
Fundamental Theorem of Calculus. Part I

Connection between integration and differentiation.

Today we will discuss relationship between two major concepts of Calculus: integration and
differentiation. We will show that these operations are inverse to each other. We will do so by
defining a structure that allows to recover the function from its derivative using definite integral.

Let me proceed to the first slide.
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Motivation: The problem of finding antiderivatives.

Consider the following question:

Given a function, we can find its derivative, or differentiate it.

Now, given the derivative, can we find the function back? Can we antidifferenitate it?
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Definition. An antiderivative of a function f(x) is a function F (x) such that F ′(x) = f(x).

In other words, given the function f(x), you want to tell whose derivative it is.

Example 1. Find an antiderivative of 1.

The answer: An antiderivative of 1 is x.

Check by differentiation.

Example 2. Find an antiderivative of
1

1 + x2
.
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The answer: An antiderivative of
1

1 + x2
is arctan x.

3 Slide 3

How do you know?
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Some antiderivatives can be found by reading differentiation formulas backwards.

Indeed, according to the formulas from a calculus book,
1

1 + x2
is the derivative of arctan x
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However, no calculus book has formulas for

sin(x2), e(x2),√
x + sin2(1− x3)

The question arises: do these functions have antiderivatives?
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An observation:

No matter what object’s velocity v(t) is, its position function d(t) is always an antiderivative of
v(t), that is d′(t) = v(t).

This suggests that all functions have antiderivatives.
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Suppose the speed of my car obeys sin(t2) (do not try it on the road!). The car will move accordingly
and the position of the car F (t) will give the antiderivative of sin(t2).
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A hypothesis:

Calculating antiderivatives must be similar to calculating position from velocity.
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We arrived to the second part of our discussion: naive derivation of Fundamental Theorem of
Calculus.
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Let, at initial time t0, position of the car on the road is d(t0) and velocity is v(t0).

LET ME SWITCH TO OVERHEAD TO MAKE A QUICK COMMENT:

At moment t0, velocity of the car is v(t0). During the period of time ∆t the car will travel
approximately v(t0)∆t.

Thus, the new position of the car is

d(t1) ≈ d(t0) + v(t0)∆t, (t1 = t0 + ∆t)
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Similarly, at time t1 the velocity of the car is v(t1). During the period ∆t the car will travel
approximately v(t1)∆t.

Position of the car after two moments of time is

d(t2) ≈ d(t0) + v(t0)∆t + v(t1)∆t,

(t2 = t1 + ∆t)
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Similarly, position of the car after n moments of time is

d(tn) ≈ d(t0) + v(t0)∆t + . . . + v(tn−1)∆t

which can be written shorter using sigma notation:

= d(t0) +
n−1∑
i=0

v(ti)∆t

LET ME GO BACK TO COMPUTER SCREEN:
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Now let the number n of time steps before we reach certain moment of time t increases infinitely,
which means that the size of a time step ∆t decreases to 0; the expression becomes a limit:

d(t)− d(t0) = lim
∆t→0

n−1∑
i=0

v(ti)∆t

Compare this limit to the definition on the definite integral:∫ t

t0
v(τ) dτ = lim

∆t→0

n−1∑
i=0

v(ti)∆t
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Expressions in red coincide, therefore
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d(t)− d(t0) =
∫ t

t0
v(τ) dτ

while d(t) is being a position function corresponding to velocity v(t), that is d′(t) = v(t).
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Assuming t0 = 0, d(t0) = 0, distance can be calculated from velocity by

d(t) =
∫ t

0
v(τ) dτ

First of all, is this a function in our regular sense?

Well, Yes. For each value t it defines a unique number d(t)

Then if d′(t) = v(t)?

Again, Yes.

This constitutes the assertion of Fundamental Theorem of Calculus.
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Fundamental Theorem of Calculus. Part I.

Let f(x) be a continuous function (so, the definite integral of f(x) exists). Then the function

F (x) =
∫ x

a
f(τ) dτ.

is an antiderivative of f(x), which is that F ′(x) = f(x).
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EXAMPLES
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Consider an example of evaluating an antiderivative of function

f(x) = sin(x2).

I WILL SWITCH TO OVERHEAD NOW.

According to the Fundamental Theorem of Calculus, Part I, the function

F (x) =
∫ x

0
sin(τ 2) dτ

is an antiderivative of f(x) = sin(x2).

Indeed, according to the formula in the upper right corner, derivative of F (x) is sin(x2)
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Example 4. Find an antiderivative of
f(x) = e(x2).

Again, we use the formula in upper right corner: substituting e(τ2) for f(τ) we obtain an an-
tiderivative of e(x2)

G(x) =
∫ x

0
e(τ2) dτ
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We arrived to the last part of our discussion: the proof of Fundamental Theorem of Calculus. Part
I.
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LET ME SWITCH TO THE COMPUTER SCREEN
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We will be using two facts:

Interval Additive Property:∫ b

a
f(τ) dτ =

∫ c

a
f(τ) dτ +

∫ b

c
f(τ) dτ

and Comparison Property: If m ≤ f(x) ≤M on [a, b]

m(b− a) ≤
∫ b

a
f(τ) dτ ≤M(b− a)
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Let F (x) =
∫ x

a
f(τ) dτ .

We will now show that F ′(x) = f(x).

By definition of derivative,

F ′(x) = lim
h→0

F (x + h)− F (x)

h

= lim
h→0

∫ x+h
a f(τ) dτ −

∫ x
a f(τ) dτ

h
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Notice, that by the Interval Additive Property, the expression in the numerator can be simplified:∫ x+h

a
f(τ) dτ −

∫ x

a
f(τ) dτ =

∫ x+h

x
f(τ) dτ
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Therefore,

F ′(x) = lim
h→0

∫ x+h
a f(τ) dτ −

∫ x
a f(τ) dτ

h

= lim
h→0

1

h

∫ x+h

x
f(τ) dτ
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Finally, if we define two numbers:

m = min
τ∈[x,x+h]

f(τ), M = max
τ∈[x,x+h]

f(τ)

Then the obvious inequality holds

mh ≤
∫ x+h

x
f(τ) dτ ≤Mh

or, dividing by h,

m ≤ 1

h

∫ x+h

x
f(τ) dτ ≤M
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Now by as we shrink the interval [x, x + h] by considering limit as h→ 0. Both m and M converge
(due to the continuity of f(x)) to the value of f(x).

Therefore, by the Squeeze Theorem, the expression

m ≤ 1

h

∫ x+h

x
f(τ) dτ ≤M

converges to

f(x) ≤ lim
h→0

1

h

∫ x+h

x
f(τ) dτ ≤ f(x)

which implies that

lim
h→0

1

h

∫ x+h

x
f(τ) dτ = f(x)

The theorem is proved.
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