Name

	Poor	Fair	Average	Good	Excellent
Memorandum Format Used	1	2	3	4	5
Spelling, grammar & punctuation correct	1	2	3	4	5

Report includes:	Poor	Fair	Average	Good	Excellent
Discuss why the air-cooled and furnace-cooled specimens	1	2	3	4	5
can be quenched in water after one hour.					
Compare Brinell numbers (BHN) found from measured					
diameters with a conversion chart for Rockwell A or C	1	2	3	4	5
(6 specimens). Go to website or reference book to find	1				3
this information; include this data in your tables.					
Include tables (results and data measured) for BHN and	1	2	3	4	5
R _A . Be sure to include measured values from computer.	1	2	3	4	3
Graph BHN (x-axis) vs. Rockwell A or C (y-axis).	1	3	5	8	10
Graph Rockwell A or C hardness (y-axis) vs. tempering	1	3	5	8	10
temp (x-axis).		3	3	0	
Compute σ_{ult} for all specimens from the average BHN	1	2	3	4	5
for each specimen.	1	2			
Discuss the purpose of quenching and tempering steel.	1	2	3	4	5
Discuss the sources of error for the various hardness					
testers; compare consistency of test results and accuracy	1	2	3	4	5
(Rockwell vs Brinell).					
Discuss factors that probably contributed to the scatter in					
the hardness data and errors in the experiment (their	1	2	3	4	5
sources)					
Calculate amount of carbide (Fe ₃ C) present at 1338°F for					
SAE 1045. Use the phase diagram included in the lab	1	2	3	4	5
description and show calculations.					
Discuss the expected microstructure for each heat	1	2	3	4	5
treatment process.					
Discuss the correlation between microstructure and	1	2	3	4	5
hardness.	1	2			
Graph hardness as a function of distance from the	1	3	9	12	15
quenched end (show both alloys on the same graph).					
Discuss the effects of alloying on hardenability and the	1	1 2	3	4	5
shift in the TTT curve due to alloying.					

	Poor	Fair	Average	Good	Excellent
Overall level of effort apparent	1	2	3	4	5
Quality of graphs	1	2	3	4	5
Quality of Abstract	1	2	3	4	5
Quality of work description	1	2	3	4	5
Quality of conclusions	1	2	3	4	5