Canonical Correlation: Equations

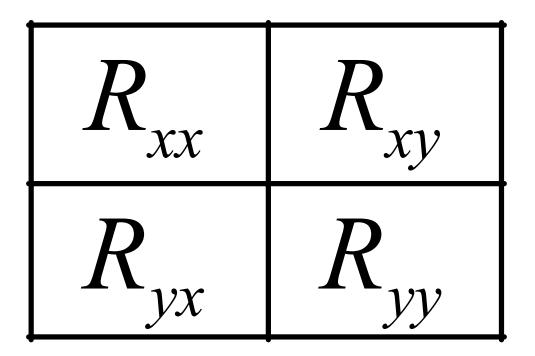
Psy 524 Andrew Ainsworth

Data for Canonical Correlations

- CanCorr actually takes raw data and computes a correlation matrix and uses this as input data.
- You can actually put in the correlation matrix as data (e.g. to check someone else's results)

Data

• The input correlation set up is:



To find the canonical correlations:

 First create a canonical input matrix. To get this the following equation is applied:

$R = R_{yy}^{-1} R_{yx} R_{xx}^{-1} R_{xy}$

 To get the canonical correlations, you calculate the eigenvalues of R and take the square root

$$r_{ci} = \sqrt{\lambda_i}$$

 In this context the eigenvalues represent percent of overlapping variance accounted for in all of the variables by the two canonical variates

o i.e. it is the squared correlation

Testing Canonical Correlations

 Since there will be as many CanCorrs as there are variables in the smaller set, not all will be meaningful (or useful).

 Wilk's Chi Square test – tests whether a CanCorr is significantly different than zero.

$$\chi^2 = -\left[N - 1 - \left(\frac{k_x + k_y + 1}{2}\right)\right] \ln \Lambda_m$$

Where N is number of cases, $k_{\rm x}\,$ is number of x variables and $k_{\rm y}\,$ is number of y variables

$$\Lambda_m = \prod_{i=1}^m (1 - \lambda_i)$$

Lamda, Λ , is the product of difference between eigenvalues and 1, generated across m canonical correlations.

 From the text example - For the first canonical correlation:

 $\Lambda_{2} = (1 - .84)(1 - .58) = .07$ $\chi^{2} = -\left[8 - 1 - \left(\frac{2 + 2 + 1}{2}\right)\right] \ln .07$ $\chi^{2} = -(4.5)(-2.7) = 12.15$ $df = (k_{x})(k_{y}) = (2)(2) = 4$

 The second CanCorr is tested as $\Lambda_1 = (1 - .58) = .42$ $\chi^2 = -\left| 8 - 1 - \left(\frac{2 + 2 + 1}{2} \right) \right| \ln .42$ $\chi^2 = -(4.5)(-.87) = 3.92$ $df = (k_x - 1)(k_y - 1) = (2 - 1)(2 - 1) = 1$

Canonical Coefficients

- Two sets of Canonical Coefficients are required
 - One set to combine the Xs
 - One to combine the Ys
 - Similar to regression coefficients

 $B_{y} = (R_{yy}^{-1/2})'\hat{B}_{y}$ Where $(R_{yy}^{-1/2})'$ is the transpose of the inverse of the "special" matrix form of square root that keeps all of the eigenvalues positive and \hat{B}_{y} is a normalized matrix of eigen vectors for yy

 $\mathbf{B}_{\mathbf{x}} = R_{\mathbf{x}\mathbf{x}}^{-1}R_{\mathbf{x}\mathbf{y}}B_{\mathbf{y}}^{*}$

Where B_y^* is B_y from above dividing each entry by their corresponding canonical correlation.

Canonical Variate Scores

- Like factor scores (we'll get there later)
- What a subject would score if you could measure them directly on the canonical variate

$$X = Z_x B_x$$
$$Y = Z_y B_y$$

 Matrices of Correlations between variables and canonical variates; also called loadings or loading matrices

$$A_{x} = R_{xx}B_{x}$$
$$A_{y} = R_{yy}B_{y}$$

		Canonical Variate Pairs	
		First	Second
First Set	TS	74	.68
	TC	.79	.62
Second Set	BS	44	.90
	BC	.88	.48

- Percent of variance in a single variable accounted for by it's own canonical variate
 - This is simply the squared loading for any variable
 - e.g. The percent of variance in Top Shimmies explained by the first canonical variate is -.74² ≈ 55%

Redundancy

• Within – <u>Average</u> percent of variance in a set of variables explained by their own canonical variate

$$pv_{xc} = \sum_{i=1}^{k_x} \frac{a_{ixc}^2}{k_x}$$

$$pv_{yc} = \sum_{i=1}^{k_y} \frac{a_{iyc}^2}{k_y}$$

$$pv_{xc_1} = \frac{(-.74)^2 + (.79)^2}{2} = .58$$

Redundancy

 Across – <u>average</u> percent of variance in the set of Xs explained by the Y canonical variate and vice versa

$$rd = (pv)(r_c^2)$$
$$rd_{x_1 \to y} = \left[\frac{(-.74)^2 + .79^2}{2}\right](.84) = .48$$