Increasing and Decreasing Functions, Min and Max, Concavity

studying properties of the function using derivatives

Increasing and Decreasing Functions

characterizing function's behaviour

Definition: (I = [,], (,), [,), (,])f(x) is increasing on I if for each pair $x_1, x_2 \in I$

 $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$

Definition: (I = [,], (,), [,), (,])f(x) is increasing on I if for each pair $x_1, x_2 \in I$

$$x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$$

Definition: f(x) is decreasing on I if for each pair $x_1, x_2 \in I$

 $x_2 > x_1 \Rightarrow f(x_2) < f(x_1)$

Increasing/decreasing = strict monotonicity

Definition: (I = [,], (,), [,), (,])f(x) is non-decreasing on I if for each pair $x_1, x_2 \in I$

$$x_2 > x_1 \Rightarrow f(x_2) \ge f(x_1)$$

Definition: f(x) is non-increasing on I if for each pair $x_1, x_2 \in I$

$$x_2 > x_1 \Rightarrow f(x_2) \le f(x_1)$$

Non-decreasing/increasing = non-strict monotonicit

Example 1. Function sin(x) is strictly monotonic on each interval

 $[-\pi/2 + k\pi, \pi/2 + k\pi], \ k = 0, \pm 1, \pm 2, \pm 3, \dots$

$$[-\pi/2 + k\pi, \pi/2 + k\pi], \ k = 0, \pm 1, \pm 2, \pm 3, \dots$$

It is increasing on

 $[-\pi/2 + k\pi, \pi/2 + k\pi], \ k = 0, \pm 2, \pm 4, \pm 6, \dots$

$$[-\pi/2 + k\pi, \pi/2 + k\pi], \ k = 0, \pm 1, \pm 2, \pm 3, \dots$$

It is increasing on

$$[-\pi/2 + k\pi, \pi/2 + k\pi], \ k = 0, \pm 2, \pm 4, \pm 6, \dots$$

It is decreasing on

$$[-\pi/2 + k\pi, \pi/2 + k\pi], \ k = \pm 1, \pm 3, \pm 5, \dots$$

Example 2. Function tan(x) is increasing on each interval

 $[-\pi/2 + k\pi, \pi/2 + k\pi], \ k = 0, \pm 1, \pm 2, \pm 3, \dots$

Example 2. Function tan(x) is increasing on each interval

$$[-\pi/2 + k\pi, \pi/2 + k\pi], \ k = 0, \pm 1, \pm 2, \pm 3, \dots$$

Note, that you still can't say tan(x) increases everywhere!

Example 2. Function tan(x) is increasing on each interval

$$[-\pi/2 + k\pi, \pi/2 + k\pi], \ k = 0, \pm 1, \pm 2, \pm 3, \dots$$

Note, that you still can't say tan(x) increases everywhere!

Indeed, for
$$x_1 = \pi/4$$
 and $x_2 = 3\pi/4$,

 $x_2 > x_1$ but $\tan(x_2) = -1 < \tan(x_1) = 1$

Derivative and monotonicity What derivative can tell about the function?

Theorem A. If f(x) is increasing on I, and f'(x) exists, then $f'(x) \ge 0$ on I.

Theorem A. If f(x) is increasing on I, and f'(x)exists, then $f'(x) \ge 0$ on I. Proof. Since f(x) is increasing,

$$\frac{f(t) - f(x)}{t - x} > 0, \quad \forall x, t \in I$$

Therefore,

$$f(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \ge 0$$

<i>f(t)</i>				
<i>f(x)</i>	f(t) f(x)	<i>t-x<0</i>	$f(t) = \frac{1}{t-x > 0}$	f(x)>0
f(t)	$\frac{f(t)-f(x)}{t}$			

Theorem A. If f(x) is increasing on I, and f'(x)exists, then $f'(x) \ge 0$ on I. Proof. Since f(x) is increasing,

$$\frac{f(t) - f(x)}{t - x} > 0, \quad \forall x, t \in I$$

Therefore,

$$f(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \ge 0$$

Note that " \geq " can not be replaced with ">"! ($f(x) = x^3$ is increasing everywhere but f'(0) = 0).

Theorem B. If f'(x) > 0 on I, f(x) increases.

Theorem B. If f'(x) > 0 on I, f(x) increases.

Requires Lagrange's theorem: $\forall x_1, x_2 \in I$, there exists value c between x_1 and x_2 such that

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$

If $f'(c) > 0$ on I , $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$

Theorem B. If f'(x) > 0 on I, f(x) increases.

Requires Lagrange's theorem: $\forall x_1, x_2 \in I$, there exists value c between x_1 and x_2 such that

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$

If $f'(c) > 0$ on I , $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$

Note: f(x) is increasing $\Rightarrow f'(x) \ge 0$ But $f'(x) \ge 0 \not\Rightarrow f(x)$ is increasing. Theorem A. If f(x) is decreasing on I, and f'(x) exists, then $f'(x) \leq 0$ on I.

Theorem B. If f'(x) < 0 on I, f(x) decreases.

EXAMPLE 3. Find where $f(x) = x^2 - 5x + 1$ is increasing and where it is decreasing.

EXAMPLE 3. Find where $f(x) = x^2 - 5x + 1$ is increasing and where it is decreasing. Consider

$$f'(x) = 2x - 5$$

 $f'(x) > 0$ if $x > 5/2$, $f'(x) < 0$ if $x < 5/2$. By
Thm. B:

$$f(x) \quad \text{is increasing for } x > \frac{5}{2}$$
$$f(x) \quad \text{is decreasing for } x < \frac{5}{2}$$

EXAMPLE 4. Find where $f(x) = (x^2 - 3x)/(x+1)$ is increasing and where it is decreasing.

EXAMPLE 4. Find where $f(x) = (x^2 - 3x)/(x+1)$ is increasing and where it is decreasing. Consider

$$f'(x) = \frac{(x+3)(x-1)}{(x+1)^2}$$

f'(x) > 0 for x < -3 and x > 1 (increasing) f'(x) < 0 for -3 < x < -1 and -1 < x < 1(decreasing)

Concavity.

what the second derivative can tell about the function?

Two way of increasing:

Two way of increasing:

How to distinguish these two cases?

Definition f(x) is concave up on I if f'(x) increases on I.

Definition f(x) is concave up on I if f'(x) increases on I.

Definition f(x) is concave down on I if f'(x) decreases on I.

Second derivative and Concavity

 $f''(x) > 0 \Rightarrow f'(x)$ is increasing = Concave up

 $f''(x) < 0 \Rightarrow f'(x)$ is decreasing = Concave down

Concavity changes = Inflection point

Second derivative and Concavity

 $f''(x) > 0 \Rightarrow f'(x)$ is increasing = Concave up $f''(x) < 0 \Rightarrow f'(x)$ is decreasing = Concave down Concavity changes = Inflection point

Example 5. Where the graph of $f(x) = x^3 - 1$ is concave up, concave down?

Consider f''(x) = 2x. f''(x) < 0 for x < 0, concave down; f''(x) > 0 for x > 0, concave up.

$f''(x) > 0(f''(x) < 0) \Rightarrow \text{concave up(down)}$

EXAMPLE 6. Find where the graph of $f(x) = x - \sin(x)$ is concave up, concave down?

$f''(x) > 0(f''(x) < 0) \Rightarrow \text{concave up(down)}$

EXAMPLE 6. Find where the graph of $f(x) = x - \sin(x)$ is concave up, concave down?

$$f'(x) = 1 - \cos(x), \quad f''(x) = \sin(x)$$

$$f''(x) > 0 \quad \text{for} \quad x \in [k\pi, (k+1)\pi], \quad k = 0, \pm 1, \pm 2, \dots \text{ (concave up)}$$

$$f''(x) < 0 \quad \text{for} \quad x \in [(k-1)\pi, k\pi], \quad k = 0, \pm 1, \pm 2, \dots \text{ (concave down)}$$

 $k\pi$, $k = 0, \pm 1, \pm 2, \ldots$ inflection points

Minima and Maxima. critical points, first derivative test second derivative test.

Definition. f(c) is a local maximum value of f(x) if there exists an interval (a,b) containing c such that $\forall x \in (a,b)$, $f(c) \ge f(x)$.

Definition. f(c) is a local minimum value of f(x)if there exists an interval (a,b) containing c such that $\forall x \in (a,b)$, $f(c) \leq f(x)$.

Critical Point Theorem. If f(c) is a local min (max), then c is a critical point, that is a) an end point

- b) a stationary point, that is f'(c) = 0
- c) a singular point, that is f'(c) does not exists

(a) and c) are proved by examples.)

Proof b) If f(c) is max, then $\frac{f(t) - f(c)}{t - c} < 0, \quad x > c,$ $\frac{f(t) - f(c)}{t - c} > 0, \quad x < c,$ Or,

 $\lim_{t \to c+} \frac{f(t) - f(c)}{t - c} \le 0, \quad \lim_{t \to c-} \frac{f(t) - f(c)}{t - c} \ge 0,$

 $f'(c) = \lim_{t \to c} \frac{f(t) - f(c)}{t - c} = 0$

First Derivative Test

f'(x) > 0 to the left, f'(x) < 0 to the right of $c \Rightarrow$ increases to the left, decreases to the right of $c \Rightarrow$ max at x = c.

f'(x) < 0 to the left, f'(x) > 0 to the right of $c \Rightarrow$ decreases to the left, increases to the right of $c \Rightarrow$ min at x = c.

Second Derivative Test f''(c) < 0 and $f'(c) = 0 \Rightarrow$ f'(x) is decreasing near c and passing 0 at $c \Rightarrow$ f'(x) > 0 to the left, f'(x) < 0 to the right of $c \Rightarrow$ increases to the left, decreases to the right of $c \Rightarrow$ max at x = c.

f''(c) > 0 and $f'(c) = 0 \Rightarrow$ f'(x) is increasing near c and passing 0 at $c \Rightarrow$ f'(x) < 0 to the left, f'(x) > 0 to the right of $c \Rightarrow$ decreases to the left, increases to the right of $c \Rightarrow$ min at x = c.

EXAMPLE 7. Find where the graph of $f(x) = x \ln(x)$ is increasing, decreasing, concave up, concave down, has max, min?

EXAMPLE 7. Find where the graph of $f(x) = x \ln(x)$ is increasing, decreasing, concave up, concave down, has max, min?

$$f'(x) = \ln(x) + 1, \quad f''(x) = \frac{1}{x}$$

f'(x) < 0 for 1 < x < 1/e (decreasing), f'(x) > 0 for x > 1/e (increasing)

f''(x) > 0 for x > 0, (concave up), no inflection pts.

min at x = 1/e (first derivative test)

EXAMPLE 8. Find where the graph of $f(x) = 1/(x^2 + 1)$ is increasing, decreasing, concave up, concave down, has max, min?

EXAMPLE 8. Find where the graph of $f(x) = 1/(x^2 + 1)$ is increasing, decreasing, concave up, concave down, has max, min?

$$f'(x) = -\frac{2x}{(x^2+1)^2}, \quad f''(x) = 2\frac{3x^2-1}{(x^2+1)^3}$$

f'(x) > 0 for x < 0 (increasing), f'(x) < 0 for x > 0 (decreasing) max at x = 0 (first derivative test)

f''(x) > 0 for $x < -1/\sqrt{3}$ and $x > 1/\sqrt{3}$, (concave up), f''(x) < 0 for $-1/\sqrt{3} < x < 1/\sqrt{3}$, (concave down), $-1/\sqrt{3}$, $1/\sqrt{3}$ are inflection pts.