MSE 527 Lab Mechanical Behavior of Materials

Fall 2019

Website for lecture and lab

http://www.csun.edu/~bavarian/mse_527.htm

MSE 527 - Mechanical Behavior of Materials

<u>Fall 2011Course Syllabus</u> <u>Fall 2011 Lab Syllabus</u> <u>ABET</u>	Lectures Lecture 1 Dislocations Plastic Deformation Strengthening High Temperature Behavior of Materials Introduction to Fracture Mechanics Fracture Toughness Fatigue Crack Growth Crack Interaction with Microstructure - Ch 10	Labs Lab Introduction Tension Test Impact Test Scanning Electron Microscope (SEM) Metallographic Preparation Magnesium Deformation
28KV X 848 19U 925 99844 SH	And Gallery - Publications - MASA & IPL - A	20KV X50 100U 103 07201 GLI
Future Engineers		

This site was last updated 08/23/11.

LABS

- Tension
- Impact
- Fracture Toughness
- Project I
- Project ll

(Memo report)(Memo report)(Memo report)(Formal report)

- (Formal report)
- (Put data and answer questions in lab book)
- Fatigue/FCG
- SEM
- SCC
- Mg Deformation

Formats for reports

• <u>http://www.csun.edu/~bavarian/mse_227_lab.htm</u>

Home + Prof. Bavarian + Courses + Projects + Photo Gallery + Publications + NASA & JPL + Ancient Chinese Metallurgy + Materials Science + Future Engineers

This site was last updated 06/01/11

Course Grades

- 3 <u>Memo reports per group</u> 30%
 (Tension test, Impact, Fracture toughness)
- 2 <u>Formal project reports per group</u> 50%
- 2 <u>oral presentations per group</u>/ all members present 20%
- Labs are due 2 weeks from the assigned dates.
- No late lab reports accepted.

Time: Tuesday, 7:45 – 10:15 PM, Room JD 1504 MSE 527L Mechanical Behavior of Materials Laboratory

Date	Grp #1	Grp #2	Grp #3	Grp #4	
27-Aug	Introduction		Introduction		
3-Sep	Tension	Impact	Kt concent	SEM	
10-Sep	Impact	Tension	SEM	Kt concent	
17-Sep	Kt concent	SEM	Tension	Impact	
24-Sep	SEM	Kt concent	Impact	Tension	
1-Oct	Project I	Project I	Project I	Project I	
8-Oct	Project I	Project I	Project I	Project I	
15-Oct	SCC, plan Project II	Fatigue/FCG	Fract Toughness	Mg Deform	
22-Oct	Project I Presentation & Planning Project II				
29-Oct	Fract Toughness	SCC, plan Project II	Mg Deform	Fatigue/FCG	
5-Nov	Fatigue/FCG	Mg Deform	SCC, plan Project II	Fract Toughness	
12-Nov	Mg Deform	Fract Toughness	Fatigue/FCG	SCC, plan Project II	
19-Nov	Project II				
26-Nov	Project II				
3-Dec	Project II				
10-Dec	Project II Presentations				

Project I

• Each lab group, pick 1 ASTM standard. Each group does research and submits a report on a different ASTM standard listed below.

Volume 03.01

- E606
- E399
- E647
- E1820

Project II – Each lab group, pick 1 project topic. Each group does research and submits a formal report on a different topic.

Suggested topics for Lab projects; scope of project must go beyond what was done in lab experiments in terms of complexity:

- 1. **Impact test**; identify DBTT for different crystal structures
- 2. **Testing** materials in **tension**; generate stress-strain curve, define elastic modulus, Poisson's ratio, and the strain hardening coefficient.
- 3. Fracture behavior of materials; generate ductile and brittle failure and define their toughness.
- 4. **Fatigue** of materials, using bending beam, rotating beam; generate S-N curve, effect of surface condition on fatigue behavior, and environmental effects on fatigue (corrosion fatigue).
- 5. Effects of microstructure on mechanical properties; verify Hall-Petch formula (grain size effects).
- 6. Environmentally assisted cracking, stress corrosion cracking, hydrogen embrittlement, define K_{1EAC} .
- 7. Deformation of Mg (slip and twinning mechanisms for plastic deformation).
- 8. Determine **fracture toughness** (K_{1C}) of a material; design test specimen, perform the test, check test validity, determine factors affecting the fracture toughness.
- 9. Define fracture toughness using **Charpy impact test**; define K_{1D} and K_{1C} .
- 10. Failure analysis; prepare a report on a failure case.
- 11. Scanning Electron Microscopy (SEM): study its application in analyzing fracture behavior.

Tension Test

- Conduct tensile tests (steel/aluminum) samples using crosshead and laser
- Create Engineering and True stress-strain curves
- Define TS, YS, % Elongation, Elastic modulus (E)
- Compare E results from two different methods of displacement measurement (Crosshead and Laser)
- Based on True stress-strain, calculate strain hardening coefficient (n).

Strain Hardening

Strain Hardening (n, K or C values)

Table 7.4 Tabulation of *n* and *K* Values (Equation 7.19) for Several Alloys

		K	
Material	п		psi
Low-carbon steel (annealed)	0.21	600	87,000
4340 steel alloy (tempered @ 315°C)	0.12	2650	385,000
304 stainless steel (annealed)	0.44	1400	205,000
Copper (annealed)	0.44	530	76,500
Naval brass (annealed)	0.21	585	85,000
2024 aluminum alloy (heat treated—T3)	0.17	780	113,000
AZ-31B magnesium alloy (annealed)	0.16	450	66,000

Impact Test

- Conduct Charpy impact tests on two sets of samples (steel and aluminum)
- Define DBTT using three methods (Chapter 9)
- Using shear lip, calculate K_c (approx) value for each material.
- $D = 1/(2\pi) * (K/\sigma_{ys})^2$
- D = Charpy sample width (measured) * shear lip % (estimated)
- Ex: width = 0.37 in, shear lip % = 20% D = 0.37 * 0.20 = 0.074 in
- 1018 steel, $\sigma_{\rm YS}$ = 60 ksi 2024 Al , $\sigma_{\rm YS}$ = 52 ksi

K_t Concentration

- Conduct tensile tests on three different types of stress raisers.
- Using both stress and strain calculate K_{t.}
- Using Handbook of stress concentration, calculate K_t, compare with your experimental results and explain any differences.

Scanning Electron Microscope (SEM)

- Fractographic analysis of ductile and brittle failure.
- Intergranular cracking
- Transgranular cracking
- Fatigue failure

Fracture Toughness

- Using ASTM E399, measure K_c for an aluminum sample.
- Validate if this K_c is K_{1c} .

Fatigue/Fatigue Crack Growth (FCG)

- Using the rotating beam machine, conduct 4 fatigue tests at different stress levels (90%, 80%, 70%, 60% of yield stress) and superimpose your results on the S-N curve of the alloy tested (7075 Al). σ_y is roughly 80,000 psi.
- M = 0.0982SD³ (weight applied to rotating beam)
 M= bending moment, S=stress, D=diameter of reduced area
- Use <u>ASTM E647</u>, conduct Fatigue Crack Growth (FCG) test and establish Paris Equation for the alloy.

Fatigue testing apparatus for rotating bending test

- Fatigue is a form of failure that occurs in structures subjected to dynamic stresses over an extended period.
- <u>Under these conditions it is possible to fail at stress levels</u> considerably lower than tensile or yield strength for a static load.
- Single largest cause of failure in metals; also affects polymers and ceramics.
- Common failure in bridges, aircraft and machine components.

Fatigue Mechanism

• Crack grows incrementally

increase in crack length per loading cycle

Failed rotating shaft
-- crack grew even though

 $K_{max} < K_c$

- -- crack grows faster as
 - $\Delta \sigma$ increases
 - crack gets longer
 - loading freq. increases.

Adapted from Fig. 9.28, *Callister & Rethwisch 3e.* (Fig. 9.28 is from D.J. Wulpi, *Understanding How Components Fail*, American Society for Metals, Materials Park, OH, 1985.)

crack origin

- A specimen is subjected to stress cycling at a maximum stress amplitude; the number of cycles to failure is determined.
- This procedure is repeated on other specimens at progressively decreasing stress amplitudes.
- Data are plotted as stress S versus number N of cycles to failure for all the specimen.
- Typical S-N behavior: the higher the stress level, the fewer the number of cycles.

Mg Deformation

- See detailed description on MSE 527 webpage for Mg deformation and metallography).
- Observe slip bands and twinning
- Prepare 3 polished Mg sample, etch and observe grain structure.
- Deform 3 polished Mg samples at different temp (0° C, 25 °C, and 100 °C)
- Observe grain structure and look for slip band and twinning, re-etch and re-examine your samples (twinning cannot be removed by etching.

Stress Corrosion Cracking (SCC)

- Prepare 4 C-ring samples by polishing both perimeter edges (using sandpaper grits 240 thru 600, and polishing wheel 1 micron powder).
- Use <u>ASTM G-38</u>, <u>Vol 03.02</u>, specifically the equation to determine OD_f and Δ .
- Measure OD and t (wall thickness).
- Load (and label for identification) the C-rings at four different stress levels (80%, 65%, 50%, 35% of the yield stress. The alloy is 7050 Al: σ_y is roughly 80,000 psi; E = 10 million psi.
- Expose these samples to CCT (salt spray corrosion).
- Examine your samples on a weekly basis to inspect for crack initiation.