Tangent Line, Velocity, Derivative and Differentiability

instant rate of change and approximation of the function

Motivation:

what do tangent line and velocity have in common?

Euclid: The tangent is a line that touches a curve at just one point.

Works for circles:

Euclid: The tangent is a line that touches a curve at just one point.

Works for circles:

Does NOT work for $sin(x)!$

Modern: The tangent is the limiting position of the secant line (if exists).

Tangent =
$$
\lim_{t \to x} \text{Secant}
$$
\nSlope of
\nTangent =
$$
\lim_{t \to x} \text{Secant}
$$
\nSlope of
\nTangent =
$$
\lim_{t \to x} \frac{f(t) - f(x)}{t - x}
$$

Slope of
Tangent
$$
\frac{f(t) - f(x)}{t - x}
$$

Slope of
Tangent
$$
\frac{f(t) - f(x)}{t - x}
$$

Slope of
Tangent
$$
\frac{(t^2-4)-(x^2-4)}{t-x}
$$

Slope of
Tangent
$$
\frac{f(t) - f(x)}{t - x}
$$

 $=$ lim $t\rightarrow x$ $t^2 - x^2$ $t - x$ $=$ lim $t\rightarrow x$ $(t-x)(t+x)$ $t - x$ $= 2x$

Slope of
Tangent
$$
\frac{f(t) - f(x)}{t - x}
$$

$$
= \lim_{t \to x} \frac{t^2 - x^2}{t - x} = \lim_{t \to x} \frac{(t - x)(t + x)}{t - x} = 2x
$$

At $x = 3$, $(y = 5$ is irrelevant)

Slope of Tangent $= 6$

Velocity: How fast the position $s(x)$ is changing.

Average Velocity =

$$
=\frac{s(x+h)-s(x)}{h}
$$

Instantaneous $\frac{1}{2}$ Velocity $\frac{1}{2}$ $\lim_{h\to 0}$ $s(x+h) - s(x)$ h

EXAMPLE 2. Motion of the particle along a line is described by $s(x) = 1 + \cos(x)$. Find instantaneous velocity at moment $x = 2$.

EXAMPLE 2. Motion of the particle along a line is described by $s(x) = 1 + \cos(x)$. Find instantaneous velocity at moment $x = 2$.

$$
\text{Instant.} = \lim_{h \to 0} \frac{(1 + \cos(x + h)) - (1 + \cos(x))}{h}
$$

EXAMPLE 2. Motion of the particle along a line is described by $s(x) = 1 + \cos(x)$. Find instantaneous velocity at moment $x = 2$.

Instant. $\frac{1}{2}$ Velocity $\frac{1}{2}$ $\lim_{h\to 0}$ $(1 + \cos(x + h)) - (1 + \cos(x))$ h $=$ \lim $h\rightarrow 0$ $\cos(x+h) - \cos(x)$ h

$$
= \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}
$$

(using $\cos(x+h) = \cos(x)\cos(h) - \sin(x)\sin(h)$)

$$
= \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}
$$

(using $\cos(x+h) = \cos(x)\cos(h) - \sin(x)\sin(h)$)

$$
= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}
$$

$$
= \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}
$$

\n
$$
(\text{using } \cos(x+h) = \cos(x)\cos(h) - \sin(x)\sin(h))
$$

\n
$$
= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}
$$

\n
$$
= \cos(x)\lim_{x \to 0} \frac{\cos(h) - 1}{h} - \sin(x)\lim_{x \to 0} \frac{\sin(h)}{h}
$$

\n
$$
= -\sin(x)
$$

$$
= \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}
$$

(using $\cos(x+h) = \cos(x)\cos(h) - \sin(x)\sin(h)$)

$$
= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}
$$

$$
= \cos(x)\lim_{x \to 0} \frac{\cos(h) - 1}{h} - \sin(x)\lim_{x \to 0} \frac{\sin(h)}{h}
$$

$$
= -\sin(x)
$$
At $x = 2$, Instantaneous Velocity = $-\sin(2)$

Compare Slope of $Tangent = \lim_{t \to x}$ $f(t) - f(x)$ $t-x$ Instant. $\frac{1}{\text{Velocity}} = \lim_{\tau \to 0}$ $s(x+h) - s(x)$ h

Compare Slope of $Tangent = \lim_{t \to x}$ $f(t) - f(x)$ $t-x$ Instant. $\frac{1}{\text{Velocity}} = \lim_{\tau \to 0}$ $s(x+h) - s(x)$ h

Equivalent up to the substitution

$$
f = s, \qquad t - x = h
$$

Compare Slope of $Tangent = \lim_{t \to x}$ $f(t) - f(x)$ $t-x$ Instant. $\frac{1}{\text{Velocity}} = \lim_{\tau \to 0}$ $s(x+h) - s(x)$ h

Equivalent up to the substitution

$$
f = s, \qquad t - x = h
$$

Is it the same thing?

Definition of the Derivative putting things together

Slope of Tangent	Instant.	Rate of Velocity
$\lim_{t \to x} \frac{f(t) - f(x)}{t - x}$	$\lim_{h \to 0} \frac{s(x + h) - s(x)}{h}$	$\lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}$

Definition: Derivative of $f(x)$ at point x is

$$
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}
$$

$$
\left(\text{or, } f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\right)
$$

Illustration Slope of Tangent

Instant. **Velocity**

Rate of Change

$$
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}
$$

$$
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}
$$

$$
f'(x) = \lim_{t \to x} \frac{(t^3 + 2t) - (x^3 - 2x)}{t - x}
$$

$$
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}
$$

$$
f'(x) = \lim_{t \to x} \frac{(t^3 + 2t) - (x^3 - 2x)}{t - x}
$$

$$
= \lim_{t \to x} \frac{(t^3 - x^3) + (2t - 2x)}{t - x}
$$

$$
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}
$$

$$
f'(x) = \lim_{t \to x} \frac{(t^3 + 2t) - (x^3 - 2x)}{t - x}
$$

$$
= \lim_{t \to x} \frac{(t^3 - x^3) + (2t - 2x)}{t - x} \n= \lim_{t \to x} \frac{t^3 - x^3}{t - x} + \lim_{t \to x} \frac{2t - 2x}{t - x}
$$

Consider

Consider

$$
= 1 \cdot (x^2 + x^2 + x^2) + 2 = 3x^2 + 2
$$

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

$$
f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}
$$

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

$$
f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}
$$

$$
= \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h} \frac{(\sqrt{x+h} + \sqrt{x})}{(\sqrt{x+h} + \sqrt{x})}
$$

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

$$
f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}
$$

$$
= \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h}
$$

$$
= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}
$$

The Differential

problem of linear approximation

Approximating function with a line

$$
f(x+h) = f(x) + m \cdot h + o(h)
$$

$$
\quad \text{where} \quad \lim_{h \to 0} \frac{o(h)}{h} = 0
$$

Motion along a line:

$$
y = y_0 + m \cdot h
$$

Approximating function with a line

$$
f(x+h) = f(x) + m \cdot h + o(h)
$$

$$
\quad \text{where} \quad \lim_{h \to 0} \frac{o(h)}{h} = 0
$$

Motion along a line:

$$
y=y_0+m\cdot h
$$

$$
\begin{array}{c}\ny \\
y \\
\hline\ny_0 \\
\hline\n\vdots \\
x_0\n\end{array}
$$
 slope = m

What is m ?

Definition. Function $f(x)$ is differentiable at x if there exists a number m such that

$$
f(x+h) = f(x) + m \cdot h + o(h)
$$

where $\lim_{h \to 0} \frac{o(h)}{h} = 0$
(*o*(*h*) "o"-little is a quantity of the order of magnitude smaller then *h*).

Differential:

$$
\mathbf{d}f(x)\langle h\rangle = m\cdot h
$$

Compute m . Assume function $f(x)$ is differenti able: $f(x+h) = f(x) + m \cdot h + o(h)$. Solving for m and rearranging,

$$
\frac{f(x+h) - f(x)}{h} = m + \frac{o(h)}{h}
$$

Compute m . Assume function $f(x)$ is differenti able: $f(x+h) = f(x) + m \cdot h + o(h)$. Solving for m and rearranging,

$$
\frac{f(x+h) - f(x)}{h} = m + \frac{o(h)}{h}
$$

differentiability requires $\lim_{h\to 0}$ $o(h)$ $\frac{h^{(n)}}{h} = 0$ therefore,

$$
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = m
$$

Compute m . Assume function $f(x)$ is differenti able: $f(x+h) = f(x) + m \cdot h + o(h)$. Solving for m and rearranging,

$$
\frac{f(x+h) - f(x)}{h} = m + \frac{o(h)}{h}
$$

differentiability requires $\lim_{h\to 0}$ $o(h)$ $\frac{h^{(n)}}{h} = 0$ therefore,

$$
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = m
$$

or $f'(x)$ exists and $f'(x) = m$. Differentiability implies Derivative!

$$
f(x+h) = f(x) + m \cdot h + o(h)
$$

$$
f(x+h) = f(x) + m \cdot h + o(h)
$$

 $\sin(x+h) = \sin(x) + \cos(x)h$ $+[-\cos(x)h + \sin(x+h) - \sin(x)]$

$$
f(x+h) = f(x) + m \cdot h + o(h)
$$

$$
\sin(x+h) = \sin(x) + \cos(x)h
$$

$$
+[-\cos(x)h + \sin(x+h) - \sin(x)]
$$

Now,
$$
m = f'(x) = cos(x)
$$
 and $o(h) = [...]$.

$$
f(x+h) = f(x) + m \cdot h + o(h)
$$

$$
\sin(x+h) = \sin(x) + \cos(x)h
$$

$$
+[-\cos(x)h + \sin(x+h) - \sin(x)]
$$

Now,
$$
m = f'(x) = cos(x)
$$
 and $o(h) = [...]$. Notice

$$
o(h) = \cos(x)[\sin(h) - h] + \sin(x)[\cos(h) - 1]
$$

$$
f(x+h) = f(x) + m \cdot h + o(h)
$$

$$
\sin(x+h) = \sin(x) + \cos(x)h
$$

$$
+[-\cos(x)h + \sin(x+h) - \sin(x)]
$$
Now, $m = f'(x) = \cos(x)$ and $o(h) = [...]$. Notice $o(h) = \cos(x)[\sin(h) - h] + \sin(x)[\cos(h) - 1]$

Therefore,

$$
\lim_{h \to 0} \frac{o(h)}{h} = 0
$$

Evaluating differentials. Common notations:

$$
\mathbf{d}f(x) = f'(x)\mathbf{d}x
$$

(Compare to $df(x)\langle h\rangle = m \cdot h$, substituting $m =$ $f'(x)$, $h = dx$)

Evaluating differentials. Common notations:

$$
\mathbf{d}f(x) = f'(x)\mathbf{d}x
$$

(Compare to $df(x)\langle h\rangle = m \cdot h$, substituting $m =$ $f'(x)$, $h = dx$)

EXAMPLE 6.

$$
\mathbf{d}(\sin x) = \cos x \mathbf{d}x, \quad \mathbf{d}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \mathbf{d}x,
$$

$$
\mathbf{d}(\arctan(x)) = \frac{1}{1+x^2} \mathbf{d}x
$$