Factor Analysis

Psy 524 Ainsworth

• • What is Factor Analysis (FA)?

- FA and PCA (principal components analysis) are methods of data reduction
 - Take many variables and explain them with a few "factors" or "components"
 - Correlated variables are grouped together and separated from other variables with low or no correlation

• • What is FA?

- Patterns of correlations are identified and either used as descriptives (PCA) or as indicative of underlying theory (FA)
- Process of providing an operational definition for latent construct (through regression equation)

• • What is FA?

- FA and PCA are not much different than canonical correlation in terms of generating canonical variates from linear combinations of variables
 - Although there are now no "sides" of the equation
 - And your not necessarily correlating the "factors", "components", "variates", etc.

General Steps to FA

- Step 1: Selecting and Measuring a set of variables in a given domain
- Step 2: Data screening in order to prepare the correlation matrix
- Step 3: Factor Extraction
- Step 4: Factor Rotation to increase interpretability
- Step 5: Interpretation
- Further Steps: Validation and Reliability of the measures

• • "Good Factor"

- A good factor:
 - Makes sense
 - will be easy to interpret
 - simple structure
 - Lacks complex loadings

• • Problems w/ FA

- Unlike many of the analyses so far there is no statistical criterion to compare the linear combination to
 - In MANOVA we create linear combinations that maximally differentiate groups
 - In Canonical correlation one linear combination is used to correlate with another

• • Problems w/ FA

- It is more art than science
 - There are a number of extraction methods (PCA, FA, etc.)
 - There are a number of rotation methods (Orthogonal, Oblique)
 - Number of factors to extract
 - Communality estimates
 - ETC...
- This is what makes it great...

• • Problems w/ FA

- Life (researcher) saver
 - Often when nothing else can be salvaged from research a FA or PCA will be conducted

Types of FA

Exploratory FA

- Summarizing data by grouping correlated variables
- Investigating sets of measured variables related to theoretical constructs
- Usually done near the onset of research
- The type of FA and PCA we are talking about in this chapter

• • Types of FA

- Confirmatory FA
 - More advanced technique
 - When factor structure is known or at least theorized
 - Testing generalization of factor structure to new data, etc.
 - This is tested through SEM methods discussed in the next chapter

• • Terminology

- Observed Correlation Matrix
- Reproduced Correlation Matrix
- Residual Correlation Matrix

• • | Terminology

- Orthogonal Rotation
 - Loading Matrix correlation between each variable and the factor
- Oblique Rotation
 - Factor Correlation Matrix correlation between the factors
 - Structure Matrix correlation between factors and variables
 - Pattern Matrix unique relationship between each factor and variable uncontaminated by overlap between the factors

• • Terminology

 Factor Coefficient matrix – coefficients used to calculate factor scores (like regression coefficients)

• • FA vs. PCA conceptually

- FA produces factors; PCA produces components
- Factors cause variables; components are aggregates of the variables

Conceptual FA and PCA

• • FA vs. PCA conceptually

- FA analyzes only the variance shared among the variables (common variance without error or unique variance); PCA analyzes all of the variance
- FA: "What are the underlying processes that could produce these correlations?"; PCA: Just summarize empirical associations, very data driven

• • Questions

- Three general goals: data reduction, describe relationships and test theories about relationships (next chapter)
- O How many interpretable factors exist in the data? or How many factors are needed to summarize the pattern of correlations?

• • Questions

- What does each factor mean? Interpretation?
- What is the percentage of variance in the data accounted for by the factors?

• • Questions

- Which factors account for the most variance?
- o How well does the factor structure fit a given theory?
- What would each subject's score be if they could be measured directly on the factors?

Considerations (from Comrey and Lee, 1992)

- Hypotheses about factors believed to underlie a domain
 - Should have 6 or more for stable solution
- Include marker variables
 - Pure variables correlated with only one factor
 - They define the factor clearly
 - Complex variables load on more than on factor and muddy the water

Considerations (from Comrey and Lee, 1992)

- Make sure the sample chosen is spread out on possible scores on the variables and the factors being measured
- Factors are known to change across samples and time points, so samples should be tested before being pooled together

- Assumes reliable correlations
 - Highly affected by missing data, outlying cases and truncated data
 - Data screening methods (e.g. transformations, etc.) can greatly improve poor factor analytic results

- Sample Size and Missing Data
 - True missing data (MCAR) are handled in the usual ways (ch. 4) but regression methods may overfit
 - Factor analysis needs large samples and it is one of the only draw backs
 - The more reliable the correlations are the smaller the number of subjects needed
 - Need enough subjects for stable estimates

- Comrey and Lee
 - 50 very poor, 100 poor, 200 fair, 300 good, 500 very good and 1000+ excellent
 - Shoot for minimum of 300 usually
 - More highly correlated markers less subjects

Normality

- Univariate normally distributed variables make the solution stronger but not necessary
- Multivariate is assumed when assessing number of factors; usually tested univariately

- No outliers obvious influence on correlations would bias results
- Multicollinearity/Singularity
 - In PCA it is not problem; no inversions
 - In FA, if det(R) or any eigenvalue approaches 0 -> multicollinearity is likely
 - Also investigate inter-item SMCs approaching 1

- Factorable R matrix
 - Need inter-item correlations > .30 or FA is unlikely
 - Large inter-item correlations does not guarantee solution either
 - Duos
 - Multidimensionality
 - Matrix of partials adjusted for other variables
 - Other tests

- Variables as outliers
 - Some variables don't work
 - Explain very little variance
 - Relates poorly with factor
 - Low SMCs with other items
 - Low loadings

- There are many (dozens at least)
- All extract orthoganal sets of factors (components) that reproduce the R matrix
- Different techniques some maximize variance, others minimize the residual matrix (R – reproduced R)
- With large stable sample they all should be relatively the same

- Usually un-interpretable without rotation (next)
- Differ in output depending on combinations of
 - Extraction method
 - Communality estimates
 - Number of factors extracted
 - Rotational Method

- PCA vs. FA (family)
 - PCA begins with 1s in the diagonal of the correlation matrix; all variance extracted; each variable giving equal weight; outputs inflated communality estimate
 - FA begins with a communality estimates (e.g. SMC) in the diagonal; analyzes only common variance; outputs a more realistic communality estimate

- PCA analyzes variance
- FA analyzes covariance (communality)
- PCA reproduces the R matrix (near) perfectly
- FA is a close approximation to the R matrix

- PCA the goal is to extract as much variance with the least amount of factors
- FA the goal is to explain as much of the correlations with a minimum number of factors
- PCA gives a unique solution
- FA can give multiple solutions depending on the method and the estimates of communality

Extraction Methods

PCA

- Extracts maximum variance with each component
- First component is a linear combination of variables that maximizes component score variance for the cases
- The second (etc.) extracts the max. variance from the residual matrix left over after extracting the first component (therefore orthogonal to the first)
- If all components retained, all variance explained

- Principal (Axis) Factors
 - Estimates of communalities (SMC) are in the diagonal; used as starting values for the communality estimation (iterative)
 - Removes unique and error variance
 - Solution depends on quality of the initial communality estimates

Extraction Methods

- Maximum Likelihood
 - Computationally intensive method for estimating loadings that maximize the likelihood (probability) of the correlation matrix.
- Unweighted least squares ignores diagonal and tries to minimize off diagonal residuals
 - Communalities are derived from the solution
 - Originally called Minimum Residual method (Comrey)

• • Extraction Methods

- Generalized (weighted) least squares
 - Also minimizes the off diagonal residuals
 - Variables with larger communalities are given more weight in the analysis
- Many Other methods

Rotation Methods

- After extraction (regardless of method) good luck interpreting result
- Rotation is used to improve interpretability and utility
- A orthogonally rotated solution is mathematically equivalent to unrotated and other orthogonal solutions
- Stable and large N -> same result

Geometric Rotation

• • Geometric Rotation

- Factor extraction equivalent to coordinate planes
- Factors are the axes
- Length of the line from the origin to the variable coordinates is equal to the communality for that variable
- Orthogonal Factors are at right angles

• • Geometric Rotation

- Factor loadings are found by dropping a line from the variable coordinates to the factor at a right angle
- Repositioning the axes changes the loadings on the factor but keeps the relative positioning of the points the same

- Orthogonal vs. Oblique
 - Orthogonal rotation keeps factors uncorrelated while increasing the meaning of the factors
 - Oblique rotation allows the factors to correlate leading to a conceptually clearer picture but a nightmare for explanation

- Orthogonal Rotation Methods
 - Varimax most popular
 - Simple structure by maximizing variance of loadings within factors across variables
 - Makes large loading larger and small loadings smaller
 - Spreads the variance from first (largest) factor to other smaller factors

- Orthogonal Rotation Methods
 - Quartimax
 - Opposite of Varimax
 - Simplifies variables by maximizing variance with variables across factors
 - Varimax works on the columns of the loading matrix; Quartimax works on the rows
 - Not used as often; simplifying variables is not usually a goal

- Orthogonal Rotation Methods
 - Equamax is a hybrid of the earlier two that tries to simultaneously simplify factors and variables
 - Not that popular either

- Oblique Rotation Techniques
 - Direct Oblimin
 - Begins with an unrotated solution
 - Has a parameter (gamma in SPSS) that allows the user to define the amount of correlation acceptable; gamma values near -4 -> orthogonal, 0 leads to mild correlations (also direct quartimin) and 1 highly correlated

- Oblique Rotation Techniques
 - Promax most recommended
 - Solution is rotated maximally with an orthogonal rotation
 - This is followed by oblique rotation
 - Orthogonal loadings are raised to powers in order to drive down small loadings
 - Simple structure is reached
 - Easy and quick method