
53 MODELING MOTION

Leonidas J. Guibas and Marcel Roeloffzen

INTRODUCTION

Motion is ubiquitous in the physical world, yet its study is much less developed than
that of another common physical modality, namely shape. While we have several
standardized mathematical shape descriptions, and even entire disciplines devoted
to that area—such as Computer-Aided Geometric Design (CAGD)—the state of
formal motion descriptions is still in flux. This in part because motion descriptions
span many levels of detail; they also tend to be intimately coupled to an underlying
physical process generating the motion (dynamics). Thus, there is a wide variety of
work on algorithm descriptions of motion and their associated complexity measure.
This chapter aims to show how an algorithmic study of motion is intimately tied
to discrete and computational geometry. We first discuss some earlier work and
various motion models. In Section 53.1 we then go into more detail on models that
consider so-called incremental motion. We then devote the bulk of this chapter to
discussing the framework of Kinetic Data Structures (Section 53.2) [Gui98, BGH99].

MOTION IN COMPUTATIONAL GEOMETRY

Dynamic computational geometry refers to the study of combinatorial changes
in a geometric structure, as its defining objects undergo prescribed motions. For
example, we may have n points moving linearly with constant velocities in R

2, and
may want to know the time intervals during which a particular point appears on
their convex hull, the steady-state form of the hull (after all changes have occurred),
or get an upper bound on how many times the convex hull changes during this
motion. Such problems were introduced and studied in [Ata85].

A number of other authors have dealt with geometric problems arising from
motion, such as collision detection (Chapter 39) or minimum separation deter-
mination [GJS96, ST95b, ST95a]. For instance, [ST95a] shows how to check in
subquadratic time whether two collections of simple geometric objects (spheres,
triangles) collide with each other under specified polynomial motions.

MOTION MODELS

An issue in the above research is that object motion(s) are assumed to be known
in advance, sometimes in explicit form. A common assumption is that the coor-
dinates of each point are bounded-degree polynomial functions of time and that
these functions are known in advance. In essence, the proposed methods reduce
questions about moving objects to other questions about derived static objects.

While most evolving physical systems follow known physical laws, it is also
frequently the case that discrete events occur (such as collisions) that alter the

1401

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1402 L.J. Guibas and M. Roeloffzen

motion law of one or more of the objects. Thus motion may be predictable in the
short term, but becomes less so further into the future. Because of such discrete
events, algorithms for modeling motion must be able to adapt in a dynamic way to
motion model modifications. Furthermore, the occurrence of these events must be
either predicted or detected, incurring further computational costs. Nevertheless,
any truly useful model of motion must accommodate this on-line aspect of the tem-
poral dimension, differentiating it from spatial dimensions, where all information is
typically given at once.

Here, we distinguish two general motion models. The first considers unknown
movement, where we don’t have direct knowledge of motions. Instead, we rely on
external updates or explicitly requesting new locations of the objects. However,
most of the algorithms in this setting, as discussed in Section 53.1, make some
assumptions on the motions, such as a bounded movement speed.

The second model is more similar to that of previous work and assumes that tra-
jectories are known at least on the short-term. More precisely, the model assumes
that point trajectories are known exactly and any changes in this trajectory are
explicitly reported. This model is used by data structures in the KDS-framework
discussed in Section 53.1. In most cases the motions are assumed to be polyno-
mial (i.e., coordinates defined by bounded degree polynomials) or pseudo-algebraic,
though this is mainly needed to prove efficiency, not correctness of the data struc-
tures. (The definition of pseudo-algebraic motion is given in Section 53.2 as it
depends on the data-structure, however, polynomial movement is generally also
pseudo-algebraic.)

53.1 INCREMENTAL MOTION

In real-world settings, the motion of objects may be imperfectly known and better
information may only be obtainable at considerable expense. There have been
several studies that incorporate this concept into their motion models. Most of
these models are based on updating motions or locations of objects at discrete
times. These updates may be obtained either by pushing or pulling, where in the
former case an outside source or component provides new information and in the
latter case the data structure must query for new location information when needed.

One way to deal with this more unpredictable motion is to separate the contin-
uous tracking of motion from the more discrete maintenance of the data structure.
Several works consider an observer component whose task is to observe motion
and provide updated location or motion predictions to a builder component. The
builder is then responsible for maintaining the data structure itself. The observer
always has access to the exact location of the objects and the goal is to minimize
communication between the two components. Communication can happen through
pushing or pulling.

In case of pushing the observer is tasked with ensuring that the builder always
has a sufficiently accurate location [YZ12]. Efficiency can then be measured in
terms of competitive ratio, that is, by comparing the number of updates sent by
the observer with those by an optimal update schedule that knows the full motions,
but must adhere to the same accuracy bounds.

Information can also be pulled from the observer by the builder. In this case the
builder queries the observer for the location of specific objects when more precise

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 53: Modeling motion 1403

information is needed to ensure a correct data structure [Kah91]. This is convenient
when there are strict bounds on the movement rates or directions of objects that
enable to builder to compute its own guarantees on the objects locations (e.g., an
object must be within a certain region). A compromise between the pulling and
pushing mechanism can be found by allowing the builder to provide triggers to the
observer [MNP+04, CMP09]. A trigger is a simple assumption on the location of
the objects, for example that it remains within a certain region or follow a given
trajectory. When such an assumption is no longer valid the observer can then
inform the builder, which can then update its internal structures and provide new
triggers. Triggers are similar to certificates that form the basis of the kinetic data
structures discussed in Section 53.2.

In practice, the observer and builder may not be part of the same system
and communication is not instantaneous. That is, we cannot neglect the fact that
time passes and objects move while a location update is send from the observer
to the builder. This can be modeled by maintaining regions in which each object
resides, as time passes these regions grow. A location update then leads to one
region shrinking to a point while every other region grows. When considering
objects with a bounded movement rate, but unknown motions, the basic problem
of minimizing the number of regions that overlap—that is, the maximum number
of regions containing the same point—is hard, even when we aim to minimize ply
only at a given time in the future. However, a strategy that approximates this
number exists under certain conditions [EKLS16].

A much simpler motion model is that of stepwise incremental motion, where
objects cannot be continuously observed. Instead, their locations are updated at
discrete points in time [BRS12a, BRS12b, BRS13]. At each point the data structure
must be repaired. When considering basic constraints on movement and distribu-
tion of the objects, this allows for updating strategies that are faster than rebuilding
the whole structure from scratch with each location update.

53.2 KINETIC DATA STRUCTURES

Suppose we are interested in tracking high-level attributes of a geometric system
of objects in motion such as, for example, the convex hull of a set on n points
moving in R

2. Note that as the points move continuously, their convex hull will
be a continuously evolving convex polygon. At certain discrete moments, however,
the combinatorial structure of the convex hull will change (that is, the circular
sequence of a subset of the points that appear on the hull will change). In between
such moments, tracking the hull is straightforward: its geometry is determined by
the positions of the sequence of points forming the hull. How can we know when the
combinatorial structure of the hull changes? The idea is that we can focus on certain
elementary geometric relations among the n points, a set of cached assertions we
call certificates, which altogether certify the correctness of the current combinatorial
structure of the hull. Furthermore, we can hope to choose these relations in such
a way so that when one of them fails because of point motion, both the hull and
its set of certifying relations can be updated locally and incrementally, so that the
whole process can continue.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1404 L.J. Guibas and M. Roeloffzen

GLOSSARY

Kinetic data structure: A kinetic data structure (KDS) for a geometric at-
tribute is a collection of simple geometric relations that certifies the combinato-
rial structure of the attribute, as well as a set of rules for repairing the attribute
and its certifying relations when one relation fails.

Certificate: A certificate is an elementary geometric relation used in a KDS.

Event: An event is the failure of a KDS certificate during motion. Events are
classified as external when the combinatorial structure of the attribute changes,
and internal, when the structure of the attribute remains the same, but its
certification needs to change.

Event queue: In a KDS, all certificates are placed in an event queue, according
to their earliest failure time.

Pseudo-algebraic motion: The class of allowed motions is usually specified
as the class of pseudo-algebraic motions, in which each KDS certificate can flip
between true and false at most a bounded number of times. Note that this
class is specific for each KDS, but points whose coordinates are bounded-degree
polynomials of time generally satisfy this condition.

The inner loop of a KDS consists of repeated certificate failures and certification
repairs, as depicted in Figure 53.2.1.

Proof of

correctness

Certificate

failure

Proof update
Attribute

 update

FIGURE 53.2.1

The inner loop of a kinetic data structure.

We remark that in the KDS framework, objects are allowed to change their
motions at will, with appropriate notification to the data structure. When this
happens all certificates involving the object whose motion has changed must re-
evaluate their failure times.

CONVEX HULL EXAMPLE

Suppose we have four points a, b, c, and d in R
2, and wish to track their convex hull.

For the convex hull problem, the most important geometric relation is the ccw

predicate: ccw(a, b, c) asserts that the triangle abc is oriented counterclockwise.
Figure 53.2.2 shows a configuration of four points and four ccw relations that hold
among them. It turns out that these four relations are sufficient to prove that
the convex hull of the four points is the triangle abc. Indeed the points can move

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 53: Modeling motion 1405

and form different configurations, but as long as the four certificates shown remain
valid, the convex hull must be abc.

a

b

c

d Proof of correctness:

• ccw(a, b, c)

• ccw(d, b, c)

• ccw(d, c, a)

• ccw(d, a, b)
FIGURE 53.2.2

Determining the convex hull of the points.

Now suppose that points a, b, and c are stationary and only point d is moving,
as shown in Figure 53.2.3. At some time t1 the certificate ccw(d, b, c) will fail, and
at a later time t2 ccw(d, a, b) will also fail. Note that the certificate ccw(d, c, a) will
never fail in the configuration shown even though d is moving. So the certificates
ccw(d, b, c) and ccw(d, a, b) schedule events that go into the event queue. At time
t1, ccw(d, b, c) ceases to be true and its negation, ccw(c, b, d), becomes true. In
this simple case the three old certificates, plus the new certificate ccw(c, b, d), allow
us to conclude that the convex hull has now changed to abdc.

Old proof New proof

ccw(a, b, c) ccw(a, b, c)

ccw(d, b, c) ccw(c, b, d)

ccw(d, c, a) ccw(d, c, a)

ccw(d, a, b) ccw(d, a, b)

t1
t2

c

d

a

b

c

d

a

b

FIGURE 53.2.3

Updating the convex hull of the points.

If the certificate set is chosen judiciously, the KDS repair can be a local, incre-
mental process—a small number of certificates may leave the cache, a small number
may be added, and the new attribute certification will be closely related to the old
one. A good KDS exploits the continuity or coherence of motion and change in
the world to maintain certifications that themselves change only incrementally and
locally as assertions in the cache fail.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1406 L.J. Guibas and M. Roeloffzen

PERFORMANCE MEASURES FOR KDS

Because a KDS is not intended to facilitate a terminating computation but rather
an on-going process, we need to use somewhat different measures to assess its com-
plexity. In classical data structures there is usually a tradeoff between operations
that interrogate a set of data and operations that update the data. We commonly
seek a compromise by building indices that make queries fast, but such that updates
to the set of indexed data are not that costly as well. Similarly in the KDS setting,
we must at the same time have access to information that facilitates or trivializes
the computation of the attribute of interest, yet we want information that is rela-
tively stable and not so costly to maintain. Thus, in the same way that classical
data structures need to balance the efficiency of access to the data with the ease
of its update, kinetic data structures must tread a delicate path between “knowing
too little” and “knowing too much” about the world. A good KDS will select a
certificate set that is at once economical and stable, but also allows a quick repair
of itself and the attribute computation when one of its certificates fails. To measure
these concerns, four quality criteria are introduced below. To measure efficiency, we
need to define a class of motions that the KDS accepts. Generally this is the class
of pseudo-algebraic motions. That is, the class of all motions where each certificate
can flip between true and false at most a bounded number of times. Although
this definition depends on the data-structure, the class of polynomial motions (mo-
tions defined by bounded degree polynomial functions) are also pseudo-algebraic in
mostly all KDSs.

GLOSSARY

Responsiveness: A KDS is responsive if the cost, when a certificate fails, of
repairing the certificate set and updating the attribute computation is small. By
“small” we mean polylogarithmic in the problem size—in general we consider
small quantities that are polylogarithmic or O(nǫ) in the problem size.

Efficiency: A KDS is efficient if the number of certificate failures (total number
of events) it needs to process is comparable to the number of required changes
in the combinatorial attribute description (external events), over some class of
allowed motions. Technically, we require that the ratio of total events to external
events is small.

Compactness: A KDS is compact if the size of the certificate set it needs is
close to linear in the degrees of freedom of the moving system.

Locality: A KDS is local if no object participates in too many certificates; this
condition makes it easier to re-estimate certificate failure times when an object
changes its motion law. (The existence of local KDSs is an intriguing theoretical
question for several geometric attribute functions.)

CONVEX HULL, REVISITED

We now briefly describe a KDS for maintaining the convex hull of n points moving
around in the plane [BGH99].

The key goal in designing a KDS is to produce a repairable certification of

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 53: Modeling motion 1407

the geometric object we want to track. In the convex hull case it turns out that it
is a bit more intuitive to look at the dual problem, that of maintaining the upper
(and lower) envelope of a set of moving lines in the plane, instead of the convex hull
of the primal points. For simplicity we focus only on the upper envelope part from
now on; the lower envelope case is entirely symmetric. Using a standard divide-
and-conquer approach, we partition our lines into two groups of size roughly n/2
each, and assume that recursive invocations of the algorithm maintain the upper
envelopes of these groups. For convenience, call the groups red and blue.

In order to produce the upper envelope of all the lines, we have to merge the
upper envelopes of the red and blue groups and also certify this merge, so we can
detect when it ceases to be valid as the lines move; see Figure 53.2.4.

FIGURE 53.2.4

Merging the red and blue upper envelopes. In this example, the red envelope (solid
line) is above the blue (dotted line), except at the extreme left and right areas. Vertical
double-ended arrows represent y-certificates and horizontal double-ended arrows represent
x-certificates, as described below.

Conceptually, we can approach this problem by sweeping the envelopes with
a vertical line from left to right. We advance to the next red (blue) vertex and
determine if it is above or below the corresponding blue (red) edge, and so on. In
this process we determine when red is above blue or vice versa, as well as when
the two envelopes cross. By stitching together all the upper pieces, whether red or
blue, we get a representation of the upper envelope of all the lines.

The certificates used in certifying the above merge are of three flavors:

• x-certificates (<x) are used to certify x-ordering among the red and blue
vertices; these involve four original lines.

• y-certificates (<y) are used to certify that a vertex is above or below an edge
of the opposite color; these involve three original lines and are exactly the
duals of the ccw certificates discussed earlier.

• s-certificates (<s) are slope comparisons between pairs of original lines; though
these did not arise in our sweep description above, they are needed to make
the KDS local [BGH99].

Figure 53.2.5 shows examples of how these types of certificates can be used to
specify x-ordering constraints and to establish intersection or nonintersection of the
envelopes. A total of O(n) such certificates suffice to verify the correctness of the
upper envelope merge.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1408 L.J. Guibas and M. Roeloffzen

d e

c
ba

ab<xde
de<xbc

x-ordering certificates

a
b

d
e

ab<yd
de<yb

intersection certificates

a

b

c

d
e

d<sb
b<se
b<yde

nonintersection certificates

FIGURE 53.2.5

Using the different types of certificates to certify the red-blue envelope merge.

Whenever the motion of the lines causes one of these certificates to fail, a local,
constant-time process suffices to update the envelope and repair the certification.
Figure 53.2.6 shows an example where a y-certificate fails, allowing the blue enve-
lope to poke up above the red.

a

b

d
e

f

a

b

e

f

d

FIGURE 53.2.6

Envelope repair after a certificate failure. In the event shown, lines b, d, and e become
concurrent, producing a red-blue envelope intersection.

It is straightforward to prove that this kinetic upper envelope algorithm is
responsive, local, and compact, using the logarithmic depth of the hierarchical
structure of the certification. In order to bound the number of events processed,
however, we must assume that the line motions are polynomial or at least pseudo-
algebraic. A proof of efficiency can be developed by extruding the moving lines
into space-time surfaces. Using certain well-known theorems about the complexity
of upper envelopes of surfaces [Sha94] and the overlays of such envelopes [ASS96]
(cf. Chapter 50), it can be shown that in the worst case the number of events pro-
cessed by this algorithm is near quadratic (O(n2+ǫ), for any constant ǫ > 0, where
the constant of proportionality depends on ǫ). Since the convex hull of even linearly
moving points can change Ω(n2) times [AGHV01], the efficiency result follows. No
comparable structure is known for the convex hull of points in dimensions d ≥ 3.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 53: Modeling motion 1409

EXTENT PROBLEMS

A number of problems for which kinetic data structures were developed are aimed
at different measures of how “spread out” a moving set of points in R

2 is—one
example is the convex hull, whose maintenance was discussed in the previous sub-
section. Other measures of interest include the diameter, width, and smallest area
or perimeter bounding rectangle for a moving set S of n points. All these problems
can be solved using the kinetic convex hull algorithm above; the efficiency of the
algorithms is O(n2+ǫ), for any ǫ > 0. There are also corresponding Ω(n2) lower
bounds for the number of combinatorial changes in these measures. Surprisingly,
the best upper bound known for maintaining the smallest enclosing disk containing
S is still near-cubic. Extensions of these results to dimensions higher than two are
also lacking.

These costs can be dramatically reduced if we consider approximate extent
measures. If we are content with (1 + ǫ)-approximations to the measures, then
an approximate smallest axis-aligned rectangle, diameter, and smallest enclosing
disk can be maintained with a number of events that is a function ǫ only and not
of n [AHP01]. For example, the bound of the number of approximate diameter
updates in R

2 under linear motion of the points is O(1/ǫ).

PROXIMITY PROBLEMS

The fundamental proximity structures in computational geometry are the Voronoi
diagram and the Delaunay triangulation (Chapter 27). The edges of the Delaunay
triangulation contain the closest pair of points, the closest neighbor to each point,
as well as a wealth of other proximity information among the points. From the
kinetic point of view, these are nice structures, because they admit completely local
certifications. Delaunay’s 1934 theorem [Del34] states that if a local empty sphere
condition is valid for each (d−1)-simplex in a triangulation of points in R

d, then
that triangulation must be Delaunay. This makes it simple to maintain a Delaunay
triangulation under point motion: an update is necessary only when one of these
empty sphere conditions fails. Furthermore, whenever that happens, a local retiling
of space (of which the classic “edge-flip” in R

2 is a special case; cf. Section 29.3)
easily restores Delaunayhood. Thus the KDS for Delaunay (and Voronoi) that
follows from this theorem is both responsive and efficient—in fact, each KDS event
is an external event in which the structure changes. Tight bounds on the number
of events were a long-standing open problem with only a quadratic lower bound
and near-cubic upper bound being known [AGMR98]. Here, near-cubic (or near-
quadratic) indicates at most a factor nǫ difference with cubic (or quadratic) for an
arbitrarily small constant ǫ > 0. Progress towards closing this gap has been made
in several different ways. Firstly, by using a randomized triangulation an expected
near-quadratic number of events occur [KRS11]. Secondly, the Voronoi diagram for
a convex polygonal distance measure—a distance measure where the unit ball is
a convex polygon—can also be maintained with near-quadratic events [AKRS15].
Thirdly, better bounds on the number of events in the Euclidean setting can be
proven when motions are more restricted. When the points move along straight-
line trajectories with constant speed, then only near-quadratic events occur [Rub15].
Lastly, one could consider not maintaining all edges. Specifically the stable edges

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1410 L.J. Guibas and M. Roeloffzen

of a Delaunay triangulation can be maintained with a near-quadratic number of
events [AGG+15]. Here a Delaunay edge is stable if the angle from either of its
endpoints to the endpoints of the corresponding Voronoi edge is large enough.
Intuitively, stable edges are those that are not close to flipping as their Voronoi
edges are far from collapsing.

A set of easily checked local conditions that implies a global property has also
been used in kinetizing other proximity structures. For instance, in the power

diagram [Aur87] of a set of disjoint balls, the two closest balls must be neigh-
bors [GZ98]—and this diagram can be kinetized by a similar approach. Voronoi
diagrams of more general objects, such as convex polytopes, have also been investi-
gated. For example, in R

2 [GSZ00] shows how to maintain a compact Voronoi-like
diagram among moving disjoint convex polygons; again, a set of local conditions
is derived which implies the global correctness of this diagram. As the polygons
move, the structure of this diagram allows one to know the nearest pair of polygons
at all times.

In many applications we do not need the full Delaunay triangulation and instead
maintaining the nearest neighbor for each vertex or theminimum spanning tree may
be sufficient. Instead of maintaining the Delaunay graph we can instead maintain
the Theta- or Yao-graph. These are defined as follows. For each point p, the
plane is divided into cones, then for each nonempty cone we create an edge from
p to the nearest point in that cone, where nearest for the Theta-graph is nearest
in the direction of the cone, whereas for the Yao graph it is the nearest in the
Euclidean metric. The Theta-graph based on six cones can be used to maintain the
global nearest neighbor pair and the graph encounters Θ(n2) events as the number
of events is bounded by the number of changes in the sorted orders along the
directions of the cones, which are fixed [BGZ97]. Using variations of the Yao graph
it is also possible to maintain the minimum spanning tree and nearest neighbors
for all vertices, and, although the analysis is more complicated, this also yields a
near-quadratic number of events [RAK+15].

TRIANGULATIONS AND TILINGS

Many areas in scientific computation and physical modeling require the mainte-
nance of a triangulation (or more generally a simplicial complex) that approximates
a manifold undergoing deformation. The problem of maintaining the Delaunay tri-
angulation of moving points in the plane mentioned above is a special case. More
generally, local re-triangulations are necessitated by collapsing triangles, and some-
times required in order to avoid undesirably “thin” triangles. In certain cases the
number of nodes (points) may also have to change in order to stay sufficiently
faithful to the underlying physical process; see, for example, [CDES01]. Because
in general a triangulation meeting certain criteria is not unique or canonical, it
becomes more difficult to assess the efficiency of kinetic algorithms for solving such
problems. The lower-bounds in [ABB+00] indicate that one cannot hope for a sub-
quadratic bound on the number of events in the worst case for the maintenance of
any triangulation, even if a linear number of additional Steiner points is allowed.

When considering deterministic algorithms the best-known result for main-
taining a triangulation uses O(n7/3) events [ABG+02]. However, when allowing
randomized triangulation it was shown that indeed O(n2+ǫ) events is possible with
high probability. The first near-quadratic triangulation uses a hierarchical scheme

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 53: Modeling motion 1411

where first a subset of points is triangulated, splitting the pointset into subsets that
are then further triangulated [AWY06]. A more recent result slightly improves the
bounds on number of events, but is also simpler [KRS11]. In fact, the approach is
closer to the much earlier deterministic result; in both cases, first a pseudotriangu-
lation is created, which is then triangulated further.

COLLISION DETECTION

Collision detection is the problem of determining whether there are insections be-
tween objects of a given input set. The more interesting version of this problem is
of course when the objects move and collisions have to be detected as soon as they
occur, see Chapter 39 for more background on collision detection. Kinetic meth-
ods are naturally applicable to the problem of collision detection between moving
geometric objects. Typically collisions occur at irregular intervals, so that fixed-
time stepping methods have difficulty selecting an appropriate sampling rate to
fit both the numerical requirements of the integrator as well as those of collision
detection. A kinetic method based on the discrete events that are the failures of
relevant geometric conditions can avoid the pitfalls of both oversampling and un-
dersampling the system. For two moving convex polygons in the plane, a kinetic
algorithm where the number of events is a function of the relative separation of the
two polygons is given in [EGSZ99]. The algorithm is based on constructing certain
outer hierarchies on the two polygons. Analogous methods for 3D polytopes were
presented in [GXZ01], together with implementation data. Such methods however
do not easily extend to situations with many objects, hence a different approach is
needed.

(i) (ii)

(iii) (iv)
FIGURE 53.2.7

Snapshots of the mixed pseudotriangulation of [ABG+02]. As the center trapezoid-like
polygon moves to the right, the edges corresponding to the next about-to-fail certificate are
highlighted.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1412 L.J. Guibas and M. Roeloffzen

One option is to tile the free space around objects. Such a tiling can serve
as a proof of nonintersection of the objects. If such a tiling can be efficiently
maintained under object motion, then it can be the basis of a kinetic algorithm
for collision detection. Several papers have developed techniques along these lines,
including the case of two moving simple polygons in the plane [BEG+04], or multiple
moving polygons [ABG+02, KSS02]. These developments all exploit deformable
pseudotriangulations of the free space—tilings which undergo fewer combinatorial
changes than, for example, triangulations. An example from [ABG+02] is shown
in Figure 53.2.7. The figure shows how the pseudotriangulation adjusts by local
retiling to the motion of the inner quadrilateral. An advantage of all these methods
is that the number of certificates needed is close to the size of the min-link separating
subdivision of the objects, and thus sensitive to how intertwined the objects are.

Deformable and nonpolygonal objects are more challenging to handle. Static
methods such as bounding volume hierarchies [GLM96] deal with more complex ob-
jects by using two phases. In the broad phase a selection of pairs of objects is found
that may be colliding. In the narrow phase these pairs of objects are explicitly
tested for intersection. Efficiency of this method depends heavily on the number
of pairs produced in the broad phase, so also broad-phase algorithms have been
studied within the KDS framework. In a kinetic setting the pairs produced by the
broad phase can be used as certificates of nonintersection. Based on this idea effi-
cient KDSs have been produced for deformable [AGN+04] and constant-complexity
convex objects in 3D [ABPS09]. In both results the number of potentially intersect-
ing pairs, and hence, the number of certificates is close to linear. For unit balls of
similar size a kinetic data structure has also been developed based on dividing space
into cells and maintaining which cells the spheres intersect [KGS98]. This method
was also used in a more general setting where motions are not known exactly and
experimentally shown to work well under reasonable motions [KGS05].

CONNECTIVITY AND CLUSTERING

Closely related to proximity problems is the issue of maintaining structures en-
coding connectivity among moving geometric objects. Connectivity problems arise
frequently in ad hoc mobile communication and sensor networks, where the viability
of links may depend on proximity or direct line-of-sight visibility among the sta-
tions desiring to communicate. With some assumptions, the communication range
of each station can be modeled by a geometric region, so that two stations can es-
tablish a link if and only if their respective regions overlap. There has been work on
kinetically maintaining the connected components of the union of a set of moving
geometric regions for the case of rectangles [HS99] and unit disks [GHSZ01].

Clustering mobile nodes is an essential step in many algorithms for establish-
ing communication hierarchies, or otherwise structuring ad hoc networks. Nodes in
close proximity can communicate directly, using simpler protocols; correspondingly,
well-separated clusters can reuse scarce resources, such as the same frequency or
time-division multiplexing communication scheme, without interference. Maintain-
ing clusters of mobile nodes requires a tradeoff between the tightness, or optimality
of the clustering, and its stability under motion. A basic clustering scheme is to
cover the points with a minimum number of unit boxes. A randomized scheme that
maintains such a clustering was given by Gao et al. [GGH+03]. This scheme main-
tains a number of boxes that is within a (large) constant factor of the minimum

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 53: Modeling motion 1413

number needed. Later, a deterministic solution was found that works in higher di-
mensions with an approximation ratio of 3d in d dimensions [Her05]. Both schemes
have the nice property that the clustering is smooth, that is, each event affects only
a small number of boxes.

A next step in establishing a connected network between mobile nodes is to
create a connectivity graph that can be used for routing. Graphs that work well for
this purpose have a bounded spanning ratio. That is, for any two nodes, the ratio
between their Euclidean distance and their shortest distance along the graph is
bounded. Here, the distance along the graph is the sum of Euclidean lengths of all
edges along a path between the two nodes. Graph for which this spanning ratio is
bounded are generally referred to as spanners. One of the earliest kinetic spanners
was based on the randomized clustering scheme from [GGH+03] and had a constant
spanning ratio. Using a different approach Gao et al. [GGN06] proposed a spanner
with a spanning ratio of (1 + ǫ) for any constant ǫ > 0. This spanner also allows
logarithmic time insertion and deletion of points. However, the number of events
and query time depend on the spread of the input set. That is, the ratio between the
shortest distance and longest distance between any pair of points. The dependency
on the spread was removed by Abam et al. who present two spanners with spanning
ratio (1+ ǫ). The first works for any constant number of dimensions [AB11], but is
somewhat complex, whereas the other works only in two dimensions, but is much
simpler [ABG10].

VISIBILITY

The problem of maintaining the visible parts of the environment when an observer
is moving is one of the classic questions in computer graphics and has motivated
significant developments, such as binary space partition trees, the hardware depth
buffer, etc. The difficulty of the question increases significantly when the environ-
ment itself includes moving objects; whatever visibility structures accelerate oc-
clusion culling for the moving observer must now themselves be maintained under
object motion.

Binary space partitions (BSP) are hierarchical partitions of space into convex
tiles obtained by performing planar cuts (Section 33.8.2). Tiles are refined by fur-
ther cuts until the interior of each tile is free of objects or contains geometry of
limited complexity. Once a BSP tree is available, a correct visibility ordering for all
geometry fragments in the tiles can be easily determined and incrementally main-
tained as the observer moves. A kinetic algorithm for visibility can be devised by
maintaining a BSP tree as the objects move. The key insight is to certify the correct-
ness of the BSP tree through certain combinatorial conditions, whose failure triggers
localized tree rearrangements—most of the classical BSP construction algorithms
do not have this property. In R

2, a randomized algorithm for maintaining a BSP
of moving disjoint line segments is given in [AGMV00]. The algorithm processes
O(n2) events, the expected cost per tree update is O(log n), and the expected tree
size is O(n log n). The maintenance cost increases to O(nλs+2(n) log

2 n) [AEG98]
for disjoint moving triangles in R

3 (s is a constant depending on the triangle mo-
tion). Both of these algorithms are based on variants of vertical decompositions
(many of the cuts are parallel to a given direction). It turns out that in practice
these generate “sliver-like” BSP tiles that lead to robustness issues [Com99].

As the pioneering work on the visibility complex has shown [PV96], another

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1414 L.J. Guibas and M. Roeloffzen

structure that is well suited to visibility queries in R
2 is an appropriate pseudo-

triangulation. Given a moving observer and convex moving obstacles, a full radial
decomposition of the free space around the observer is quite expensive to maintain.
One can build pseudotriangulations of the free space that become more and more
like the radial decomposition as we get closer to the observer. Thus one can have
a structure that compactly encodes the changing visibility polygon around the ob-
server, while being quite stable in regions of the free space well occluded from the
observer [HH02].

FACILITY LOCATION

A common networking strategy is to use hierarchies, where a small set of the nodes is
selected as hubs that serve as communication gateways for the nodes around them.
We can then establish a network between these hubs either inductively, by sampling
superhubs, or through another paradigm. These networks have the advantage that
routing is generally very simple as each node just needs to communicate to its near-
est hub and the hubs can be connected with much simpler protocols, because there
are only few. Selecting hubs from a set of nodes can be seen as the classic facility
location problem, originally studied in the context of a facility (store, distribution
centers, post office) serving a number of clients (customers, stores, addresses). Here
the facilities are the network hubs and the clients the other nodes. Many variations
of this problem exist, which consider the maintenance cost of operating a facility,
the distance of clients to the facility, and the number of clients a facility can serve.

With the increased number of mobile networks it becomes interesting to study
this problem in a mobile setting, where clients and facilities move. Clients may then
be promoted to servers and servers demoted to clients. A recently studied variant
considers a set of moving points that may be used as client or as facility moving
(as before) along pseudo-algebraic trajectories. Each point has a maintenance cost
when it is used as a facility and a demand when it is a client [DGL10]. The quality
measure here is the total maintenance cost of all facilities plus the distances of each
client to its nearest facility multiplied by their demand. In this setting a constant
factor approximation of the optimal solution can be maintained with a quadratic
number of events and a logarithmic number of status changes (changing a client
to a facility of vice versa) per event. Note that the number of events and number
of changes per event also depend on the ratio between the largest and smallest
maintenance cost as well as the ratio between the largest and smallest demand of
any point.

Unfortunately these status changes may be quite expensive in practice as they
necessitate changes in network structure, which often results in loss of packages.
An open problem is whether an efficient strategy exists that takes the cost of a
status change into account explicitly. Such an algorithm would have to be analyzed
in a competitive way.

QUERYING MOVING OBJECTS

Continuous tracking of a geometric attribute may be more than is needed for some
applications. There may be time intervals during which the value of the attribute
is of no interest; in other scenarios we may be just interested to know the attribute

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 53: Modeling motion 1415

value at certain discrete query times. For example, given n moving points in R
2,

we may want to pose queries asking for all points inside a rectangle R at time t,
for various values of R and t, or for an interval of time ∆t, etc. A number of other
classical range-searching structures, such as k-d-trees and R-trees been investigated
for moving objects [PAHP02, ABS09].

Another interesting observation is that maintenance of a kinetic data structure
may be made more efficient if we allow queries to spend more time. Such trade-offs
were investigated for kinetic dictionaries [Ber03, AAE03] and for sorting and convex
hulls [AB07].

OPEN PROBLEMS

As mentioned above, we still lack efficient kinetic data structures for many funda-
mental geometric questions. Here is a short list of such open problems:

1. Find an efficient (and responsive, local, and compact) KDS for maintaining
the convex hull of points moving in dimensions d ≥ 3.

2. Find an efficient KDS for maintaining the smallest enclosing disk in d ≥ 2.
For d = 2, a goal would be an O(n2+ǫ) algorithm.

3. Find a KDS to maintain the MST of moving points under the Euclidean
metric achieving subquadratic bounds.

4. Maintain mobile facilities with a guaranteed small number of facility changes
while maintaining low cost in terms of facility maintenance and travel distance
of clients.

Beyond specific problems, there are also several important structural issues
that require further research in the KDS framework. These include:

Recovery after multiple certificate failures. We have assumed up to now
that the KDS assertion cache can detect certificate failures exactly. In real-world
applications this may be impossible due to inexact knowledge of the trajectories
or finite precision computations. Multiple certificates may fail at the same time or
may be treated in the wrong order. Although for some structures work has been
done to create robust KDSs this is still ongoing work and a key step in making
KDSs more applicable in practice [AABY11].

There is also a related subtlety in the way that a KDS assertion cache can certify
the value, or a computation yielding the value, of the attribute of interest. Suppose
our goal is to certify that a set of moving points in the plane, in a given circular
order, always forms a convex polygon. A plausible certificate set for convexity is
that all interior angles of the polygon are convex. See Figure 53.2.8. In the normal
KDS setting where we can always predict accurately the next certificate failure,
it turns out that the above certificate set is sufficient, as long as at the beginning

of the motion the polygon was convex. One can draw, however, nonconvex self-
intersecting polygons all of whose interior angles are convex, as shown in the same
figure. The point here is that a standard KDS can offer a historical proof of the
convexity of the polygon by relying on the fact that the certificate set is valid and

that the polygon was convex during the prior history of the motion. Indeed the
counterexample shown cannot arise under continuous motion without one of the
angle certificates failing first. On the other hand, if an oracle can move the points

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1416 L.J. Guibas and M. Roeloffzen

when “we are not looking,” we can wake up and find all the angle certificates to
be valid, yet our polygon need not be convex. Thus in this oracle setting, since
we cannot be sure that no certificates failed during the time step, we must insist
on absolute proofs—certificate sets that in any state of the world fully validate the
attribute computation or value.

FIGURE 53.2.8

Certifying the convexity of a polygon.

Hierarchical motion descriptions. Objects in the world are often organized
into groups and hierarchies and the motions of objects in the same group are highly
correlated. For example, though not all points in an elastic bouncing ball follow
exactly the same rigid motion, the trajectories of nearby points are very similar and
the overall motion is best described as the superposition of a global rigid motion
with a small local deformation. Similarly, the motion of an articulated figure, such
as a man walking, is most succinctly described as a set of relative motions, say that
of the upper right arm relative to the torso, rather than by giving the trajectory of
each body part in world coordinates.

What both of these examples suggest is that there can be economies in motion
description, if the motion of objects in the environment can be described as a
superposition of terms, some of which can be shared among several objects. Such
hierarchical motion descriptions can simplify certificate evaluations, as certificates
are often local assertions concerning nearby objects, and nearby objects tend to
share motion components. For example, in a simple articulated figure, we may
wish to assert ccw(A,B,C) to indicate that an arm is not fully extended, where
AB and BC are the upper and lower parts of the arm, respectively. Evaluating
this certificate is clearly better done in the local coordinate frame of the upper arm
than in a world frame—the redundant motions of the legs and torso have already
been factored out.

Motion sensitivity. As already mentioned, the motions of objects in the world
are often highly correlated and it behooves us to find representations and data struc-
tures that exploit such motion coherence. It is also important to find mathematical
measures that capture the degree of coherence of a motion and then use this as a
parameter to quantify the performance of motion algorithms. If we do not do this,
our algorithm design may be aimed at unrealistic worst-case behavior, without cap-
turing solutions that exploit the special structure of the motion data that actually
arise in practice—as already discussed in a related setting in [BSVK02]. Thus it is
important to develop a class of kinetic motion-sensitive algorithms, whose perfor-
mance can be expressed as a function of how coherent the motions of the underlying
objects are.

Noncanonical structures. The complexity measures for KDSs mentioned ear-

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 53: Modeling motion 1417

lier are more suitable for maintaining canonical geometric structures, which are
uniquely defined by the position of the data, e.g., convex hull, closest pair, and
Delaunay triangulation. In these cases the notion of external events is well defined
and is independent of the algorithm used to maintain the structure. On the other
hand, as we already discussed, suppose we want to maintain a triangulation of a
moving point set. Since the triangulation of a point set is not unique, the external
events depend on the triangulation being maintained, and thus depend on the al-
gorithm. This makes it difficult to analyze the efficiency of a kinetic triangulation
algorithm. Most of the current approaches for maintaining noncanonical structures
artificially impose canonicality and maintain the resulting canonical structure. But
this typically increases the number of events. So it is entirely possible that methods
in which the current form of the structure may depend on its past history can be
more efficient. Unfortunately, we lack mathematical techniques for analyzing such
history-dependent structures.

53.3 SOURCES AND RELATED MATERIALS

SURVEYS

Results not given an explicit reference above may be traced in these surveys.

[Gui98]: An early, and by now somewhat dated, survey of KDS work.

[AGE+02]: A report based on an NSF-ARO workshop, addressing several issues on
modeling motion from the perspective of a variety of disciplines.

[Gui02]: A “popular-science” type article containing material related to the costs
of sensing and communication for tracking motion in the real world.

RELATED CHAPTERS

Chapter 9: Geometry and topology of polygonal linkages
Chapter 26: Convex hull computations
Chapter 27: Voronoi diagrams and Delaunay triangulations
Chapter 29: Triangulations and mesh generation
Chapter 39: Collision and proximity queries

REFERENCES

[AABY11] M.A. Abam, P.K. Agarwal, M. de Berg, and H. Yu. Out-of-order event processing

in kinetic data structures. Algorithmica, 60:250–273, 2011.

[AAE03] P.K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. J. Comp. Syst.

Sci., 66:207–243, 2003.

[AB07] M.A. Abam and M. de Berg. Kinetic sorting and kinetic convex hulls. Comput.

Geom., 37:16–26, 2007.

[AB11] M.A. Abam and M. de Berg. Kinetic spanners in R
d. Discrete Comput. Geom.,

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1418 L.J. Guibas and M. Roeloffzen

45:723–736, 2011.

[ABB+00] P.K. Agarwal, J. Basch, M. de Berg, L.J. Guibas, and J. Hershberger. Lower bounds

for kinetic planar subdivisions. Discrete Comput. Geom., 24:721–733, 2000.

[ABG+02] P.K. Agarwal, J. Basch, L.J. Guibas, J. Hershberger, and L. Zhang. Deformable

free-space tilings for kinetic collision detection. I. J. Robotic Res., 21:179–198,

2002.

[ABG10] M.A. Abam, M. de Berg, and J. Gudmundsson. A simple and efficient kinetic

spanner. Comput. Geom., 43:251–256, 2010.

[ABPS09] M.A. Abam, M. de Berg, S.-H. Poon, and B. Speckmann. Kinetic collision detection

for convex fat objects. Algorithmica, 53:457–473, 2009.

[ABS09] M.A. Abam, M. de Berg, and B. Speckmann. Kinetic kd-trees and longest-side

kd-trees. SIAM J. Comput., 39:1219–1232, 2009.

[AEG98] P.K. Agarwal, J. Erickson, and L.J. Guibas. Kinetic binary space partitions for

intersecting segments and disjoint triangles (extended abstract). In Proc. 9th ACM-

SIAM Sympos. Discrete Algorithms, pages 107–116, 1998.

[AGG+15] P.K. Agarwal, J. Gao, L.J. Guibas, H. Kaplan, N. Rubin, and M. Sharir. Stable

Delaunay graphs. Discrete Comput. Geom., 54:905–929, 2015.

[AGHV01] P.K. Agarwal, L.J. Guibas, J. Hershberger, and E. Veach. Maintaining the extent

of a moving point set. Discrete Comput. Geom., 26:353–374, 2001.

[AGMR98] G. Albers, L.J. Guibas, J.S.B. Mitchell, and T. Roos. Voronoi diagrams of moving

points. Internat. J. Comput. Geom. Appl., 8:365–380, 1998.

[AGMV00] P.K. Agarwal, L.J. Guibas, T.M. Murali, and J.S. Vitter. Cylindrical static and

kinetic binary space partitions. Comput. Geom., 16:103–127, 2000.

[AGE+02] P.K. Agarwal, L. Guibas, H. Edelsbrunner, et al. Algorithmic issues in modeling

motion. ACM Computing Surveys, 34:550-572, 2002.

[AGN+04] P.K. Agarwal, L.J. Guibas, A. Nguyen, D. Russel, and L. Zhang. Collision detection

for deforming necklaces. Comput. Geom., 28:137–163, 2004.

[AHP01] P.K. Agarwal and S. Har-Peled. Maintaining approximate extent measures of mov-

ing points. In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages 148–157,

2001.

[AKRS15] P.K. Agarwal, H. Kaplan, N. Rubin, and M. Sharir. Kinetic Voronoi diagrams and

Delaunay triangulations under polygonal distance functions. Discrete Comput.

Geom., 54:871–904, 2015.

[ASS96] P.K. Agarwal, O. Schwarzkopf, and M. Sharir. The overlay of lower envelopes and

its applications. Discrete Comput. Geom., 15:1–13, 1996.

[Ata85] M.J. Atallah. Some dynamic computational geometry problems. Comput. Math.

Appl., 11:1171–1181, 1985.

[Aur87] F. Aurenhammer. Power diagrams: Properties, algorithms and applications. SIAM

J. Comput., 16:78–96, 1987.

[AWY06] P.K. Agarwal, Y. Wang, and H. Yu. A two-dimensional kinetic triangulation with

near-quadratic topological changes. Discrete Comput. Geom., 36:573–592, 2006.

[BEG+04] J. Basch, J. Erickson, L.J. Guibas, J. Hershberger, and L. Zhang. Kinetic collision

detection between two simple polygons. Comput. Geom., 27:211–235, 2004.

[Ber03] M. de Berg. Kinetic dictionaries: How to shoot a moving target. In Proc. 11th

European Sympos. Algorithms, pages 172–183, vol. 2832 of LNCS, Springer, Berlin,

2003.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 53: Modeling motion 1419

[BGH99] J. Basch, L.J. Guibas, and J. Hershberger. Data structures for mobile data. J. Al-

gorithms, 31:1–28, 1999.

[BGZ97] J. Basch, L.J. Guibas, and L. Zhang. Proximity problems on moving points. In

Proc. 13th Sympos. Comput. Geom., pages 344–351, ACM Press, 1997.

[BRS12a] M. de Berg, M. Roeloffzen, and B. Speckmann. Kinetic compressed quadtrees in

the black-box model with applications to collision detection for low-density scenes.

In Proc. 20th European Sympos. Algorithms, pages 383–394, vol. 7501 of LNCS,

Springer, Berlin, 2012.

[BRS12b] M. de Berg, M. Roeloffzen, and B. Speckmann. Kinetic convex hulls, Delaunay

triangulations and connectivity structures in the black-box model. J. Comput.

Geom., 3:222–249, 2012.

[BRS13] M. de Berg, M. Roeloffzen, and B. Speckmann. Kinetic 2-centers in the black-box

model. In Proc. 29th Sympos. Comput. Geom., pages 145–154, ACM Press, 2013.

[BSVK02] M. de Berg, A.F. van der Stappen, J. Vleugels, and M.J. Katz. Realistic input

models for geometric algorithms. Algorithmica, 34:81–97, 2002.

[CDES01] H.-L. Cheng, T.K. Dey, H. Edelsbrunner, and J. Sullivan. Dynamic skin triangu-

lation. Discrete Comput. Geom., 25:525–568, 2001.

[CMP09] M. Cho, D.M. Mount, and E. Park. Maintaining nets and net trees under incre-

mental motion. In Proc. 20th Sympos. Internat. Sympos. Algorithms Computation,

pages 1134–1143, vol. 5878 of LNCS, Springer, Berlin, 2009.

[Com99] J. Comba. Kinetic Vertical Decomposition Trees. PhD thesis, Stanford University,

1999.

[Del34] B.N. Delaunay. Sur la sphére vide: à la mémoire de Georges Voronoi. Izv. Akad.

Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk, 7:793–800, 1934.

[DGL10] B. Degener, J. Gehweiler, and C. Lammersen. Kinetic facility location. Algorith-

mica, 57:562–584, 2010.

[EGSZ99] J. Erickson, L.J. Guibas, J. Stolfi, and L. Zhang. Separation-sensitive collision de-

tection for convex objects. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms,

pages 102–111, 1999.

[EKLS16] W. Evans, D. Kirkpatrick, M. Löffler, and F. Staals. Minimizing Co-location po-

tential of moving entities. SIAM J. Comput., 45:1870–1893, 2016.

[GGH+03] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mobile centers.

Discrete Comput. Geom., 30:45–63, 2003.

[GGN06] J. Gao, L.J. Guibas, and A.T. Nguyen. Deformable spanners and applications.

Comput. Geom., 35:2–19, 2006.

[GHSZ01] L.J. Guibas, J. Hershberger, S. Suri, and L. Zhang. Kinetic connectivity for unit

disks. Discrete Comput. Geom., 25:591–610, 2001.

[GJS96] P. Gupta, R. Janardan, and M. Smid. Fast algorithms for collision and proximity

problems involving moving geometric objects. Comput. Geom., 6:371–391, 1996.

[GLM96] S. Gottschalk, M.C. Lin, and D. Manocha. OBB-Tree: A hierarchical structure

for rapid interference detection. In Proc. 23rd Conf. Comp. Graphics Interactive

Techniques, pages 171–180, ACM Press, 1996.

[GSZ00] L. Guibas, J. Snoeyink, and L. Zhang. Compact Voronoi diagrams for moving

convex polygons. In Proc. Scand. Workshop Algorithms Data Structures, vol. 1851

of LNCS, pages 339–352, Springer, Berlin, 2000.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1420 L.J. Guibas and M. Roeloffzen

[Gui98] L. Guibas. Kinetic data structures: A state of the art report. In Proc. 3rd Workshop

Algorithmic Found. Robot., pages 191–209, A.K. Peters, Natick, 1998.

[Gui02] L.J. Guibas. Sensing, tracking, and reasoning with relations. IEEE Signal Proc.

Magazine, 19:73–85, 2002.

[GXZ01] L.J. Guibas, F. Xie, and L. Zhang. Kinetic collision detection: Algorithms and

experiments. In Proc. IEEE Internat. Conf. Robotics and Automation, pages 2903–

2910, 2001.

[GZ98] L. Guibas and L. Zhang. Euclidean proximity and power diagrams. In Proc. 10th

Canad. Conf. Comput. Geom., pages 90–91, Montréal, 1998.

[Her05] J. Hershberger. Smooth kinetic maintenance of clusters. Comput. Geom., 31:3–30,

2005.

[HH02] O. Hall-Holt. Kinetic Visibility. PhD thesis, Stanford University, 2002.

[HS99] J. Hershberger and S. Suri. Kinetic connectivity of rectangles. In Proc. 15th

Sympos. Comput. Geom., pages 237–246, ACM Press, 1999.

[Kah91] S. Kahan. A model for data in motion. In 23rd ACM Sympos. Theory of Comput.,

pages 267–277, 1991.

[KGS98] D.-J. Kim, L.J. Guibas, and S.-Y. Shin. Fast collision detection among multiple

moving spheres. IEEE Trans. Vis. Comput. Graph., 4:230–242, 1998.

[KGS05] H.K. Kim, L.J. Guibas, and S.Y. Shin. Efficient collision detection among moving

spheres with unknown trajectories. Algorithmica, 43:195–210, 2005.

[KRS11] H. Kaplan, N. Rubin, and M. Sharir. A kinetic triangulation scheme for moving

points in the plane. Comput. Geom., 44:191–205, 2011.

[KSS02] D.G. Kirkpatrick, J. Snoeyink, and B. Speckmann. Kinetic collision detection for

simple polygons. Int. J. Comput. Geom. Appl., 12:3–27, 2002.

[MNP+04] D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu. A compu-

tational framework for incremental motion. In Proc. 20th Sympos. Comput. Geom.,

pages 200–209, ACM Press, 2004.

[PAHP02] C.M. Procopiuc, P.K. Agarwal, and S. Har-Peled. STAR-tree: An efficient self-

adjusting index for moving points. In Proc. 4th Workshop on Algorithms Engi-

neering Experiments, vol. 2409 of LNCS, pages 178–193, Springer, Berlin, 2002.

[PV96] M. Pocchiola and G. Vegter. The visibility complex. Internat. J. Comput. Geom.

Appl., 6:279–308, 1996.

[RAK+15] Z. Rahmati, M.A. Abam, V. King, S. Whitesides, and A. Zarei. A simple, faster

method for kinetic proximity problems. Comput. Geom., 48:342–359, 2015.

[Rub15] N. Rubin. On kinetic Delaunay triangulations: A near-quadratic bound for unit

speed motions. J. ACM, 62:25, 2015.

[Sha94] M. Sharir. Almost tight upper bounds for lower envelopes in higher dimensions.

Discrete Comput. Geom., 12:327–345, 1994.

[ST95a] E. Schömer and C. Thiel. Subquadratic algorithms for the general collision detec-

tion problem. In Abstracts 12th European Workshop Comput. Geom., pages 95–101,

Linz, 1995.

[ST95b] E. Schömer and C. Thiel. Efficient collision detection for moving polyhedra. In

Proc. 11th Sympos. Comput. Geom., pages 51–60, ACM Press, 1995.

[YZ12] K. Yi and Q. Zhang. Multidimensional online tracking. ACM Trans. Algorithms,

8:12, 2012.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

