Increasing and Decreasing Functions, Min and Max, Concavity

studying properties of the function using derivatives

Increasing and Decreasing Functions

characterizing function's behaviour

Definition: $(I = [,], (,), [,), (,])$ $f(x)$ is increasing on I if for each pair $x_1, x_2 \in I$

 $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$

Definition: $(I = |, |, (,), |,), (, |)$ $f(x)$ is increasing on I if for each pair $x_1, x_2 \in I$

$$
x_2 > x_1 \Rightarrow f(x_2) > f(x_1)
$$

Definition: $f(x)$ is decreasing on I if for each pair $x_1, x_2 \in I$

 $x_2 > x_1 \Rightarrow f(x_2) < f(x_1)$

 $Increasing/decreasing = strict monotonicity$

Definition: $(I = [,], (,), [,), (,)$ $f(x)$ is non-decreasing on I if for each pair $x_1, x_2 \in I$

$$
x_2 > x_1 \Rightarrow f(x_2) \ge f(x_1)
$$

Definition: $f(x)$ is non-increasing on I if for each pair $x_1, x_2 \in I$

$$
x_2 > x_1 \Rightarrow f(x_2) \le f(x_1)
$$

 $Non-decreasing/increasing = non-strict monotonicity$

Example 1. Function $sin(x)$ is strictly monotonic on each Example 1. Function $sin(x)$
is strictly monotonic on each
interval

 $[-\pi/2 + k\pi, \pi/2 + k\pi], k = 0, \pm 1, \pm 2, \pm 3, \ldots$

Example 1. Function $sin(x)$ is strictly monotonic on each Example 1. Function $sin(x)$
is strictly monotonic on each
interval

$$
[-\pi/2 + k\pi, \pi/2 + k\pi], k = 0, \pm 1, \pm 2, \pm 3, \ldots
$$

It is increasing on

 $[-\pi/2 + k\pi, \pi/2 + k\pi], k = 0, \pm 2, \pm 4, \pm 6, \ldots$

Example 1. Function $sin(x)$ is strictly monotonic on each Example 1. Function $sin(x)$
is strictly monotonic on each
interval

$$
[-\pi/2 + k\pi, \pi/2 + k\pi], k = 0, \pm 1, \pm 2, \pm 3, \ldots
$$

It is increasing on

$$
[-\pi/2 + k\pi, \pi/2 + k\pi], k = 0, \pm 2, \pm 4, \pm 6, \ldots
$$

It is decreasing on

$$
[-\pi/2 + k\pi, \pi/2 + k\pi], k = \pm 1, \pm 3, \pm 5, \ldots
$$

Example 2. Function $tan(x)$ is increasing on each interval

 $[-\pi/2 + k\pi, \pi/2 + k\pi], k = 0, \pm 1, \pm 2, \pm 3, \ldots$

Example 2. Function $tan(x)$ is increasing on each interval

$$
[-\pi/2 + k\pi, \pi/2 + k\pi], k = 0, \pm 1, \pm 2, \pm 3, \ldots
$$

Note, that you still can't say $tan(x)$ increases everywhere!

Example 2. Function $tan(x)$ is increasing on each interval

$$
[-\pi/2 + k\pi, \pi/2 + k\pi], k = 0, \pm 1, \pm 2, \pm 3, \ldots
$$

Note, that you still can't say $tan(x)$ increases everywhere!

Indeed, for
$$
x_1 = \pi/4
$$
 and $x_2 = 3\pi/4$,

 $x_2 > x_1$ but $\tan(x_2) = -1 < \tan(x_1) = 1$

Derivative and monotonicity What derivative can tell about the function?

Theorem A. If $f(x)$ is increasing on I, and $f'(x)$ exists, then $f'(x) \geq 0$ on I.

Theorem A. If $f(x)$ is increasing on I, and $f'(x)$ exists, then $f'(x) \geq 0$ on I. Proof. Since $f(x)$ is increasing,

$$
\frac{f(t) - f(x)}{t - x} > 0, \quad \forall x, t \in I
$$

Therefore,

$$
f(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \ge 0
$$

Theorem A. If $f(x)$ is increasing on I, and $f'(x)$ exists, then $f'(x) \geq 0$ on I. Proof. Since $f(x)$ is increasing,

$$
\frac{f(t) - f(x)}{t - x} > 0, \quad \forall x, t \in I
$$

Therefore,

$$
f(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \ge 0
$$

Note that " \geq " can not be replaced with ">"! $(f(x) = x^3)$ is increasing everywhere but $f'(0) = 0$).

Theorem B. If $f'(x) > 0$ on I, $f(x)$ increases.

Theorem B. If $f'(x) > 0$ on I, $f(x)$ increases.

Requires Lagrange's theorem: $\forall x_1, x_2 \in I$, there exists value c between x_1 and x_2 such that

$$
f(x_2) - f(x_1) = f'(c)(x_2 - x_1)
$$

If $f'(c) > 0$ on I , $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$

Theorem B. If $f'(x) > 0$ on I, $f(x)$ increases.

Requires Lagrange's theorem: $\forall x_1, x_2 \in I$, there exists value c between x_1 and x_2 such that

$$
f(x_2) - f(x_1) = f'(c)(x_2 - x_1)
$$

If $f'(c) > 0$ on I , $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$

Note: $f(x)$ is increasing $\Rightarrow f'(x) \geq 0$ But $f'(x) \geq 0 \nRightarrow f(x)$ is increasing.

Theorem A. If $f(x)$ is decreasing on I, and $f'(x)$ exists, then $f'(x) \leq 0$ on I.

Theorem B. If $f'(x) < 0$ on I, $f(x)$ decreases.

EXAMPLE 3. Find where $f(x) = x^2 - 5x + 1$ is increasing and where it is decreasing.

EXAMPLE 3. Find where $f(x) = x^2 - 5x + 1$ is increasing and where it is decreasing. Consider

 $f'(x) = 2x - 5$ $f'(x) > 0$ if $x > 5/2$, $f'(x) < 0$ if $x < 5/2$. By Thm. B:

> $f(x)$ is increasing for $x >$ 5 2 $f(x)$ is decreasing for $x <$ 5 2

EXAMPLE 4. Find where $f(x) = (x^2-3x)/(x+1)$ is increasing and where it is decreasing.

EXAMPLE 4. Find where $f(x) = (x^2-3x)/(x+1)$ is increasing and where it is decreasing. Consider (x) = (^x + 3)(^x [−] 1)

$$
f'(x) = \frac{(x+3)(x-1)}{(x+1)^2}
$$

 $f'(x) > 0$ for $x < -3$ and $x > 1$ (increasing) $f'(x) < 0$ for $-3 < x < -1$ and $-1 < x < 1$ (decreasing)

Concavity.

what the second derivative can tell about the function?

Two way of increasing:

Two way of increasing:

How to distinguish these two cases?

Definition $f(x)$ is concave up on I if $f'(x)$ increases on I.

Definition $f(x)$ is concave up on I if $f'(x)$ increases on I.

Definition $f(x)$ is concave down on I if $f'(x)$ decreases on I .

Second derivative and Concavity

 $f''(x) > 0 \Rightarrow f'(x)$ is increasing $=$ Concave up

 $f''(x) < 0 \Rightarrow f'(x)$ is decreasing $=$ Concave down

Concavity changes $=$ Inflection point

Second derivative and Concavity

 $f''(x) > 0 \Rightarrow f'(x)$ is increasing $=$ Concave up $f''(x) < 0 \Rightarrow f'(x)$ is decreasing $=$ Concave down

 $Concavity$ changes $=$ Inflection point

Example 5. Where the graph of $f(x) = x^3 - 1$ is concave up, concave down?

Consider $f''(x) = 2x$. $f''(x) < 0$ for $x < 0$, concave down; $f''(x) > 0$ for $x > 0$, concave up.

$f''(x) > 0(f''(x) < 0) \Rightarrow$ concave up(down)

EXAMPLE 6. Find where the graph of $f(x) =$ $x - sin(x)$ is concave up, concave down?

$f''(x) > 0(f''(x) < 0) \Rightarrow$ concave up(down)

EXAMPLE 6. Find where the graph of $f(x) =$ $x - sin(x)$ is concave up, concave down?

$$
f'(x) = 1 - \cos(x), \quad f''(x) = \sin(x)
$$

$$
f''(x) > 0 \quad \text{for} \quad x \in [k\pi, (k+1)\pi], \quad k = 0, \pm 1, \pm 2, \dots \text{ (concave up)}
$$

$$
f''(x) < 0 \quad \text{for} \quad x \in [(k-1)\pi, k\pi], \quad k = 0, \pm 1, \pm 2, \dots \text{ (concave down)}
$$

 $k\pi$, $k = 0, \pm 1, \pm 2, \ldots$ inflection points

Minima and Maxima. critical points, first derivative test second derivative test.

Definition. $f(c)$ is a local maximum value of $f(x)$ if there exists an interval (a, b) containing c such that $\forall x \in (a, b)$, $f(c) \geq f(x)$.

Definition. $f(c)$ is a local minimum value of $f(x)$ if there exists an interval (a, b) containing c such that $\forall x \in (a, b), f(c) \leq f(x)$.

Critical Point Theorem. If $f(c)$ is a local min (max) , then c is a critical point, that is a) an end point

- b) a stationary point, that is $f'(c) = 0$
- c) a singular point, that is $f'(c)$ does not exists

(a) and c) are proved by examples.)

Proof b) If $f(c)$ is max, then $f(t) - f(c)$ $t - c$ $< 0, \quad x > c,$ $f(t) - f(c)$ $t - c$ $> 0, \quad x < c,$ Or,

 $f'(c) = \lim_{t \to c}$ $f(t) - f(c)$ $t - c$ $= 0$

First Derivative Test

 $f'(x) > 0$ to the left, $f'(x) < 0$ to the right of $c \Rightarrow$ increases to the left, decreases to the right of $c \Rightarrow$ max at $x = c$.

 $f'(x) < 0$ to the left, $f'(x) > 0$ to the right of $c \Rightarrow$ decreases to the left, increases to the right of $c \Rightarrow$ min at $x = c$.

Second Derivative Test $f''(c) < 0$ and $f'(c) = 0 \Rightarrow$ $f'(x)$ is decreasing near c and passing 0 at $c \Rightarrow f'(x)$ $f'(x) > 0$ to the left, $f'(x) < 0$ to the right of $c \Rightarrow$ increases to the left, decreases to the right of $c \Rightarrow$ max at $x = c$.

 $f''(c) > 0$ and $f'(c) = 0 \Rightarrow$ $f'(x)$ is increasing near c and passing 0 at $c \Rightarrow f'(x)$ $f'(x) < 0$ to the left, $f'(x) > 0$ to the right of $c \Rightarrow$ decreases to the left, increases to the right of $c \Rightarrow$ min at $x = c$.

EXAMPLE 7. Find where the graph of $f(x) = x \ln(x)$ is increasing, decreasing, concave up, concave down, has max, min?

EXAMPLE 7. Find where the graph of $f(x) = x \ln(x)$ is increasing, decreasing, concave up, concave down, has max, min?

$$
f'(x) = \ln(x) + 1
$$
, $f''(x) = \frac{1}{x}$

 $f'(x) < 0$ for $1 < x < 1/e$ (decreasing), $f'(x) >$ 0 for $x > 1/e$ (increasing)

 $f''(x) > 0$ for $x > 0$, (concave up), no inflection pts.

min at $x = 1/e$ (first derivative test)

EXAMPLE 8. Find where the graph of $f(x) =$ $1/(x^2+1)$ is increasing, decreasing, concave up, concave down, has max, min?

EXAMPLE 8. Find where the graph of $f(x) =$ $1/(x^2+1)$ is increasing, decreasing, concave up, concave down, has max, min?

$$
f'(x) = -\frac{2x}{(x^2+1)^2}, \quad f''(x) = 2\frac{3x^2-1}{(x^2+1)^3}
$$

 $f'(x) > 0$ for $x < 0$ (increasing), $f'(x) < 0$ for $x > 0$ (decreasing) max at $x = 0$ (first derivative test)

 $f''(x) > 0$ for $x < -1/$ √ 3 and $x > 1/$ √ 3, (concave up), $f''(x) < 0$ for $-1/\sqrt{3} < x < 1/\sqrt{3}$, and $x > 1/V$ (concave down), $-1/\sqrt{3}$, $1/\sqrt{3}$ are inflection pts. \leq $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$