Structural Equation Modeling 3 Psy 524 Andrew Ainsworth

Model Identification

- Only identified models can be estimated in SEM
- A model is said to be identified if there is a unique solution for every estimate
 - Y = 10
 - $Y = \alpha + \beta$
 - One of theme needs to fixed in order for there to be a unique solutions
 - Bottom line: some parts of a model need to be fixed in order for the model to be identified
 - This is especially true for complex models

Model Identification: Step 1

- Overidentification
 - More data points than parameters
 - This is a necessary but not sufficient condition for identification
- Just Identified
 - Data points equal number of parameters
 - Can not test model adequacy
- Underidentified
 - There are more parameters than data points
 - Can't do anything; no estimation
 - Parameters can be fixed to free DFs

Model Identification: Step 2a

- The factors in the measurement model need to be given a scale (latent factors don't exist)
 - You can either standardize the factor by setting the variance to 1 (perfectly fine)
 - Or you can set the regression coefficient predicting one of the indicators to 1; this sets the scale to be equal to that of the indicator; best if it is a marker indicator
 - If the factor is exogenous either is fine
 - If the factor is endogenous most set the factor to

Model Identification: Step 2b

- Factors are identified:
 - If there is only one factor then:
 - at least 3 indicators with non-zero loadings
 - no correlated errors
 - If there is more than one factor and 3 indicators with non-zero loadings per factor then:
 - No correlated errors
 - No complex loadings
 - Factors covary

Model Identification: Step 2b

- Factors are identified:
 - If there is more than one factor and a factor with only 2 indicators with non-zero loadings per factor then:
 - No correlated errors
 - No complex loadings
 - None of the variances or covariances among factors are zero

Model Identification: Step 3

- Relationships among the factors should either be orthogonal or recursive to be identified
 - Recursive models have no feedback loops or correlated disturbances
 - Non-recursive models contain feedback loops or correlated disturbances
 - Non-recursive models can be identified but they are difficult

Model Estimation

- After model specification:
 - The population parameter are estimated with the goal of minimizing the difference between the estimated covariance matrix and the sample covariance matrix
 - This goal is accomplished by minimizing the Q function:

$$\mathsf{Q} = (\mathsf{s} - \sigma(\Theta)) \mathsf{'W}(\mathsf{s} - \sigma(\Theta))$$

• Where s is a vectorized sample covariance marix, σ is a vectorized estimated matrix and Θ indicates that σ is estimated from the parameters and W is a weight matrix

Model Estimation

- In factor analysis we compared the covariance matrix and the reproduced covariance matrix to assess fit
- In SEM this is extended into an actual test
- If the W matrix is selected correctly than (N – 1) * Q is Chi-square distributed
- The difficult part of estimation is choosing the correct W matrix

Model Estimation Procedures

- Model Estimation Procedures differ in the choice of the weight matrix
- Roughly 6 widely used procedures
 - ULS (unweighted least squares)
 - GLS (generalized least squares)
 - ML (maximum likelihood)
 - EDT (elliptical distribution theory)
 - ADF (asymptotically distribution free)
 - Satorra-Bentler Scaled Chi-Square (corrected ML estimate for non-normality of data)

Model Estimation Procedures

Estimation Method	Function Minimized	Interpretation of W, the Weight Matrix
Unweighted Least Squares ^a (ULS)	$F_{\text{ULS}} = \frac{1}{2} \operatorname{tr} \left[(\mathbf{S} - \boldsymbol{\Sigma}(\boldsymbol{\Theta}))^2 \right]$	$\mathbf{W} = \mathbf{l}$, the identity matrix
Generalized Least Squares (GLS)	$F_{\text{GLS}} = \frac{1}{2} \operatorname{tr} \{ [(\mathbf{S} - \boldsymbol{\Sigma}(\boldsymbol{\Theta}))] \mathbf{W}^{-1} \}^2$	W = S. W is any consistent estimator of Σ . Often the sample covariance matrix, S, is used
Maximum Likelihood (ML)	$F_{\rm ML} = \log \mathbf{\Sigma} - \log \mathbf{S} + \operatorname{tr}(\mathbf{S}\mathbf{\Sigma}^{-1}) - \rho$	$W = \Sigma^{-1}$, the inverse of the estimated population covariance matrix. The number of measured variables is ρ .
Elliptical Distribution Theory (EDT)	$F_{\text{EDT}} = \frac{1}{2} (\kappa + 1)^{-1} \text{tr} \{ [\mathbf{S} - \boldsymbol{\Sigma}(\boldsymbol{\Theta})] \mathbf{W}^{-1} \}^2$ $- \delta \{ \text{tr} [\mathbf{S} - \boldsymbol{\Sigma}(\boldsymbol{\Theta})] \mathbf{W}^{-1} \}^2$	$W =$ any consistent estimator of Σ . κ and δ are measures of kurtosis
Asymptotically Distribution Free (ADF)	$F_{\rm ADF} = [\mathbf{s} - \boldsymbol{\sigma}(\boldsymbol{\Theta})]' \mathbf{W}^{-1} [\mathbf{s} - \boldsymbol{\sigma}(\boldsymbol{\Theta})]$	W has elements, $\mathbf{w}_{ijkl} = \mathbf{\sigma}_{ijkl} - \mathbf{\sigma}_{ij}\mathbf{\sigma}_{kl} (\mathbf{\sigma}_{ijkl} \text{ is the kurtosis, } \mathbf{\sigma}_{ij} \text{ is the covariance}$

- How well does the model fit the data?
- This can be answered by the Chi-square statistic but this test has many problems
 - It is sample size dependent, so with large sample sizes trivial differences will be significant
 - There are basic underlying assumptions are violated the probabilities are inaccurate

- Fit indices
 - Read through the book and you'll find that there are tons of fit indices and for everyone in the book there are 5 – 10 not mentioned
 - Which do you choose?
 - Different researchers have different preferences and different cutoff criterion for each index
 - We will just focus on two fit indices
 - CFI

RMSEA

- Assessing Model FitFit Indices
 - Comparative Fit Index (CFI) compares the proposed model to an independence model (where nothing is related)

$$CFI = 1 - \frac{t_{\text{est.model}}}{t_{\text{indep.model}}}$$

where $t_{\text{indep.model}} = c_{\text{indep.model}}^2 - df_{\text{indep.model}}$
and $t_{\text{est.model}} = c_{\text{est.model}}^2 - df_{\text{est.model}}$

- Root Mean Square Error of Approximation
 - Compares the estimated model to a saturated or perfect model

$$RMSEA = \sqrt{\frac{\hat{F}_0}{df_{\text{model}}}}$$

where $\hat{F}_0 = \frac{\mathbf{c}_{\text{model}}^2 - df_{\text{model}}}{N}$ or 0 whichever is smaller and positive

Model Modification

- Chi-square difference test
 - Nested models (models that are subsets of each other) can be tested for improvement by taking the difference between the two chi-square values and testing it at a DF that is equal to the difference between the DFs in the two models (more on this in lab)

Model Modification

- Langrange Multiplier test
 - This tests fixed paths (usually fixed to zero or left out) to see if including the path would improve the model
 - If path is included would it give you better fit
 - It does this both univariately and multivariately
- Wald Test
 - This tests free paths to see if removing them would hurt the model
 - Leads to a more parsimonious model