Limit of a function at a point

 ε - δ language

Motivation:

Studying functions when they are not defined

The following functions are undefined at $x = 1$:

The following functions are undefined at $x = 1$:

The difference can be big!

Want to distinguish the following situation:

Want to distinguish the following situation:

As x is near 1, value of
$$
f(x) = \frac{x^2 - 1}{x - 1}
$$
 is near 2.

This near?

This near?

Or, this near?

$11...111...11$

INFINITELY NEAR!

??..???..??

INFINITELY NEAR?

??..???..??

INFINITELY NEAR?

ε - δ language. **Definition of Limit**

Working out the infinity

Definition of Limit

DEFINITION. The number L is the limit of function $f(x)$ as x approaches c if and only if for any positive number ε there exists a positive

number δ (depending on ε) such that as long as x is not equal to c but differs from c by less then δ , it implies that $f(x)$ differs from L by less then ε .

Limit in math symbols.

DEFINITION.

$$
L = \lim_{x \to c} f(x) \quad \Leftrightarrow
$$

 $\forall \varepsilon > 0 \,\exists \delta > 0 \,\land 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$

Legend: \forall — for any, ε — "epsilon", \exists — exists, δ — "delta", $/$ — such that, \Rightarrow — implies, \Leftrightarrow if and only if, \rightarrow \rightarrow approaches.

$$
L = \lim_{x \to c} f(x) \quad \Leftrightarrow
$$

The inequality in red requires that

$$
-\delta < x - c < \delta, \qquad x - c \neq 0
$$

or,

$$
c - \delta < x < c + \delta, \qquad x \neq c
$$

$$
L = \lim_{x \to c} f(x) \quad \Leftrightarrow
$$

$$
\forall \varepsilon > 0 \; \exists \delta > 0 \; / \; 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon
$$

The inequality in green requires that

$$
-\varepsilon < f(x) - L < \varepsilon,
$$
\nor,

\n
$$
L - \varepsilon < f(x) < L + \varepsilon,
$$
\n
$$
\sum_{L \in \mathbb{R}} \left| \int_{f(x)}^{f(x)} f(x) \, dx \right|
$$

 $L = \lim$ $x\rightarrow c$ $f(x)$ \Leftrightarrow

As x is in δ -corridor, $f(x)$ is in ε -corridor:

(A narrower δ -corridor guarantees it better)

 $L = \lim$ $x\rightarrow c$ $f(x)$ \Leftrightarrow

For every choice of ε there must exist δ :

(it is highly desirable to have a formula for computing δ from ε)

 $L = \lim$ $x\rightarrow c$ $f(x)$ \Leftrightarrow

No limit situations:

 $L = \lim$ $x \rightarrow c$ $f(x) \Leftrightarrow$

EXAMPLE 1. Prove by $\varepsilon-\delta$ argument

 $\lim_{x \to 0} (7x + 1) = 15 \quad \Leftrightarrow$ $r\rightarrow 2$

 $L = \lim$ $x \rightarrow c$ $f(x) \Leftrightarrow$

EXAMPLE 1. Prove by $\varepsilon-\delta$ argument

$$
\lim_{x \to 2} (7x + 1) = 15 \quad \Leftrightarrow
$$

 $\forall \varepsilon > 0 \,\exists \delta > 0 \, / \, 0 < |x-2| < \delta \Rightarrow |(7x+1)-15| < \varepsilon$

 $L = \lim$ $x \rightarrow c$ $f(x) \Leftrightarrow$

EXAMPLE 1. Prove by $\varepsilon-\delta$ argument

$$
\lim_{x \to 2} (7x + 1) = 15 \quad \Leftrightarrow
$$

 $\forall \varepsilon > 0 \,\exists \delta > 0 \, / \, 0 < |x-2| < \delta \Rightarrow |(7x+1)-15| < \varepsilon$ (By a smart choice of δ guarantee that

$$
|(7x+1)-15|<\varepsilon
$$
)

 $|(7x+1)-15|$

$$
|(7x + 1) - 15| = |7x - 14| = |7(x - 2)|
$$

= |7||x - 2| = 7|x - 2| < \varepsilon (desirable)

$$
|(7x+1)-15| = |7x-14| = |7(x-2)|
$$

$$
=|7||x-2|=7|x-2|<\varepsilon \qquad \text{(desirable)}
$$

$$
(\mathsf{desirable})
$$

follows from the the assumption

$$
|x-2|<\delta
$$

 $\delta \leq \varepsilon/7.$

if

$$
|(7x+1)-15| = |7x-14| = |7(x-2)|
$$

$$
=|7||x-2|=7|x-2|<\varepsilon \qquad \text{(desirable)}
$$

$$
(\mathsf{desirable})
$$

follows from the the assumption

$$
|x-2| < \delta
$$

 $\delta \leq \varepsilon/7.$

In particular, one can pick

if

 $\delta = \varepsilon/7$. (answer)

 $L = \lim$ $x \rightarrow c$ $f(x) \Leftrightarrow$

$\forall \varepsilon > 0 \,\exists \delta > 0 \,\land\, 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$ EXAMPLE 2. Prove by $\varepsilon-\delta$ argument

$$
\lim_{x \to 5} \left(\frac{x^2 - 25}{x - 5} \right) = 10 \quad \Leftrightarrow
$$

$$
L = \lim_{x \to c} f(x) \quad \Leftrightarrow
$$

 $\forall \varepsilon > 0 \,\exists \delta > 0 \,\land\, 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$ EXAMPLE 2. Prove by $\varepsilon-\delta$ argument

$$
\lim_{x \to 5} \left(\frac{x^2 - 25}{x - 5} \right) = 10 \quad \Leftrightarrow
$$

$$
\forall \varepsilon > 0 \,\exists \delta > 0 \;/ \, 0 < |x - 5| < \delta \Rightarrow \left| \frac{x^2 - 25}{x - 5} - 10 \right| < \frac{1}{\varepsilon}
$$

(By a smart choice of δ guarantee that

$$
\left|\frac{x^2 - 25}{x - 5} - 10\right| < \varepsilon \quad \text{)}
$$

$$
\left| \frac{x^2 - 25}{x - 5} - 10 \right|
$$

if

$$
\left| \frac{x^2 - 25}{x - 5} - 10 \right| = \left| \frac{(x + 5)(x - 5)}{x - 5} - 10 \right|
$$

= $|x - 5| < \varepsilon$ (desirable)
follows from the the assumption

$$
|x - 5| < \delta
$$

if

$$
\delta \le \varepsilon.
$$

In particular, one can pick

 $\delta = \varepsilon$. (answer)

 $L = \lim$ $x \rightarrow c$ $f(x) \Leftrightarrow$

EXAMPLE 3. Prove by $\varepsilon-\delta$ argument

$$
\lim_{x \to 3} x^2 = 9 \quad \Leftrightarrow
$$

 $L = \lim$ $x \rightarrow c$ $f(x) \Leftrightarrow$

EXAMPLE 3. Prove by $\varepsilon-\delta$ argument

$$
\lim_{x \to 3} x^2 = 9 \quad \Leftrightarrow
$$

 $\forall \varepsilon > 0 \,\, \exists \delta > 0 \,\, / \,\, 0 < |x - 3| < \delta \Rightarrow |x^2 - 9| < \varepsilon$ (By a smart choice of δ guarantee that

$$
|x^2 - 9| < \varepsilon \quad \text{)}
$$

$$
|x^2 - 9|
$$

$$
|x^{2} - 9| = |(x - 3)(x + 3)|
$$

= $|x - 3||x + 3| < \varepsilon$ (desirable)

$$
|x^{2} - 9| = |(x - 3)(x + 3)|
$$

= $|x - 3||x + 3| < \varepsilon$ (desirable)
requires controlling both $|x - 3|$ and $|x + 3|$.
Note that δ controls $|x - 3|$ through

$$
|x - 3| < \delta
$$

Does δ controls $|x+3|$ as well?

$$
|x-3| < 1 \quad \Leftrightarrow \quad 2 < x < 4
$$

$$
|x-3| < 1 \quad \Leftrightarrow \quad 2 < x < 4
$$

Notice that if $2 < x < 4$, then

 $5 < |x+3| < 7$ (δ controls $|x+3|$!)

$$
|x - 3| < 1 \quad \Leftrightarrow \quad 2 < x < 4
$$

Notice that if $2 < x < 4$, then

 $5 < |x+3| < 7$ (δ controls $|x+3|$!)

Finally, $|x^2 - 9| = |x - 3||x + 3| < |x - 3|$ 7 < ε if $\delta < 1$ and $\delta \leq \varepsilon/7$. Answer: $\delta = \min\{1, \varepsilon/7\}$