Sophisticated Graphing. Part B

more examples on sketching function's graph

Summary of the Method

Summary of the method.

- 1. Precalculus analysis: a) Domain and range;
- b) Symmetry; c) X and Y-intercepts
- **2.** Calculus analysis: a) Study f'(x) for increasing, decreasing, min, max of f(x); b) Study f''(x) for concavity and inflection points of f(x); c) Check for asymptotes.
- 3. Plot a few points: X, Y-intercepts, points of min, max, inflection points.
- 4. Sketch the graph: Connect the selected points with a smooth curve to maintain all the properties found in 2.

Example 2. Sketch the graph of the function

$$f(x) = \frac{2}{\sqrt{x}} + x.$$

1. Precalculus analysis:

a) Domain is x > 0, range is y > 0; b) Neither even or odd; c) No X or Y-intercepts

2. Calculus analysis: a) f'(x):

$$f'(x) = -\frac{1}{2}2x^{-3/2} + 1 = -\frac{1}{x^{3/2}} + 1 = \frac{x^{3/2} - 1}{x^{3/2}}$$

$$f'(x) < 0 \text{ for } 0 < x < 1; \ f'(x) = 0 \text{ at } x = 1;$$
 $f'(x) > 0 \text{ for } x > 1;$

Analysis by the first derivative

$$f'(x) > 0$$
 on $I \Rightarrow f(x)$ increases on I ; $f'(x) < 0$ on $I \Rightarrow f(x)$ decreases on I ;

First Derivative Test for min and max:

$$f(x) > 0 \text{ for } x < c$$

$$f'(c) = 0,$$

$$f(x) < 0 \text{ for } x > c$$

$$\Rightarrow \text{MAX at } x = c$$

2. Calculus analysis: a) f'(x):

$$f'(x) = -\frac{1}{2}2x^{-3/2} + 1 = -\frac{1}{x^{3/2}} + 1 = \frac{x^{3/2} - 1}{x^{3/2}}$$

$$f'(x) < 0$$
 for $0 < x < 1$; $f'(x) = 0$ at $x = 1$; $f'(x) > 0$ for $x > 1$;

2. Calculus analysis: b) f''(x):

$$f''(x) = \frac{3}{2}x^{-5/2} = \frac{3}{2\sqrt{x^5}}$$

$$f''(x) > 0 \text{ for } x > 0;$$

Analysis by the second derivative

```
f''(x) > 0 on I \Rightarrow f(x) is concave up on I; f''(x) < 0 on I \Rightarrow f(x) is concave down on I; change in concavity = inflection point
```

2. Calculus analysis: b) f''(x):

$$f''(x) = \frac{3}{2}x^{-5/2} = \frac{3}{2\sqrt{x^5}}$$

f''(x) > 0 for x > 0; no inflection points.

2. Calculus analysis: c) Vertical, Horizontal, and Oblique Asymptotes

Asymptotes of f(x)

Vertical: x = c; (Division by 0, raising to ∞)

Horizontal:

$$y=L \text{ as } x \to \infty \text{ if } ; L=\lim_{x \to \infty} f(x);$$
 $y=L \text{ as } x \to -\infty \text{ if } ; L=\lim_{x \to -\infty} f(x);$

Oblique: $f(x) \approx mx + b$ as $x \to \infty$ if !!EMPIRIC!!

$$m=\lim_{x o\infty}rac{f(x)}{x}, \qquad ext{or} \qquad m=\lim_{x o\infty}f'(x),$$
 $b=\lim_{x o\infty}[f(x)-mx]$

Similarly for $x \to -\infty$

2. Calculus analysis: c) Asymptotes

Vertical: x = 0; Oblique: y = x;

$$m = \lim_{x \to \infty} f'(x) = \lim_{x \to \infty} \left[-\frac{1}{x^{3/2}} + 1 \right] = 1$$

$$b = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} \left[\frac{2}{\sqrt{x}} + x - 1 \cdot x \right] = 0$$

3. Plot a few points: Min, Max, inflection, intercepts

Min at
$$x = 1$$
, $f(1) = 3$

3. Plot a few points: Min, Max, inflection, intercepts

Min at
$$x = 1$$
, $f(1) = 3$

4. Sketch the graph: Connect points with a smooth curve to maintain all properties

4. Sketch the graph: Connect points with a smooth curve to maintain all properties

