### EXPERIMENT 1 DEMONSTRATION OF X-RAY DIFFRACTION

The activities in this laboratory experiment involve observation, analysis and evaluation. The activities are designed so that students should complete the lab and calculations in class.

#### **Objective**

To observe one method of evaluating atomic crystalline structure by using x-ray diffraction. To understand the use of Bragg's Law and its relation to crystal structure.

#### Introduction

X-ray diffraction can be used to determine a materials crystalline structure and lattice parameter. This information can then be used to identify the material being analyzed since each metallic element in the periodic table has a unique combination of lattice structure and parameter at room temperature.

When an x-ray beam is directed at a metallic crystal the beam hits the atoms and produces two types of x-rays, white x-rays and characteristic x-rays. White x-rays include a wide range of wavelengths and are not of interest in this experiment. Characteristic x-rays are caused by the ejection of an electron from an inner shell of an atom hit by the incident x-ray. When an outer shell electron moves to fill the space created in the inner shell, energy in the form of an x-ray photon is emitted.

Bragg's law is used to determine a crystal parameters from its characteristic x-ray pattern. The x-rays that strike a crystal have a wavelength of about the same length as the space between atoms in the crystal lattice. Bragg's law can be derived by considering a cubic crystal lattice that consists of parallel planes of atoms. If each plane is assumed to act as a surface which is struck by the incident x-ray beam we see the beam reflected in some cases and not reflected in others. In the case of reflection it is seen that the beams exiting the crystal are in phase and act to reinforce each other. This occurs when the incident beam hits the parallel planes at certain angles known as Bragg Angles,  $\theta$ . In the nonreflecting case, the waves leaving the crystal are out of phase and cancel each other. Non-reflectance occurs when the incident beam strikes at arbitrary angles. Each case is illustrated in Figure 1.



(a) No reflected beam is produced at an arbitrary angle of incidence.

Figure 1 - The reflection of x-rays in the (hkl) planes of a crystal. (Guy & Hren)

If one examines the geometry of the reflected beam the relationship between Bragg's angle, the wavelength of the x-ray,  $\lambda$ , and the interplanar spacing, **d**, can be found.



Fig. -2 - Diffraction angle. (Guy & Hren)

Figure 2 shows arbitrary planes of atoms whose indices are (hkl) and which have interplanar spacing d. If the x-rays entering the crystal are in phase at OM and those reflected are in phase at ON then the distance along MPN must equal an integral number of wavelengths,  $n\lambda$ . The geometry shows that MP=PN and that each of these equals dsin $\theta$ . Therefore for reflected x-ray beams:

$$n\lambda = 2d\sin\theta$$
 (This is Bragg's Law) (1)

where n = 1, 2, 3, ... For our purposes we assume n = 1.

In the powder method of x-ray diffraction the material to be analyzed is placed in the camera that is sketched in Figure 3. The specimen sits in the center of the camera with the film located in a circle around it. When a monochromatic x-ray beam is directed at the specimen diffraction takes place and characteristic x-rays are emitted in conical sections that intersect and expose the film at different arcs. When the film is flattened out these arcs are seen as lines as shown in Figure 4. The distance between the beam exit and entrance on the x-ray film corresponds to a Bragg angle of  $90^{\circ}$ . The Bragg angle of each characteristic line on the film can then be found by using the following ratio:

$$\frac{S_i}{S_n} = \frac{\theta_i}{\theta_n} \tag{2}$$

where  $S_i$  is the distance <u>from the exit to the line of interest</u>,  $S_n$  is the distance from the exit to the entrance, 90° is the Bragg angle from exit to entrance, and  $\theta$  is the Bragg angle of the line in question. Once all the Bragg angles have been found it is possible to determine the crystalline structure of the sample by considering the geometry of the crystal. For pure metals in a cubic structure:

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
(3)

where  $d_{hkl}$  is the interplanar spacing between (hkl) planes, **a** is the lattice parameter, and h,k,l are Miller indices of the planes. Substituting eqn. (3) into Bragg's law eqn. (1) gives:

$$\lambda = \frac{2a\sin\theta}{\sqrt{h^2 + k^2 + l^2}} \tag{4}$$

Letting  $Q^2 = h^2 + k^2 + l^2$ , we can rewrite eqn. (4) as:

$$\lambda^2 = \frac{4a^2 \sin^2 \theta}{Q^2} \tag{5}$$

or

$$\frac{Q^2\lambda^2}{4a^2} = \sin^2\theta \tag{6}$$

since  $\frac{\lambda^2}{4a^2}$  is a constant we can say:

$$Q^2 C = \sin^2 \theta \tag{7}$$

Eqn. (7) states that the squares of the sines of the angles that result in a diffraction peak (line on the film) occur in a certain **ratio of whole numbers**. This is due to the structure factor of the lattice. We can use these ratios to determine the crystal lattice structure. The lines shown in Figure 5 correspond to the planes which diffract x-rays for cubic lattice structures. Once the crystalline structure has been found the lattices parameter can be found by remembering that:

$$\frac{\lambda^2}{4a^2} = \frac{1}{\text{constant}}$$
(8)

which becomes:

$$a = \frac{\lambda}{2\sqrt{C}} \tag{9}$$

From eqn. (7) we see that the constant is equal to:

$$C = \frac{\sin^2 \theta}{Q^2} \tag{10}$$

Knowing  $\mathbf{a}_0$  and the lattice structure we can then find the corresponding metal on the attached table of crystal structures.

## Procedure

You will do this experiment in two parts. In the first part you will be provided data and asked to determine the crystal structure and lattice parameter that will allow you to identify the material. In the second part you will be shown a strip of film from the CSUN diffraction camera. Using the film you will determine the Bragg Angles, Crystalline structure and lattice parameter.

<u>Part 1</u> - During a lunar exploration an unknown metallic crystalline substance is discovered whose external morphology indicates that it is a cubic material. A diffraction pattern of this material, using radiation of wavelength 1.54Å, provides the following data:

| Diffraction<br>peak # | Bragg<br>Diffraction<br>angle, $\theta_i$ | $Sin 	heta_i$ | $Sin^2 \theta_i$ | $\frac{Sin^2\theta_i}{Sin^2\theta_1}$ | Q <sup>2</sup> | С | a |
|-----------------------|-------------------------------------------|---------------|------------------|---------------------------------------|----------------|---|---|
| #1                    | 19.1                                      |               |                  |                                       |                |   |   |
| #2                    | 22.2                                      |               |                  |                                       |                |   |   |
| #3                    | 32.2                                      |               |                  |                                       |                |   |   |
| #4                    | 38.8                                      |               |                  |                                       |                |   |   |
| #5                    | 40.85                                     |               |                  |                                       |                |   |   |

1. Construct a table similar to the one shown above.

2. Using the given diffraction data calculate  $\sin\theta$  and  $\sin^2\theta$  for each diffraction peak.

$$\sin^2 \theta_i$$

3. Find the ratio of  $\sin^2 \theta_1$  for each diffraction peak where  $\sin^2 \theta_i$ , is the value for each successive peak.

4. Determine the crystalline structure of the material by comparing the ratios you have found to the characteristic lines in Figure 5. Hint: you may be required to multiply all of the ratios you have calculated by a common value to do the comparison. The ratios calculated are  $Q^2$ .

5. Find the lattice parameter for the material.  $(\lambda = 1.54 \text{\AA})$ 

6. Assuming that you have a pure substance, which element do you have? (Use a table of lattice structures and parameters for each of the elements).

7. If the metal weighed 100 pounds would it be worth bringing back if you get to keep it yourself?

<u>Part 2</u> – From the MSE 227 Lab website select a film strip (Group 1, FILM #1). You will be able to use your computer screen to see the film.

1. Measure the arc lengths  $S_1$  through  $S_n$  and determine the Bragg angles for each diffraction peak. Make the measurements along the center of the film. Use the darker lines where double sets of lines exist (double lines indicate secondary peaks.)

2. Repeat steps 1-6 of part one above to determine the material you have been given a diffraction film of. ( $\lambda$ =1.54Å)

3. Give the reason that this material cannot be a simple cubic.

|            | peak # | Bragg angle, θi | Sin 0i | Sin <sup>2</sup> θi | $Sin^2 \theta_i / Sin^2 \theta_1$ | $\approx Q^2$ | <b>Q</b> <sup>2</sup> | С | а |
|------------|--------|-----------------|--------|---------------------|-----------------------------------|---------------|-----------------------|---|---|
|            | mm     |                 |        |                     |                                   |               |                       |   |   |
| <b>S</b> 1 |        |                 |        |                     |                                   |               |                       |   |   |
| S2         |        |                 |        |                     |                                   |               |                       |   |   |
| <b>S</b> 3 |        |                 |        |                     |                                   |               |                       |   |   |
| S4         |        |                 |        |                     |                                   |               |                       |   |   |
| S5         |        |                 |        |                     |                                   |               |                       |   |   |
| S6         |        |                 |        |                     |                                   |               |                       |   |   |
| S7         |        |                 |        |                     |                                   |               |                       |   |   |
| <b>S</b> 8 |        |                 |        |                     |                                   |               |                       |   |   |
| Sn         |        |                 |        |                     |                                   |               |                       |   |   |

#### Write Up

A memo report is required for this experiment.



Fig. 3 - Sketch of x-ray diffraction camera.



Fig. 4 - X-ray film showing diffraction lines.



# BODY - CENTERED - CUBIC





| Table A-6 The | crystal at | ructure of | the | elements* |
|---------------|------------|------------|-----|-----------|
|---------------|------------|------------|-----|-----------|

| 5.65                                      |             |                      |        | Lattice of             | constants               |                     |                              |                                  |                              |                                         |
|-------------------------------------------|-------------|----------------------|--------|------------------------|-------------------------|---------------------|------------------------------|----------------------------------|------------------------------|-----------------------------------------|
| Element: form<br>(transformation temp.°C) | Temp.<br>°C | Structure            | Туре   | g in A<br>(space group | b in A<br>; parameters) | c in Å<br>(α or β)  | Inter-<br>atomic<br>dist., A | Density<br>g per em <sup>s</sup> | Atomic<br>weight<br>(1959)** | Volume<br>per atom in<br>A <sup>3</sup> |
|                                           | TD 47 9     | Per                  | 41     | E 911                  | Fm.2m                   |                     | 3 755                        | 10.07                            | 997                          | 97 48                                   |
| Actinium (Ac)                             | R.1.:       | P.C.C.               | 41     | 1 0400                 | Fm2m                    |                     | 2 863                        | 2 606                            | 26 68                        | 16 60                                   |
| Aluminum (A1)                             | 20          | F.C.C.               | 41     | 2 612                  | ARAC                    | 11 76               | 3 614                        | 11 87                            | (213)                        | 33 77                                   |
| Americium (Am)                            | 11.1.       | Dex.                 | 47     | A 5057                 | Pin                     | 6700/07#            | 2 907                        | 6 602                            | 121 76                       | 30 20                                   |
| Antimony (86)                             | 20          | Rhomb.               | 47     | A 907                  | (Hay avea)              | 11 973              | a circly                     | 0.004                            | 241.10                       | 100 . 001                               |
|                                           | 20          | monto.               |        | 4.001                  | 1225                    | 11.000              |                              |                                  |                              |                                         |
|                                           | 4010        | Phomb                | 47     | 4 3007                 | z= 0.2336               | 11.222              | 2.002                        |                                  |                              |                                         |
| A                                         | 82 8        | Fee                  | 41     | 5 467                  | Fm3m                    |                     | 3.866                        | 1.623                            | 39,944                       | 40.00                                   |
| Argon (Ar)                                | AOK         | Fee                  | 41     | 5 3108                 | Fm3m                    |                     | 3.756                        | 1.770                            |                              |                                         |
| (motostable)                              | 4010        | Cnh                  | 43     | 3 761                  | Ph./mme                 | 6.143               | 1.000                        |                                  |                              |                                         |
| (netastable)                              | 7 45        | Rhomh                | 47     | 4.131                  | Räm                     | $a = 54^{\circ}10'$ | 3.16                         | 5.766                            | 74.92                        | 21.54                                   |
| Alsenie (As).                             |             | Orthorhomb.<br>Cubic |        |                        | Cmca····                |                     |                              | 12/12/00                         |                              | 1000000                                 |
| Barium (Ba)                               | R.T.        | B.c.c.               | A2     | 5.019                  | Im3m                    | 0.0000000           | 4.347                        | 3.594                            | 137.36                       | 62.59                                   |
| Beryllium, at (Be)                        | 20          | C.p.h.               | A3     | 2.2856                 | PG1/mmc                 | 3.5832              | 2.225                        | 1.846                            | 9.013                        | 8.11                                    |
| β? >1250                                  | 1250        | B.c.c.               | A2     | 2.55                   |                         |                     | 2.21                         |                                  |                              | 8.29                                    |
| Bismuth (Bi)                              | 25          | Rhomb.               | A7     | 4.546                  | R3m                     | 11.862              | 3.071                        | 9.803                            | 208.99                       | 35.38                                   |
|                                           |             | serve sail           | 004210 | (hex. axes) z          | = 0.2339                | 1212 12217          |                              |                                  |                              |                                         |
|                                           | 78°K        | Rhomb.               | A7     | 4.535                  | g = 0.2341              | 11.814              | 3.064                        |                                  |                              |                                         |
|                                           | 4°K         | Rhomb.               | A7     |                        | z = 0.2340              | 11.862              |                              | 0.100                            | 10.00                        |                                         |
| Boron (B) o                               | R.T.        | Rhomb.               |        |                        |                         |                     |                              | 2.460                            | 10.82                        | 1.01                                    |
| 1100 to 1300                              |             | Tetrag.              |        |                        | 10                      |                     |                              | 2.33                             |                              |                                         |
| B > 1300                                  | 1.00        | Rhomb.               |        |                        |                         | 0.80                |                              | 2.350                            | 70 010                       | 10 50                                   |
| Bromine (Br)                              | -150        | Orthorhomb.          |        | 4.45                   | 0.07                    | 8.72                | 0.070                        | 4.00                             | 19.910                       | 92.00                                   |
| Cadmium (Cd)                              | 21          | C.p.h.               | A3     | 2.9188                 | P03/mmc                 | 5.010/              | 2.979                        | 8.041                            | 112.91                       | 21.05                                   |
| and set of the                            |             | 8 0.06               |        | •                      |                         | 5. St               |                              |                                  |                              | 1                                       |
|                                           | 10          | Fee                  | 41     | 5 582                  | Fm3m                    |                     | 3.947                        | 1.530                            | 40.08                        | 43.48                                   |
| Calcium, at (Ca)                          | 18          | r.c.c.               | (43)   | 0.00                   | 1 110/11                |                     |                              |                                  |                              |                                         |
| $\beta = unconfirmed$                     | - E00       | Bee                  | 49     | 4 477                  | Im3m                    |                     | 3.877                        | 1.483                            |                              |                                         |
| 7 461 to m.p.                             | ~ 300       | Cubic                | A4     | 3,5670                 | Fd3m                    |                     | 1.544                        | 3.516                            | 12.011                       | 5.68                                    |
| Carbon, diamondi                          | 20          | Her                  | 49     | 2.4612                 | PG./mmc                 | 6.7078              | 1.421                        | 2.266                            |                              |                                         |
| Graphite, at                              | 20          | Bhomb.               |        | 2,4612                 |                         | 10.0618             | 1.421                        | 2.266                            |                              |                                         |
| Graphile, pi                              | 20          | Fcc                  | AS     | 5.1604                 | Fm3m                    |                     | 3.649                        | 6.771                            | 140.13                       | 34.37                                   |
| LEO 40 - 10 to 100                        | 20          | C.n.h.               | A3     | 3.65                   | ABAC \$                 | 11.92               | 3.66                         | 6.844                            |                              | 12                                      |
| -130 10 -10<br>Refere -150                |             | F.c.c.               | A1     | 4.85                   | Fm3m                    |                     | 3.429                        | 8.32                             |                              |                                         |
| Below - 150                               |             | B.c.c.               | A2     | 4.12                   | Im3m                    |                     | 3.57                         | G.67                             |                              |                                         |
| Conium (Co)                               | -10         | B.c.c.               | A2     | 6.14                   | Im3m                    |                     | 5.32                         | 1.910                            | 132.91                       | 115.17                                  |
| Cesturi (Cs)                              | 5°K         | B.c.c.               | A2     | 6.045                  | 1m3m                    |                     | 5.235                        |                                  |                              |                                         |
| Chlorina a (Cl)                           | -160        | Orthorhomb           |        | 6.24                   | 4.48                    | 8.26                | 2.02                         | 2.03                             | 35.45                        | 10.00                                   |
| Chromiumt (Cr)                            | 20          | B.c.c.               | A2     | 2.8846                 | Im3m                    |                     | 2.498                        | 7.194                            | 52.01                        | 12.00                                   |
| 8 (?) above 1850                          | R.T.        | F.e.c.               | A1     | 3.68                   | Fm3m                    |                     | 2.60                         | 7.112                            | FO 04                        | 11 12                                   |
| Cobalt. at (Co)                           | 18          | C.p.h.               | A3     | 2.506                  |                         | 4.069               | 2.494                        | 8.5                              | 26.14                        | 11.10                                   |
| 8 stable ~ 450 to m.p.                    | 18          | F.c.c.               | Al     | 3.544                  |                         |                     | 2.000                        | 0.1                              | 62 54                        | 11 81                                   |
| Copper (Cu)                               | 20          | F.c.c.               | AL     | 3.6147                 |                         |                     | 2.000                        | 0.042                            | 00.01                        | 11.00                                   |
|                                           | 0°          | F.e.c.               | A1     | 3.6029                 |                         | E CEIS              | 2 505                        | 8 531                            | 162 51                       | 31.52                                   |
| Dysprosiumt to 950 (Dy)                   | R.T.        | C.p.h.               | A3     | 3.2023                 |                         | 0.0010              | 0.000                        | 1.1.1.1.1                        |                              | 0.000.00000000                          |
| 950 to m.p.                               |             | - · ·                | 17     | 2 5500                 |                         | 5 502               | 3 470                        | 9.044                            | 167.27                       | 30.64                                   |
| Erbium (Er)                               | 20          | C.p.n.               | 40     | 4.578                  |                         | 17.11.14            | 3 965                        | 5.248                            | 152.0                        | 48.86                                   |
| Europium (Eu)                             | 20          | B.c.c.               | A4     | 1,010                  |                         |                     |                              |                                  | 19.00                        |                                         |
| Fluorine (F)                              | -           | 0.1                  | 12     | 2 6315                 |                         | 5 777               | 3.553                        | 7.895                            | 157.26                       | 33.10                                   |
| Gadolinium† (Gd)                          | 20          | C.p.n.               | 40     | 4.06                   |                         | 0.111               | 3.52                         | 7.8                              |                              |                                         |
| 1262 to m.p.                              | 00          | D.c.c.i              | 6)     | 4 5258                 | 4 5195                  | 7.6602              | 2.41                         | 5.905                            | 69.72                        | 19.59                                   |
| Gallium (Ga)                              | 20          | Orthornouit          |        | Cmca y                 | = 0.1525                |                     |                              |                                  |                              |                                         |
|                                           | 102         | Ortharbornh          |        | 4,516                  | 4.490                   | 7.633               |                              |                                  | 233270.000                   | 1000                                    |
| Commention (Co)                           | 25          | Cubic                | 44     | 5.6576                 | Fd3m                    |                     | 2.450                        | 5.324                            | 72.60                        | 22.61                                   |
| Catt (Au)                                 | 20          | F.c.c.               | 41     | 4.0785                 |                         |                     | 2.881                        | 19.281                           | 197.0                        | 16.96                                   |
| Usfuinm of (Hf)                           | 21          | C.p.h.               | A3     | 3.1946                 |                         | 5.0511              | 3.127                        | 13.28                            | 178.50                       | 22.16                                   |
| R ~ 1950 to m p                           | R T         | B.c.c.               | A2     | ~3.50                  | (extrap.)               | a siden             | 3.03                         | 0.00022004                       | 12121210-00                  |                                         |
| Halmiumt (Ha) to 966                      | R.T.        | C.n.h.               | A3     | 3.5761                 | 1993-05-010-077780007   | 5.6174              | 3.456                        | 8.797                            | 161,9                        | 31.12                                   |
| 966 to m.p.                               | 1000        | 7                    |        |                        |                         |                     |                              |                                  |                              |                                         |

.

1.0

|                                            |             |              |          | Lattice                       | constants                |                                   |                              |                                  |                              |               |
|--------------------------------------------|-------------|--------------|----------|-------------------------------|--------------------------|-----------------------------------|------------------------------|----------------------------------|------------------------------|---------------|
| Element: form<br>(transformation temp. °C) | Temp.<br>°C | Structure    | Туре     | s in A<br>(space group        | b in A<br>p; parameters) | c in A<br>(α or β)                | Inter-<br>stomic<br>dist., A | Density<br>g per cm <sup>2</sup> | Atomie<br>weight<br>(1959)** | Vol<br>per al |
| Indium (In)                                | R.T.        | Tetrag.      | A6       | 4.5979                        | (f.c. cell)              | 4.9467                            | 3.251                        | 7.290                            | 114.82                       | 26.1          |
|                                            | R.T.        | Tetrag.      | A6       | 3.2512                        | (b.c. cell)              | 4.9467                            | 3.251                        | 7.290                            | 114.82                       | 26.1          |
|                                            | 4°K         | Tetrag.      | A6       | 4.5557                        |                          | 4.9342                            | 2.22                         |                                  | 100.04                       | 10.4          |
| Iodine (I)                                 | 28          | Orthorhomb,  |          | 4.79                          | 7.25                     | 9.78                              | 3.54                         | 4.953                            | 120.91                       | 42.0          |
| fridium (IF)                               | 20          | P.c.c.       | AL       | 3.8389                        |                          |                                   | 2.714                        | 22.00                            | 192.2<br>EE QE               | 19.1          |
| 100, at (re)                               | 20          | B.c.e.       | A2       | 2.8004                        |                          |                                   | 2.482                        | 7.816                            | 00.00                        | 11.1          |
| A 1392 to m.p.                             | 1204        | P.c.e.       | 42       | 3.0408                        |                          |                                   | 2 820                        | 7 358                            |                              |               |
| Krypton (Kr)                               | AOK         | Fee          | 41       | 5 614                         |                          |                                   | 4.000                        | 3.093                            | 83.80                        | 46.6          |
| Lanthanum of (1.a)                         | 20          | Her          |          | 3 770                         | ARACust                  | 12 131                            | 3 733                        | 6.174                            | 138.92                       | 37.1          |
| \$ 310 to 868                              | 500         | F.c.c.       | A1       | 5.303                         |                          |                                   | 3.750                        | 6.128                            |                              |               |
| y 868 to m.p.                              |             | B.c.c.       | A2       | 4.26                          |                          |                                   | 3.69                         | 5.98                             |                              |               |
| Lead (Pb)                                  | 25          | F.c.c.       | A1       | 4.9502                        |                          |                                   | 3.500                        | 11.341                           | 207.21                       | 30.1          |
| Lithium (Li)†                              | 20          | B.c.c.       | A2       | 3.5092                        |                          |                                   | 3.039                        | 0.533                            | 6.940                        | 21.6          |
| Below ~ 72°K                               | 78°K        | C.p.h.       | A3       | 3.111                         |                          | 5.093                             | 3.11                         |                                  |                              |               |
| Deformed below ~ 110°K                     | 78°K        | F.c.c.       | A1       | ~4.40                         |                          |                                   | 3.11                         | 00.202                           | 104110101010                 | 22            |
| Lutetium (Lu)†                             | R.T.        | C.p.h.       | A3       | 3.5050                        |                          | 5.5486                            | 3.434                        | 9.842                            | 174.99                       | 29.1          |
| 1400 to m.p.                               |             | ?            |          |                               |                          |                                   |                              |                                  |                              | 00.4          |
| Magnesium (Mg)                             | 25          | C.p.b.       | A3       | 3.2094                        | (                        | 5.2105                            | 3.197                        | 1.737                            | 24.52                        | 23.1          |
| A 7/2 to 1005                              | 23          | Cubie        | AIZ      | 8.9139                        | (140m)                   |                                   | 6.24                         | 1.110                            | 94.94                        | 14.4          |
| p 142 to 1033                              | 1005        | Cubic        | A13      | 0.313                         | (2°43m)                  |                                   | 2.31                         | 6 22                             |                              |               |
| 4 1133 to mp                               | 1134        | P.c.c.       | 49       | 3.004                         |                          |                                   | 2.101                        | 6 23                             |                              |               |
| Mercury (Hg)                               | -16         | Bhomh        | 410      | 3 005                         |                          | a = 70°31'                        | 3.005                        | 14.26                            | 200.61                       | 23.           |
| <79°K after pressure                       | 77°K        | B.c.t.       | 1000     | 3,995                         |                          | 2.825                             | 2.825                        | 14.77                            |                              |               |
| Molybdenum (Mo)                            | 20          | B.c.c.       | A2       | 3.1468                        |                          |                                   | 2.725                        | 10.22                            | 95.95                        | 15.4          |
| 1 A 4                                      |             |              | 0 11 10  |                               |                          |                                   |                              | 5.55                             |                              |               |
| Neodymium, at (Nd)                         | R.T.        | Hex.         | 1.010011 | 3.6582                        | P8 <sub>1</sub> mme      | 11.802                            | 3.658                        | 7.004                            | 144.27                       | 34.           |
| 868 to m.p.                                |             | B.c.c.       | AZ       | 4.13                          |                          |                                   | 3.58                         | 8.80                             |                              |               |
| Neon (Ne)                                  | 4°K         | F.c.c.       | AI       | 4.4636                        | 1 000                    | 0 000                             | 3.155                        | 1.508                            | 20.183                       | 22.           |
| Neptunium, ay (Np)                         | 20          | Urthorhomb.  | Pama     | 4.723                         | 4.88/                    | 0.003                             | 2.00-2.04                    | 20.45                            | (231)                        | 19.           |
| p 200 to 577                               | 600         | Deca.        | 123      | 2.50                          | u = 0.370                | 9.000                             | 4.10                         | 18 12                            |                              |               |
| Vickalt (Ni)                               | 18          | Fee          | 41       | 3 5238                        |                          |                                   | 2 402                        | 8 907                            | 58 71                        | 10            |
| Nichium (Nh)                               | 20          | Bee          | 42       | 3.3007                        |                          |                                   | 2.858                        | 8.578                            | 92.91                        | 17.           |
| (Columbium)                                |             | arrenet.     |          | a robot                       |                          |                                   |                              | 0.010                            |                              |               |
| Nitrogen, a (Na)                           | 20°K        | Cubie        |          | 5,661                         | Pa3                      |                                   |                              | 1.028                            | 14.008                       |               |
| \$ 35.6-83.1°K                             | 50°K        | Hex.         |          | 4.036                         | P6/mmc                   | 6.630                             |                              | 0.987                            |                              |               |
| Osmium (Os)                                | 20          | C.p.h.       | A3       | 2.7353                        |                          | 4.3191                            | 2.675                        | 22.58                            | 190.2                        | 13.           |
| Oxygen, α (O1) <23°K                       | -252        | ?            |          |                               |                          |                                   |                              | 1.46                             | 16.000                       |               |
| \$ 23-44°K                                 | 27°K        | Rhomb.       |          | 4.210                         | R3m                      | $a = 46^{\circ}16'$               |                              |                                  |                              |               |
| γ44°K - m.p.                               | 48°K        | Cubie        |          | 8.83                          | Pm3m                     |                                   | 0.751                        | 1.30                             | 105 4                        |               |
| Panadium (Pd)                              | 22          | P.c.c.       | AI       | 3.8907                        |                          |                                   | 2.101                        | 0 99                             | 100.4                        | 14.           |
| Phosphorus, white (1')                     | -30         | Cubic        |          | 1.14                          |                          |                                   |                              | 6.46                             | 20 075                       |               |
| Blackt (Cmca)                              | RT.         | Orthorhomh   |          | 3 32                          | 10 52                    | \$ 30                             | 2 18                         | 2 69                             | 00.010                       | 16            |
| Bed                                        | R.T.        | Cubie        |          | 11.31                         | 10.05                    | 1.00                              | 2110                         | 2.35                             |                              |               |
| Yellow, abova -70                          | R.T.        | Cubic        |          | 18.8                          | 133m                     |                                   |                              | 1.80                             |                              |               |
| Platinum (Pt)                              | 20          | F.c.c.       | A1       | 3.9239                        |                          |                                   | 2.775                        | 21.47                            | 195.09                       | 15.           |
| Plutonium, at (Pu)                         | 21          | Monoclin.    |          | 6.1835                        | 4.8244                   | 10.973                            | 3.1-3.3                      | 19.814                           | (242)                        | 23.           |
| \$ 122 to 206                              | 190         | Monoclin.    |          | P2 <sub>1</sub> /m β<br>0.284 | = 101.81°<br>10.463      | 7.859                             | 2.97-                        | 17.70                            |                              |               |
| v 206 to 319                               | 235         | Orthorhomb.  |          | 12/m<br>3.159                 | 5,768                    | $\beta = 92.13^{\circ}$<br>10.162 | 3.10 3.028                   | 17.14                            |                              |               |
|                                            |             |              |          | Fddd                          | 1.400.817.718            | 2012/10/07/2                      |                              | 18.00                            |                              |               |
| a 319 to 451                               | 320         | F.c.c.       | A1       | 4.637                         |                          | 4 4 4 5                           | 3.2/9                        | 10.92                            |                              |               |
| 0 401 10 485                               | 4//         | Tetrag.      | 40       | 3.339                         |                          | 4.440                             | 3.21                         | 10.01                            |                              |               |
| Polonium at (Pa)                           | -10         | Simple aubi- | 44       | 3 345 /1                      | atom/cett)               |                                   | 3 339                        | 9.31                             | 210                          | 37            |
| A                                          | ~75         | Rhomb        |          | 3 350                         | Räm                      | m = 08°13'                        | 0.000                        | 9.47                             | 010                          |               |
| Potassium (K)                              | 78°K        | B.c.c.       | 42       | 5.247                         |                          | M = 90 10                         | 4.544                        | 0.809                            | 39.100                       | 75.           |
| 1000 ANG MANDARATAN BIRTIN.                | 5°K         | B.c.c.       | A2       | 5.225                         |                          |                                   | 4.525                        | 0.909                            | 0.0200/22                    |               |

#### Table A-6 The crystal structures of the elements" (Cont.)

| Table A-6 | The crystal | structures o | of the | elements" | (Cont.) |  |
|-----------|-------------|--------------|--------|-----------|---------|--|
|-----------|-------------|--------------|--------|-----------|---------|--|

|                                           |             |              |           | La                 | ttice o     | constants                               |                                            |                              |                                  |                              |                                         |
|-------------------------------------------|-------------|--------------|-----------|--------------------|-------------|-----------------------------------------|--------------------------------------------|------------------------------|----------------------------------|------------------------------|-----------------------------------------|
| Element: form<br>(transformation temp.°C) | Temp.<br>°C | Structure    | Type      | a in /<br>(space ) | A<br>group  | b in A<br>; parameters)                 | c in A<br>( $\alpha$ or $\beta$ )          | Inter-<br>atomic<br>dist., A | Density<br>g per cm <sup>s</sup> | Atomic<br>weight<br>(1959)** | Volume<br>per atom in<br>A <sup>3</sup> |
| Praseodynium, at (Pr)                     | R.T.        | Hex.         | 10        | 3.670              | 2           | ABAC‡                                   | 11.828                                     | 3.633                        | 6.779                            | 140.92                       | 34.15                                   |
| Protactinium (Pa)<br>Radium (Ra)          | R.T.        | B.c. tetrag. | <i>A6</i> | 3.92               | 5           |                                         | 3,238                                      | 3.58<br>3.210                | 6.64<br>15.37                    | 231<br>226                   | 24.94                                   |
| Phanium (Pa)                              | 0.0         | 0.1          |           |                    | -           |                                         |                                            |                              |                                  | 222                          |                                         |
| Rhodium (Rh)                              | 20          | C.p.n.       | A3        | 2.760              |             |                                         | 4.458                                      | 2.741                        | 21.03                            | 186.22                       | 14.70                                   |
| Rubidium (Rb)                             | 108         | P.c.c.       | 10        | 3.804              | 141         |                                         |                                            | 2.690                        | 12.42                            | 102.91                       | 13.77                                   |
| (ito)                                     | 5°W         | B.c.c.       | 12        | 5.000              | 2           |                                         |                                            | 4.858                        | 1.607                            | 85.48                        | 92.67                                   |
| Ruthenium (Ru)                            | 25°K        | C.p.h.       | 43        | 2 705              | 7           |                                         | 4 9916                                     | 4.837                        | 1.629                            | 101.1                        | 10                                      |
| Samarium† (Sm)                            | 20          | Rhomb.       | 10        | 8.996<br>ABAI      | S I<br>BCBC | R3m<br>'AC1                             | 23°13′                                     | 3.588                        | 7.536                            | 101.1                        | 13.57<br>33.01                          |
| 917 to m.p.                               |             | ?            |           |                    |             |                                         |                                            |                              |                                  |                              |                                         |
| Scandium, at (Sc)                         | R.T.        | C.p.h.       | A3        | 3.308              | 0           |                                         | 5.267                                      | 3,252                        | 2 992                            | 44 96                        | 23 41                                   |
| Selenium <sup>†</sup> (Se)                | 25          | Rhomb.       | A8        | 4.365              | 6 (E        | Iez. azes)                              | 4.9590                                     | 2.32                         | 4.808                            | 78.96                        | 27.27                                   |
| a (red metastable)                        | R.T.        | Monoclin.    | $P2_1/n$  | 9.05               | 9           | 9.07                                    | $\frac{11.61}{\beta} = 90^{\circ}46'$      |                              |                                  |                              |                                         |
| Silicon (Si)                              | R.T.        | Monoclin.    | P21/c     | 12.85              | 8           | 3.07                                    | $9.31 \\ \beta = 93^{\circ}8'$             |                              |                                  |                              |                                         |
| Silver (Ar)                               | 20          | Cubic        | 44        | 5.430              | 15 1        | <sup>e</sup> d3m                        |                                            | 2.351                        | 2.329                            | 28.09                        | 20.02                                   |
| Sodium (Na)                               | 20          | F.C.C.       | A1<br>40  | 4.085              | 10          |                                         |                                            | 2.889                        | 10.50                            | 107.873                      | 17.06                                   |
| (metastable)                              | 5°W         | B.c.c.       | 42        | 9.290              | 0           |                                         |                                            | 3.716                        | 0.9660                           | 22.991                       | 39.50                                   |
| Below ~36°K                               | 5°K         | Cnh          | 43        | 3 767              |             |                                         | A 154                                      | 3.059                        |                                  |                              |                                         |
| Strontium† (Sr)                           | 25          | F.c.c.       | 41        | 6 084              | 0           |                                         | 0.102                                      | 3.707                        | 1.009                            | 07 00                        | 50.00                                   |
| ~225 to 570 (?)                           | 300         | C.p.h.       | A3        | 4.32               |             |                                         | 7 056                                      | 4 32                         | 4.000                            | 87.03                        | 20.32                                   |
| ~570 to m.p.                              | 614         | B.c.c.       | A2        | 4.87               |             |                                         | 1.000                                      | 4.23                         |                                  |                              |                                         |
| Sulfur a, yellowt (S)                     | R.T.        | Orthorhomb.  |           | 10.414             | 1           | 0.845                                   | 24.369                                     |                              | 2.086                            | 32.066                       | 25 52                                   |
| β, Monoclinic                             | R.T.        | Monoclin.    | P21/c     | 10.92              | 1           | 80.98                                   | $11.04^{\circ}$<br>$\beta = 83^{\circ}16'$ |                              | 2.063                            |                              | 10.01                                   |
| Rhombohedral                              | R.T.        | Rhomb.       | R3        | 6.45               |             |                                         | a = 115°18'                                |                              | 2.81                             |                              |                                         |
| γ Monoclinie                              | R.T.        | Monoclin.    | P2/n      | 8.57               | 1           | 3.05                                    | 8.23<br>β = 112°54'                        |                              |                                  | 2                            |                                         |
| Tantalum (Ta)                             | 20          | B.c.c.       | A2        | 3.302              | :6          |                                         |                                            | 2.860                        | 16.67                            | 180.95                       | 18.01                                   |
| Technetium (Tc)                           | R.T.        | C.p.h.       | A3        | 2.743              |             |                                         | 4.400                                      | 2.71                         | 11.497                           | (99)                         | 14.21                                   |
| Tentium (Ie)                              | 25          | Hex.         | A8        | 4.456              | 6 P         | 3 <sub>1</sub> 21 or P3 <sub>2</sub> 21 | 5.9268                                     | 2.864                        | 6.247                            | 127.61                       | 33.98                                   |
| 1310 to m.p.                              | 20          | C.p.n.<br>?  | Að        | 3.599              | 0           |                                         | 5.696                                      | 3.525                        | 8.272                            | 158.93                       | 31.14                                   |
| A 290 to m n                              | 61          | C.p.a.       | A3        | 3.456              | 6           |                                         | 5.5248                                     | 3.457                        | 11.87                            | 204.39                       | 28.58                                   |
| Thorium at (Th)                           | 25          | B.c.c.       | A2<br>42  | 3.882              |             |                                         |                                            | 3.362                        | 11.60                            |                              | 1.138253540                             |
| @ 1400 to m.n.                            | 1450        | Bee          | 42        | 4 11               | 9           |                                         |                                            | 3.090                        | 11.72                            | 232                          | 32.86                                   |
| Thulium (Tm)                              | 20          | C.p.h.       | A3        | 3.537              | 2           |                                         | 5 5619                                     | 3.00                         | 0 225                            | 169 04                       | 20.10                                   |
| Tin, a, gray (Sa)                         | 20          | Cubic        | A4        | 6.489              | 2           |                                         | 0.0010                                     | 2.810                        | 5 765                            | 118 70                       | 30.10                                   |
| β, white† 13.2 to m.p.                    | 25          | Tetrag.      | A5        | 5.831              | 5 1         | 4 and                                   | 3.1814                                     | 3.022                        | 7.285                            | 110.10                       | £7.00                                   |
| Titanium, a† (Ti)                         | 25          | C.p.h.       | A3        | 2.950              | 6           | 114 C - NG CZ.C                         | 4.6788                                     | 2.890                        | 4.508                            | 47,90                        | 17 65                                   |
| \$~882 to m.p.                            | 900         | B.c.e.       | A2        | 3.306              | 5           |                                         |                                            | 2.863                        | 4.400                            |                              |                                         |
| Tungsten (wolfram) (W)                    | 21          | B.c.c.       | A2        | 3.165              | 0           | 200 April 200 April 200                 |                                            | 2.741                        | 19.253                           | 183.86                       | 15.85                                   |
| Cranium, at (U) Cmcm                      | 25          | Orthorhomb.  | A20       | 2.853<br>y ==      | 6 5         | .8699<br>245                            | 4.9555                                     | 2.754                        | 19.05                            | 238.07                       | 20.81                                   |
| # 689 10 774                              | 100         | Orthorhomb.  | A 20      | 2.814<br>y =       | 4 5         | .8689<br>242                            | 4.9316                                     | -                            |                                  |                              |                                         |
| 2 774 to m r                              | 120         | Letrag.      | 19        | 10.759             | P           | 4/mnm                                   | 5.656                                      | 2.7-3.3                      | 18.11                            |                              |                                         |
| Vanadium (V)                              | 30          | Bee          | 42        | 3.009              | 2           |                                         |                                            | 3.061                        | 18.06                            |                              |                                         |
| Xenon (Xe)                                | 4°K         | F.c.c.       | Al        | 6 131              | 6           |                                         |                                            | 1 335                        | 0.09                             | 50.95                        | 13.88                                   |
| Ytterbium† (Yb)                           | R.T.        | F.c.c.       | A1        | 5.481              |             |                                         |                                            | 3 876                        | 8.07                             | 131.30                       | 1.04                                    |
| 798 to m.p.                               |             | B.c.c.       | A2        | 4.44               |             |                                         |                                            | 3 85                         | 6 54                             | 110.04                       | 33.02                                   |
| Yttrium (Y)                               | 20          | C.p.h.       | A3        | 3.647              | 4           |                                         | 5.7306                                     | 3.554                        | 4.475                            | 88 91                        | 33 01                                   |
| 1460 to m.p.                              |             | B.c.c.       | A2        | 4.11               |             |                                         |                                            | 3.56                         |                                  |                              | 50.01                                   |
| Zine (Zn)                                 | 25          | C.p.h.       | .43       | 2.664              | 9           |                                         | 4.9468                                     | 2.665                        | 7.134                            | 65.38                        | 15.24                                   |
| arconium, af (Zr)                         | 25          | C.p.h.       | A3        | 3.231              | 2           |                                         | 5.1477                                     | 3.172                        | 6.507                            | 91.22                        | 23.27                                   |
| # 002 to m.p.                             | 862         | B.c.c.       | A2 ,      | 3.609              | 0           |                                         |                                            | 3.125                        | 6.443                            |                              |                                         |

<sup>a</sup> Density is computed from x-ray data (with a few exceptions). Unit cell dimensions in angstroms (values in kx were multiplied by 1.00202). Data are from original sources and from "International Tables for X-ray Crystallography", vol. 3, Kynoch, Birmingham, England, 1962; also from W. B. Pearson, "Handbock of Lattice Spacings of Metals and Alloys," Pergamon, New York, 1958.

† The form judged to be the stable one at ordinary temperatures and pressures. See p. 233 for high-pressure forms,

The sequence of letters indicates the sequence of close-packed atomic layers.

\*\* Atomic weights of 1959 were based on the O<sup>10</sup> = 16 scale; to convert to the new international C<sup>10</sup> = 12 scale, divide these by 1.000043. However, newer values of greater precision appear frequently.

----

From <u>Structure of Metals</u>, 3rd edition, by Charles S. Barrett McGraw-Hill Book Company, Inc., New York, 1966.