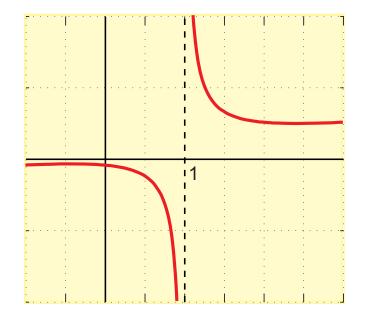
Limit of a function at a point

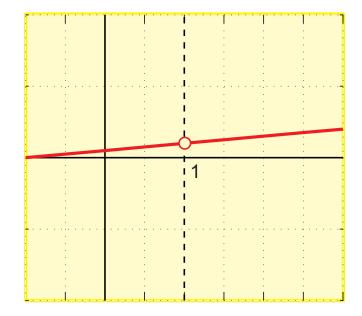
 ε – δ language

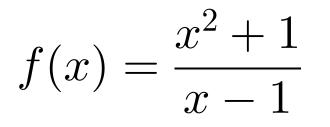
Motivation:

Studying functions when they are not defined

The following functions are undefined at x = 1:

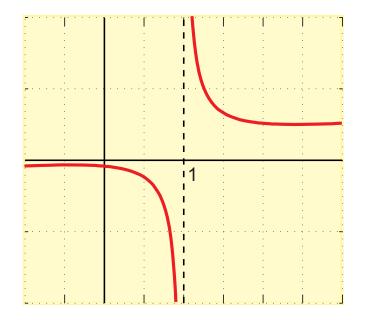


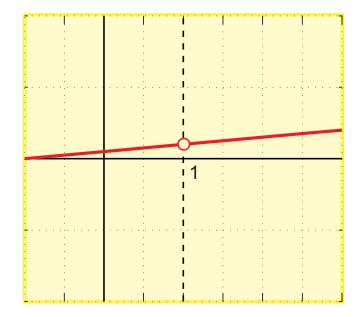


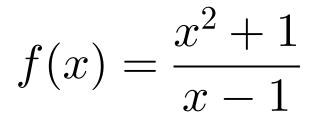


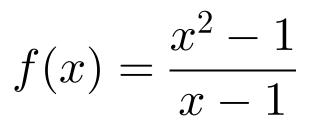
 $f(x) = \frac{x^2 - 1}{x - 1}$

The following functions are undefined at x = 1:



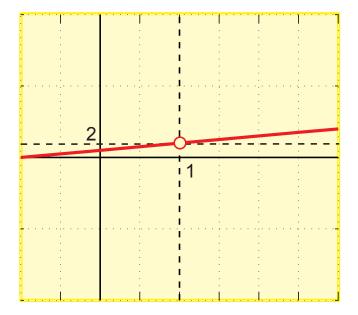




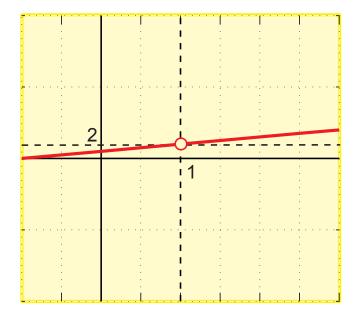


The difference can be big!

Want to distinguish the following situation:



Want to distinguish the following situation:



As x is near 1, value of
$$f(x) = \frac{x^2 - 1}{x - 1}$$
 is near 2.

This near?

This near?

This near?

Or, this near?

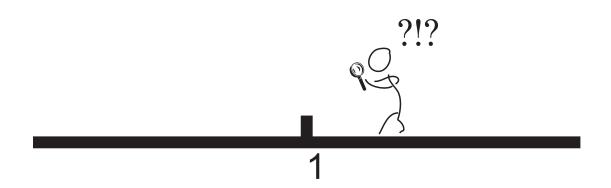
INFINITELY NEAR!

??..???.??

INFINITELY NEAR?

??..???..??

INFINITELY NEAR?



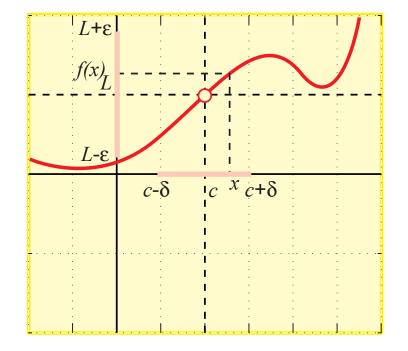
ε - δ language. Definition of Limit

Working out the infinity

Definition of Limit

DEFINITION. The number L is the limit of function f(x) as x approaches c if and only if for any positive number ε there exists a positive

number δ (depending on ε) such that as long as x is not equal to c but differs from cby less then δ , it implies that f(x) differs from L by less then ε .



Limit in math symbols.

DEFINITION.

$$L = \lim_{x \to c} f(x) \quad \Leftrightarrow \quad$$

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; / \; 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$

Legend: \forall — for any, ε — "epsilon", \exists — exists, δ — "delta", / — such that, \Rightarrow — implies, \Leftrightarrow if and only if, \rightarrow — approaches.

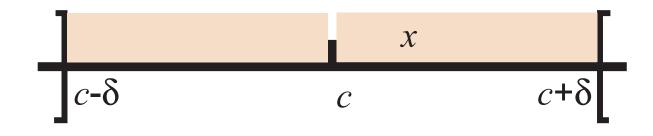
$$L = \lim_{x \to c} f(x) \quad \Leftrightarrow \quad$$

The inequality in red requires that

$$-\delta < x - c < \delta, \qquad x - c \neq 0$$

or,

$$c - \delta < x < c + \delta, \qquad x \neq c$$



$$L = \lim_{x \to c} f(x) \quad \Leftrightarrow \quad$$

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; / \; 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$$

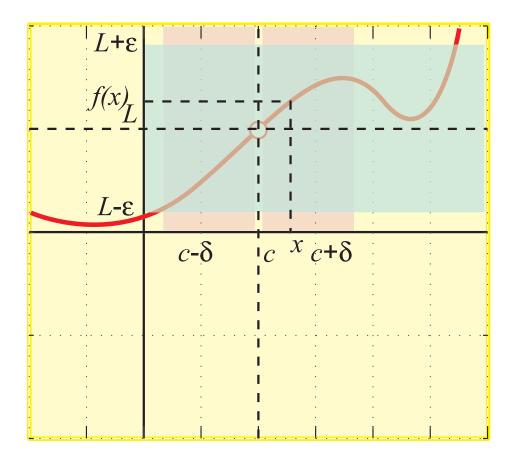
The inequality in green requires that

or,
$$-\varepsilon < f(x) - L < \varepsilon$$
, $L + \varepsilon$, $L + \varepsilon$, $L + \varepsilon$, $L - \varepsilon < f(x) < L + \varepsilon$, $L - \varepsilon$

 $L = \lim_{x \to c} f(x)$ \Leftrightarrow

As x is in δ -corridor, f(x) is in ε -corridor:

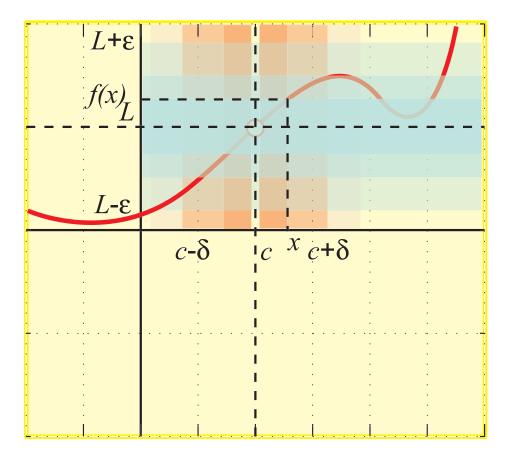
(A narrower δ -corridor guarantees it better)



 $L = \lim_{x \to c} f(x)$ \Leftrightarrow

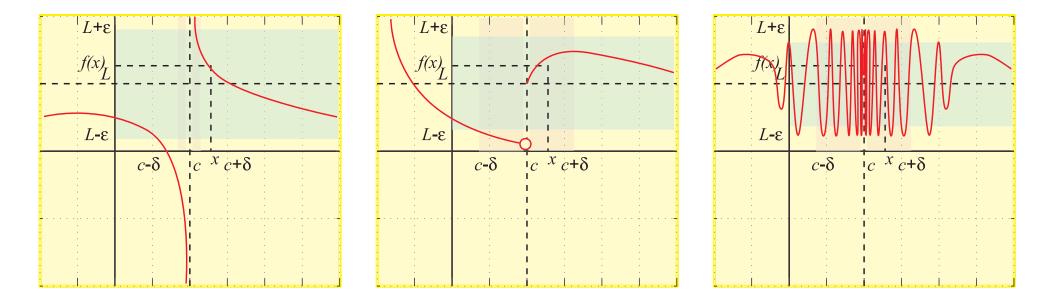
For every choice of ε there must exist δ :

(it is highly desirable to have a formula for computing δ from ε)



 $L = \lim_{x \to c} f(x) \quad \Leftrightarrow \quad$

No limit situations:



 $L = \lim_{x \to c} f(x) \quad \Leftrightarrow \quad$

EXAMPLE 1. Prove by $\varepsilon - \delta$ argument

 $\lim_{x \to 2} (7x+1) = 15 \quad \Leftrightarrow$

 $L = \lim_{x \to c} f(x) \quad \Leftrightarrow \quad$

EXAMPLE 1. Prove by ε - δ argument

$$\lim_{x \to 2} (7x+1) = 15 \quad \Leftrightarrow \quad$$

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - 2| < \delta \Rightarrow |(7x + 1) - 15| < \varepsilon$

 $L = \lim f(x) \quad \Leftrightarrow \quad$ $x \rightarrow c$

EXAMPLE 1. Prove by ε - δ argument

$$\lim_{x \to 2} (7x+1) = 15 \quad \Leftrightarrow \quad$$

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x-2| < \delta \Rightarrow |(7x+1)-15| < \varepsilon$ (By a smart choice of δ guarantee that

$$|(7x+1) - 15| < \varepsilon)$$

|(7x+1) - 15|

$$|(7x+1) - 15| = |7x - 14| = |7(x-2)|$$
$$= |7||x - 2| = 7|x - 2| < \varepsilon \qquad (desirable)$$

$$|(7x+1) - 15| = |7x - 14| = |7(x-2)|$$

$$= |7||x-2| = 7|x-2| < \varepsilon$$

follows from the the assumption

$$|x-2| < \delta$$

 $\delta \leq \varepsilon/7.$

if

$$|(7x+1) - 15| = |7x - 14| = |7(x-2)|$$

$$= |7||x-2| = 7|x-2| < \varepsilon$$

follows from the the assumption

$$|x-2| < \delta$$

 $\delta \leq \varepsilon/7.$

In particular, one can pick

if

 $\delta = \varepsilon/7.$ (answer)

 $L = \lim f(x) \quad \Leftrightarrow \quad$ $x \rightarrow c$

$\forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$ EXAMPLE 2. Prove by ε - δ argument

$$\lim_{x \to 5} \left(\frac{x^2 - 25}{x - 5} \right) = 10 \quad \Leftrightarrow$$

$$L = \lim_{x \to c} f(x) \quad \Leftrightarrow \quad$$

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$ EXAMPLE 2. Prove by ε - δ argument

$$\lim_{x \to 5} \left(\frac{x^2 - 25}{x - 5} \right) = 10 \quad \Leftrightarrow$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - 5| < \delta \Rightarrow \left| \frac{x^2 - 25}{x - 5} - 10 \right| < \delta$$

(By a smart choice of δ guarantee that

$$\left|\frac{x^2 - 25}{x - 5} - 10\right| < \varepsilon \quad)$$

$$\left| \frac{x^2 - 25}{x - 5} - 10 \right|$$

if

$$\begin{vmatrix} \frac{x^2 - 25}{x - 5} - 10 \end{vmatrix} = \begin{vmatrix} \frac{(x + 5)(x - 5)}{x - 5} - 10 \end{vmatrix}$$
$$= |x - 5| < \varepsilon \qquad \text{(desirable)}$$
follows from the the assumption
$$|x - 5| < \delta$$
if
$$\delta \le \varepsilon.$$
In particular, one can pick

 $\delta = \varepsilon$. (answer)

 $L = \lim_{x \to c} f(x) \quad \Leftrightarrow \quad$

EXAMPLE 3. Prove by ε - δ argument

$$\lim_{x \to 3} x^2 = 9 \quad \Leftrightarrow \quad$$

$$L = \lim_{x \to c} f(x) \quad \Leftrightarrow \quad$$

EXAMPLE 3. Prove by ε - δ argument

$$\lim_{x \to 3} x^2 = 9 \quad \Leftrightarrow \quad$$

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ / \ 0 < |x - 3| < \delta \Rightarrow |x^2 - 9| < \varepsilon$ (By a smart choice of δ guarantee that

$$|x^2 - 9| < \varepsilon \quad)$$

$$|x^2 - 9|$$

$$|x^{2} - 9| = |(x - 3)(x + 3)|$$

= $|x - 3||x + 3| < \varepsilon$ (desirable)

$$\begin{aligned} |x^2 - 9| &= |(x - 3)(x + 3)| \\ &= |x - 3||x + 3| < \varepsilon \qquad (\text{desirable}) \\ \text{requires controlling both} \quad |x - 3| \text{ and } |x + 3|. \end{aligned}$$

Note that δ controls $|x - 3|$ through
$$|x - 3| < \delta$$

Does δ controls |x+3| as well?

 $|x - 3| < 1 \quad \Leftrightarrow \quad 2 < x < 4$

$$|x - 3| < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

Notice that if 2 < x < 4, then

5 < |x+3| < 7 ($\delta \text{ controls } |x+3|!$)

$$|x - 3| < 1 \quad \Leftrightarrow \quad 2 < x < 4$$

Notice that if 2 < x < 4, then

5 < |x+3| < 7 ($\delta \text{ controls } |x+3|!$)

Finally, $|x^2 - 9| = |x - 3||x + 3| < |x - 3|7 < \varepsilon$ if $\delta < 1$ and $\delta \le \varepsilon/7$. Answer: $\delta = \min\{1, \varepsilon/7\}$