Fundamental Theorem of Calculus. Part I

Connection between integration and differentiation.

Today we will discuss relationship between two major concepts of Calculus: integration and
differentiation. We will show that these operations are inverse to each other. We will do so by

defining a structure that allows to recover the function from its derivative using definite integral.

Let me proceed to the first slide.
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Motivation: The problem of finding antiderivatives.
Consider the following question:
Given a function, we can find its derivative, or differentiate it.

Now, given the derivative, can we find the function back? Can we antidifferenitate it?
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Definition. An antiderivative of a function f(z) is a function F'(x) such that F'(x) = f(x).
In other words, given the function f(z), you want to tell whose derivative it is.
Example 1. Find an antiderivative of 1.

The answer: An antiderivative of 1 is x.

Check by differentiation.

Example 2. Find an antiderivative of 1
x



1S arctan x.

The answer: An antiderivative of
+ 22
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How do you know?
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Some antiderivatives can be found by reading differentiation formulas backwards.

1
Indeed, according to the formulas from a calculus book, 152 is the derivative of arctan x
x
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However, no calculus book has formulas for
sin(z?), (™),

\/x + sin®(1 — 3)

The question arises: do these functions have antiderivatives?
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An observation:

No matter what object’s velocity v(t) is, its position function d(t) is always an antiderivative of
v(t), that is d'(t) = v(t).

This suggests that all functions have antiderivatives.

2
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Suppose the speed of my car obeys sin(¢?) (do not try it on the road!). The car will move accordingly
and the position of the car F(t) will give the antiderivative of sin(¢?).
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A hypothesis:

Calculating antiderivatives must be similar to calculating position from velocity.
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We arrived to the second part of our discussion: naive derivation of Fundamental Theorem of
Calculus.
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Let, at initial time ¢,, position of the car on the road is d(to) and velocity is v(ty).
LET ME SWITCH TO OVERHEAD TO MAKE A QUICK COMMENT:

At moment ty, velocity of the car is v(fp). During the period of time At the car will travel
approximately v(to)At.

Thus, the new position of the car is

d(t) = d(to) + v(to)At,  (t = to + At)
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Similarly, at time ¢; the velocity of the car is v(¢;). During the period At the car will travel
approximately v(t1)At.
Position of the car after two moments of time is
d(tg) ~ d(to) + U(to)At -+ U(tl)At,
(tg - tl -+ At)
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Similarly, position of the car after n moments of time is
d(t,) =~ d(to) + v(to) At + ... +v(t,—1)At

which can be written shorter using sigma notation:

n—1

= d(to) + Z ’U(tz‘)At

=0

LET ME GO BACK TO COMPUTER SCREEN:
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Now let the number n of time steps before we reach certain moment of time ¢ increases infinitely,
which means that the size of a time step At decreases to 0; the expression becomes a limit:

n—1

d(t) —d(to) = Jim Z v(t;) At

Compare this limit to the definition on the definite integral:

t n—1
/to v(r)dr = Al}glo ;} v(t;) At

4



Expressions in red coincide, therefore
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(r) — d(to) = [ v(r)dr

to
while d(t) is being a position function corresponding to velocity v(t), that is d'(¢t) = v(t).
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Assuming to = 0, d(ty) = 0, distance can be calculated from velocity by

aw = | () dr

First of all, is this a function in our regular sense?

Well, Yes. For each value ¢ it defines a unique number d(t)
Then if d'(t) = v(t)?

Again, Yes.

This constitutes the assertion of Fundamental Theorem of Calculus.
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Fundamental Theorem of Calculus. Part 1.

Let f(z) be a continuous function (so, the definite integral of f(z) exists). Then the function

F(z) = / " f(r) dr.

is an antiderivative of f(z), which is that F'(z) = f(x).
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EXAMPLES
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Consider an example of evaluating an antiderivative of function

f(z) = sin(2?).

I WILL SWITCH TO OVERHEAD NOW.

According to the Fundamental Theorem of Calculus, Part I, the function
F(z) = / sin(7?) dr
0
is an antiderivative of f(z) = sin(z?).

Indeed, according to the formula in the upper right corner, derivative of F(x) is sin(z?)
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Example 4. Find an antiderivative of

fla) = e,

Again, we use the formula in upper right corner: substituting e(™) for f (1) we obtain an an-
tiderivative of e®*)
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We arrived to the last part of our discussion: the proof of Fundamental Theorem of Calculus. Part
I



LET ME SWITCH TO THE COMPUTER SCREEN
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We will be using two facts:

Interval Additive Property:

/abf(T)dT:/acf(T)dT—f-/cbf(T)dT

and Comparison Property: If m < f(z) < M on [a, b|

b—a</ 7)dr < M(b— a)
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Let F(x) = /x f(r)dr.
We will now show that F'(z) = f(x).

By definition of derivative,

F(z+h)— F(x)

F(z) = Jim h
o B AT = 2 f(7) dr
h—0 h
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Notice, that by the Interval Additive Property, the expression in the numerator can be simplified:
z+h

/a:BJrhf(T)dT—/amf(T)dT:/ f(r)dr

T
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Therefore,

o f(r)dr — g f(r)dr

! —
F(w)—hir(l] ;
1 z+h
:ilzli»r(l)ﬁ ’ f(r)dr
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Finally, if we define two numbers:

— 1 M p—
m=_min f(7), max f(7)

Then the obvious inequality holds

or, dividing by h,
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Now by as we shrink the interval [x, z + h] by considering limit as h — 0. Both m and M converge
(due to the continuity of f(x)) to the value of f(x).

Therefore, by the Squeeze Theorem, the expression

m<h/ r)dr < M

converges to

f(z) <11m/ flr)dr < f(2)

h—0 h
which implies that

tim = [ )y dr = pa)

The theorem is proved.



