asymmetries in size Ni or resources ωi between the

i = A,B sects affect the optimization dynamics, similar to our exploration of these

effects with regard to Nash equilibria. In the left-hand panels of Fig. 6, we set

NB < NA and ωA = ωB , while in the right-hand panels we fix ωB < ωA and

NA = NB . As in the Nash equilibrium case, the more populous sect displays greater

levels of violence but a smaller percentage of radicalized members, while the opposite

is true for the sect with greater resources.

The effects of radical factions with different organizational times are explored

in Fig. 7 where ∆A 6= ∆B , and where different values for (p0
A, k

0
A) are selected.

We set ωi = 1 for i = A,B and do not require initial strategies to fall on the

constraint line defined by Eq. 4.8. In the left-hand panels shown in Figs. 7(a), (c),
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and (e) ∆A = 4,∆B = 2, while in the right hand panels of Figs. 7(b), (d), and (f)

∆A = 2,∆B = 4. For each of these choices, we use two sets of initial strategies

(p0
A, k

0
A) = (0.25, 0.25) for the top row in Figs. 7(a) and (b), or (0, 1) in the middle

row in Figs. 7(c) and (d). These choices yield four sets of optimal (pji , k
j
i ) trajectories

for i = A,B over various τj epochs. We find that the initial strategy chosen by Sect

A radicals highly affects the dynamics. For (p0
A, k

0
A) = (0.25, 0.25), sect B radicals

select highly aggressive strategies with kjB ' 1 and pjB ' 0 for large enough j,

regardless of the reorganizational times ∆i for i = A,B. Sect A radicals on the

other hand select high propaganda rates pjA, while their kjA attack rates hover

around the initial value k0
A = 0.25. Vice-versa, initial strategies (p0

A, k
0
A) = (0, 1)

lead to sect B radicals opting for a mixture of attack and propaganda rates with

(pjB , k
j
B) ' (0.8, 0.2) while sect A’s strategy remains one of extreme violence. Once

more, this is true regardless of ∆i for i = A,B. The time delay asymmetries however

do affect the oscillatory nature of the optimization process, as can be seen from

comparing Figs. 7(a) and (b) and especially Figs. 7(c) and (d).

In Fig. 7(e) we follow the (rjA, r
j
B) trajectories corresponding to panels (a) and

(c) over several time epochs τj . Similarly, Fig. 7(f) shows the (rjA, r
j
B) dynamics

corresponding to panels (b) and (d). Initial radical population sizes are set at

(r0
A, r

0
B) = (0.7, 0.7) and are denoted by a blue circle in all cases. Black squares

indicate the ending points of the various trajectories. In Fig. 7(e) the path that

veers towards the right and proceeds to define a limit cycle is characterized by

(p0
A, k

0
A) = (0.25, 0.25), corresponding to Fig. 7(a); the one that veers towards the

left is associated to (p0
A, k

0
A) = (0, 1) and corresponds to Fig. 7(c). As seen in the

Nash equilibrium case, the sect choosing more violence is less radicalized than the

sect choosing more propaganda, in both cases.

We find similar behavior in Fig. 7(f). Here the trajectory that veers to the right

corresponds to (p0
A, k

0
A) = (0.25, 0.25) and to Fig. 7(b); the one that veers towards

the left is associated to (p0
A, k

0
A) = (0, 1) and to Fig. 7(d).

Although we have only shown a few characteristic cases, solutions arising from

the alternating optimization process typically converge to a Nash equilibrium or

to a limit cycle around a Nash equilibrium; the qualitative features of these solu-

tions generally match the behavior found from identifying the Nash equilibria as

described in Sect. 4.4. We can conclude that whether a repeated and alternating

or a simultaneous Nash equilibrium process is used to determine optimal behavior,

sects with smaller radical fractions will typically attack their opponents at higher

rates, while sects with larger radical factions prefer a split strategy characterized

by stronger propaganda.

5. Summary and conclusions

In this work we presented a simple ODE model to study the radicalization of two

rival sects, each characterized by moderate and extreme factions. We included spon-

taneous radicalization and de-radicalization, as well as active propaganda and the
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perpetration of violent attacks towards the other sect. Actions taken by each group

are modulated by a sensitivity factor that may or may not depend on the actions

taken by the opposite one. We first studied non-interacting and interacting but

symmetric sects, outlined behavioral trends and, where possible, derived analytical

solutions. A game theoretical approach was also introduced, whereby all parame-

ters are fixed except for internal propaganda and external attack rates. These are

the “strategies” that radical factions of each sect adjust to optimize a given utility

function meant to increase their own ranks and decrease rival attacks. Propaganda

and attack rates are also subject to a constraint limiting the resources available for

the two activities so that one may be favored only at the expense of the other. We

analyzed the game both in terms of Nash equilibria as well as through a simple

iterative process that included possibly different response times.

One of our main findings is that, unless very high rates of violence are employed,

small groups of radicals in overall moderate sect populations cannot be sustained

over long times. In this case, radicals will eventually become less extreme and the

entire sect will be comprised of moderates. Our results may thus offer some mathe-

matical perspective on the mechanisms that lead radical groups who tend to employ

greater violence in their early days, when they are still numerically small, to tran-

sition towards less violent methods, such as non violent propaganda, later on, as

they mature. We also find that sects whose non-strategic parameters are completely

symmetric allow for Nash equilibria that are not symmetric in their propaganda and

attack rate strategies. Of the two competing sects, our results show that the rad-

ical faction of one becomes less numerous but very violent, while the other sect is

characterized by a large number of fanatics who are less violent.

This dichotomy between sect size and level of violence will persist if we relax the

condition of symmetric non-strategic parameters and allow the two sects to differ

in total population size as well. In this case, the more populous sect will display a

smaller percentage of very violent radicals than the less populous one. Why does this

happen? If radicals from the less populous sect chose to use high levels of violence

themselves, they would be subject to too many retaliatory attacks from their much

larger opponent, so their best strategy is to favor internal propaganda over direct

attacks of their rivals. On the other hand, radicals of the more populous sect are

constantly seeking ways to increase their ranks among moderates of their own sect.

For them, increasing the level of violence against the less numerous sect is a way to

incense moderates and spur them towards extremism. Similar patterns arise when

sect-sizes are symmetric, but available resources for the two sects are unequal. In

this case, while the radical faction of the more resourceful group largely engages in

internal propaganda, radicals from the less resourceful group typically become more

violent while their ranks decrease in relative size. These results indicate that when

resources are limited the best strategy is to attack rather than conduct internal

propaganda. Here, retaliatory action from the opposite sect is limited compared

to the case of asymmetric sect sizes, since now the groups are equal in size, and

the more resourceful one is largely focused on internal proselytizing rather than



March 23, 2017 16:34 WSPC/INSTRUCTION FILE Sects˙final

31

on attacking. Finally, we allowed for a series of optimal updates where each sect

was able to adjust their strategies in response to their opponent’s choices in an

alternating fashion. Depending on parameter choices and initial conditions, limit

cycles may be observed, although the same general trends described above for Nash

equilibria hold: one of the two sects will preferentially engage in internal propaganda,

the other in violently attacking their opponent.

One of the possible ingredients missing from this work is the intervention of

third parties to pacify conflict. Examples of such parties could be more powerful

groups, nations, or international bodies. For example, one could include a penalty

term in the utility function so that large radical factions or large attack rates are

more costly due to the imposition of third-party sanctions. We could also relax the

allegiance to a specific sect and allow for recruitment of both radicals and moderates

to occur across sect lines, for example through free or coerced religious conversion.

In this context, sect populations would no longer be fixed. As presented in our work,

attacks do not lead to casualties; allowing for victims could be another mechanism

whereby both violence and propaganda could lead to the possible extinction of a

sect.

One final observation is that in presenting this model, we have used the gen-

eral framework of religious and/or ethnic conflict. Our work however can also be

mapped onto western political debates, given the proper identifications and modifi-

cations are introduced. A most notable case is that of two-party democracies where

each is characterized by a more radical, active group and by a more moderate,

centrist wing. In this case, the attack rates of our model represent the negative,

incendiary, statements used by radicals against the opponent party, while internal

propaganda rates can model positive advertisement used by radicals to internally

mobilize more moderate supporters. As in our current work, resources are fixed so

that a choice must be made on whether to concentrate on negative attacks or on

positive statements. We leave the fine tuning of this mapping for future work.
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8. C. Castillo-Chávez and B. Song, Models for the transmission dynamics of fanatic
behaviors, in Bioterrorism: Mathematical modeling applications in homeland secu-
rity, SIAM Frontiers in Applied Mathematics, edited by H.T. Banks and C. Castillo-
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25. J. M. Lasry and P. L. Lions, Jeux à champ moyen. II–horizon fini et contrôle optimal,
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