1) A general condition that two waves undergo constructive interference is that
a) their phase difference is zero.
b) their phase difference is $\pi / 2 \mathrm{rad}$.
c) their phase difference is $\pm \pi / 2 \mathrm{rad}$.
d) their phase difference is an even integral multiple of π rad.
e) their phase difference is an odd integral multiple of $\pi \mathrm{rad}$.

Ans: d
2) Two coherent waves, each with intensity I_{0}, reach the same point in phase. The amplitude of the superposed wave is \qquad .
a) 0
b) I_{0}
c) $2 \mathrm{I}_{0}$
d) $3 \mathbf{I}_{0}$
e) $4 \mathrm{I}_{0}$

Ans: e
3) In a Young's double slit experiment, a $5^{\text {th }}$ order maximum occurs at an angle of 1.422°. If the screen is 3.90 m from the slits and the slit separation is 0.135 mm , what wavelength is being used?
a) 3350 nm
b) 670 nm
c) 335 nm
d) 589 nm
e) 690 nm

Ans: b
4) A double -slit experiment is performed and then redone using slits of double the previous separation. Nothing else is changed. If the approximation $\sin \theta \approx \theta$ holds, what happens to the angle between the maxima?
a) It stays the same.
b) It doubles.
c) It quadruples.
d) It halves.
e) It quarters.

Ans: d
5) A single slit of width 0.030 mm is used to project a diffraction pattern of $500-\mathrm{nm}$ light on a screen at a distance of 2.00 m from the slit. What angle does the central maximum subtend as measured from the slit?
a) 1.91°
b) 3.82°
c) 0.945°
d) 1.50°
e) 3.00°

Ans: a
6) In a double -slit interference pattern, the third maximum from the central maximum corresponds to which value of m ?
a) 1
b) 2
c) 3
d) 4
e) 5

Ans: c
5) Increasing the wavelengths in a double-slit experiment has what effect on the position of maxima on a screen at fixed distance?
a) none
b) Maxima get closer together.
c) Maxima get farther apart.
d) Maxima get cancelled by minima.
e) Maxima pass minima on the screen.

Ans: c

