Multivariate Statistics

Psy 524 Andrew Ainsworth

Stat Review 1

IV vs. DV

- Independent Variable (IV)
 - -Controlled by the experimenter

-and/or hypothesized influence

-<u>and/or</u> represent different groups

IV vs. DV

Dependent variables

-the response or outcome variable

◆IV and DV - "input/output", "stimulus/response", etc.

IV vs. DV

Usually represent sides of an equation

$$\begin{array}{c} x \to y \\ x \to y \to z \\ \beta x + \alpha = y \\ x = \beta y + \alpha \end{array}$$

Extraneous vs. Confounding Variables

- Extraneous
 - left out (intentionally or forgotten)
 - -Important (e.g. regression)
- Confounding
 - Extraneous variables that offer alternative explanation
 - Another variable that changes along with IV

Univariate, Bivariate, Multivariate

- Univariate
 - only one DV, can have multiple IVs
- Bivariate
 - two variables no specification as to IV or DV (r or $\chi 2$)
- Multivariate
 - multiple DVs, regardless of number of IVs

Experimental vs. Non-Experimental

- Experimental
 - high level of researcher control, direct manipulation of IV, true IV to DV causal flow
- Non-experimental
 - low or no researcher control, pre-existing groups (gender, etc.), IV and DV ambiguous
- Experiments = internal validity
- Non-experiments = external validity

Why multivariate statistics?

Why multivariate statistics?

Reality

- Univariate stats only go so far when applicable
- "Real" data usually contains more than one DV
- Multivariate analyses are much more realistic and feasible

Why multivariate?

- "Minimal" Increase in Complexity
- More control and less restrictive assumptions
- Using the right tool at the right time
- Remember
 - Fancy stats do not make up for poor planning
 - Design is more important than analysis

When is MV analysis not useful

Hypothesis is univariate use a univariate statistic

-Test individual hypotheses univariately first and use MV stats to explore

 The Simpler the analyses the more powerful

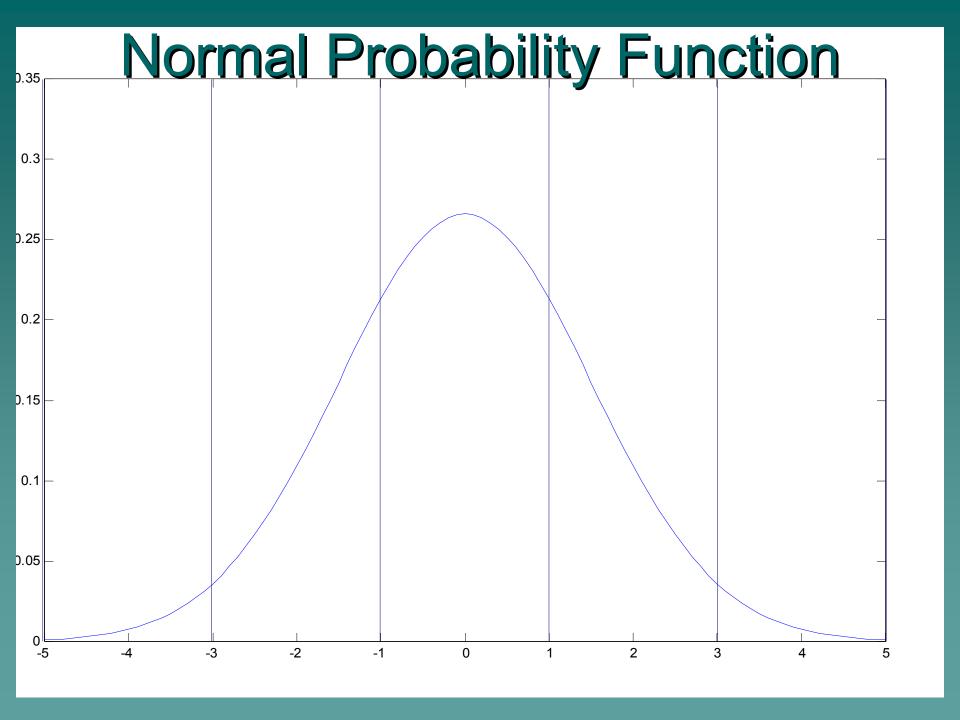
Stat Review 2

- Continuous data
 - -smooth transition no steps
 - -any value in a given range
 - the number of given values restricted only by instrument precision

- Discrete
 - Categorical
 - Limited amount of values and always whole values
- Dichotomous
 - discrete variable with only two categories
 - Binomial distribution

- Continuous to discrete
 - Dichotomizing, Trichotomizing, etc.
 - ANOVA obsession or limited to one analyses
 - Power reduction and limited interpretation
 - Reinforce use of the appropriate stat at the right time

x1	x2
11	9
10	7
11	10
14	12
14	11
10	8
12	10
10	9
11	8
10	11


x1di	x2di
1	0
1	0
1	1
1	1
1	1
1	0
1	1
1	0
1	0
1	1

X1 dichotomized at median >=11 and x2 at median >=10

Correlation of X1 and X2 = .922

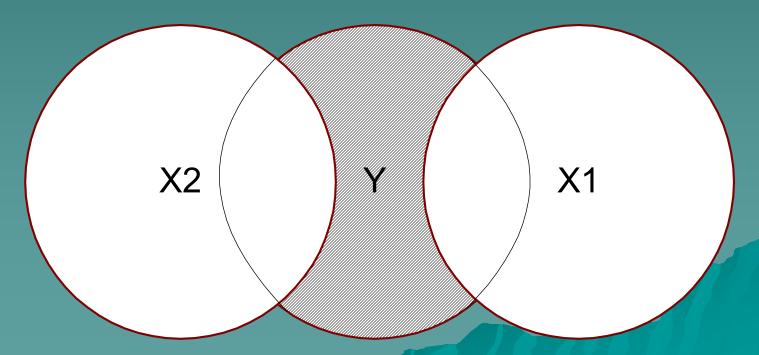
Correlation of X1di and X2di = .570

- Discrete to continuous
 - cannot be done literally (not enough info in discrete variables)
 - often dichotomous data treated as having underlying continuous scale

- Correlation of X1 and X2 when continuous scale assumed = .895
- (called Tetrachoric correlation)
- Not perfect, but closer to real correlation

- Levels of Measurement
 - Nominal Categorical
 - Ordinal rank order
 - Interval ordered and evenly spaced
 - Ratio has absolute 0

Orthogonality

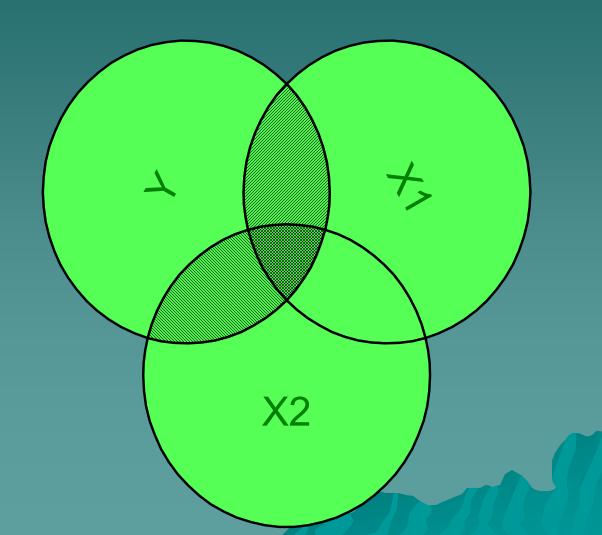

Complete Non-relationship

Opposite of correlation

 Attractive property when dealing with MV stats (really any stats)

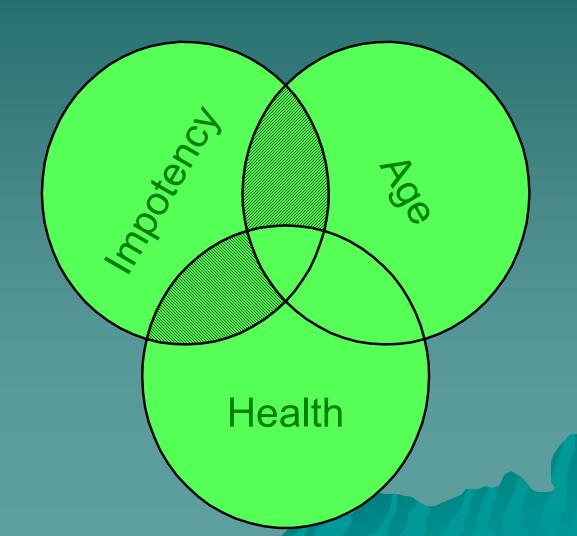
Orthogonality

 Predict y with two Xs; both Xs related to y; orthogonal to each other; each x predicts additively (sum of x_i/y correlations equal multiple correlation)

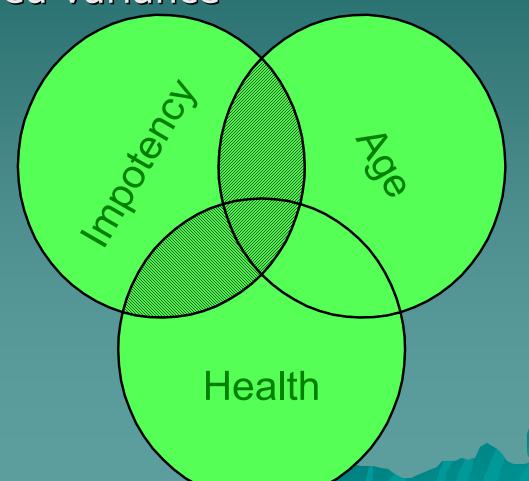

Orthogonality

Designs are orthogonal also

 With multiple DV's orthogonality is also advantages


Standard vs. Sequential Analyses

 Choice depends on handling common predictor variance


Standard vs. Sequential Analyses

Standard analysis – neither IV gets credit

Standard vs. Sequential Analyses

 Sequential – IV entered first gets credit for shared variance

Data Matrix

GRE	GPA	GENDER
500	3.2	1
420	2.5	2
650	3.9	1
550	3.5	2
480	3.3	1
600	3.25	2

For gender women are coded 1

Correlation or R matrix

	GRE	GPA	GENDER
GRE	1.00	0.85	-0.13
GPA	0.85	1.00	-0.46
GENDER			
	-0.13	-0.46	1.00

Variance/Covariance or Sigma matrix

	GRE	GPA	GENDER
GRE	7026.67	32.80	-6.00
GPA	32.80	0.21	-0.12
GENDER	-6.00	-0.12	0.30

 Sums of Squares and Cross-products matrix (SSCP) or S matrix

	GRE	GPA	GENDER
GRE	35133.33	164.00	-30.00
GPA	164.00	1.05	-0.58
GENDER	-30.00	-0.58	1.50

 Sums of Squares and Cross-products matrix (SSCP) or S matrix

$$SS(X_i) = \sum_{i=1}^{N} (X_{ij} - \overline{X}_j)^2$$

$$SP(X_j X_k) = \sum_{i=1}^{N} (X_{ij} - \overline{X}_j)(X_{ik} - \overline{X}_k)$$