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Modeling the spread of diseases

Most likely you have heard about the “swine flu” striking the world right now. As of today there are about
2,000 worldwide confirmed cases, about 350 here in the US.

Through history epidemics of infectious diseases have devastated large numbers of humans. Most recently,
in 2003, SARS (severe acute respiratory syndrome) spread quickly and killed about 700 people. In the US,
the CDC (Center for Disease Control) reports that about half million people have died from AIDS in the
years from 2002 to 2006.

There is no single model that can apply to all diseases. We will construct an elementary model of a disease
that satisfies some basic conditions. The first is that we consider that the population that it is affected is
constant: we ignore new births and immigration. More complex models could account for that, but this
assumption is quite reasonable. For example, this could apply to a break of chickenpox at an elementary
school.

q 1. Give examples of diseases where this condition of “constant population” is appropriate.

q 2. Give examples of diseases where this condition of “constant population” is not very appropriate.
We will also assume that the disease transmits by direct constant between individuals in the population.
q 3. Do you know of any examples where this “infection by direct contact” is not true?

And we will also assume that the population under study mixes homogeneously: all members of the
population interact to one another to the same degree, so that all uninfected individuals face the same level
of exposure to the disease by those already infected.

q 4. Is the “homogeneous mixing” assumption a reasonable one for
(a) abreak of chickenpox at an elementary school?
(b) an outbreak of chicken pox in all the elementary schools in the US?
(c) for the swine flu?

q 5. What other examples scan you think of where this “homogeneous mixing” assumption is reasonable?
unreasonable?

To formulate our model, at each time t we divide the population N into three categories:
e S(t) the susceptible class: those who may catch the disease, but are not currently infected.
e I(t) those that are infected with the disease and are currently contagious.

e R(t) the removed class: those that cannot get the disease nor transmit it, because the either have
recovered permanently, became immune, or have died.

q 6. Explain which, at any time t, the following holds:
S(t) +1I(t) +R(t) =N

9 7. Suppose that you are using this to model an outbreak of flu in your high school. How would you
expect the sizes of each of the populations to change from the moment that it occur until it subsides? If you
were to plot the graphs of S(t), I(t) and R(t) as a function of time t, how do you think their graphs would
look like?
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Tracking the size of the infective class I(t) gives the clearest indication of the course of a typical disease.
For an epidemic to occur, the size of the infected class I(t) must increase with t. A large increase in a
single time step means a rapidly spreading outbreak, while a small increase means a more gradual spread.
Thus the magnitude of change AT = I(t + 1) — I(t) gives an indication of the virulence of the disease. We
expect that I(t) increases as more and more individuals become infected. But with time, individuals will
recover and I(t) will start to decrease in size. The change Al = I(t 4+ 1) — I(t) would be < 0, and the
graph of I(t) turns down.

SIR Model

In this basic model, members of the population progress through the three classes in order: susceptibles
remain disease-free or become infected, infectives go thru an infectious period until they are cured and
removed permanently, and these will never contract the disease again. The scheme is:

S—I—R

To actually model the disease, we need to specify how the susceptible move into the infective class, and
how these move into the removed class. The disease spreads when a susceptible come into contact with an
infective class. Because of our “homogeneous mixing” assumption, a reasonable measure of the number of
encounters between susceptible and infective at time t is just the product S(t)I(t). However, not every
encounter between a susceptible individual and an infective one will result in the healthy individual
contracting the disease. We will the introduce a parameter A, the transmission coefficient, which will
measure the likelihood that a contact between a susceptible and an infective will result in a new infection.
Because the number of susceptibles S(t) will decrease as suscpetibles became infected, we expect that

S(t+1)=S(t) —A-S(t)-I(t)

q 8. The transmission coefficient represents the probability that an encounter between a susceptible
individual and an infective one results in the first individual becoming infective. You have two diseases,
one with A = 0.02 and another with A = 0.05. If the diseases are equal otherwise, which one will spread
faster?

Next we model how I(t) changes in one time step to I(t 4 1). The infective class grows by the addition of
the newly infected, which is AS(t)I(t), but at the same time, some infectives will have moved into the
removed class because they recovered or died, so I(t) will decrease by certain amount which will be added
to the removed class. The amount of transition from the I class to the R class at time t is proportional to the
number of infectives at that time, and the proportion constant B is the removal rate. It measures the average
number of time steps that an infective individual spends in the infective state.

9 9. In modeling an outbreak of flu we may assume that it takes about 7 days to recover, so B = 1/7 and
measuring the different sized on a daily basis, but B = 1/14 if we measure the sized twice a day.

This considerations lead to the equation
I(t+1)=1t)+A-S(t)-I(t)—B-I(t)
Finally, all infected individuals that recover move into the removed class R, so
R(t+1) =R(t) + B-I(t)

To understand the behavior of the size of the different groups of the population and the disease, we will
examine this model with the TI-84.
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(a) We set the calculator in sequence mode by pressing

Qlujuolalo
Then exit the setup mode with

(b) Press and select the appropriate display Time or uv

(c) Press (y=). If the graph style is not “* ., press (¥) (3) until “-. is displayed, and the press (3) (3)

(d) Enter nMin=1

(e) Define the sequence u(n) This will be the susceptible class. We use the formula
un)=un—-1—-Asxun—1)xv(n—1)

The left side of the formula is already written. To write the right side you press:
ED) @ ([T @0 B (X0 0 ) @) @ [(FE00)

(f) The number u(nMin) will given in the main program, and it represents the initial number of
susceptible individuals.

(g) Similarly, enter the expression for the sequence v(n) which represents the number of infectives at
time m.:
vin)=vin—1)+Axum—T1)xv(n—1)—Bx*v(n—1)

(h) The number v(nMin) will be given in the program, and is the number of infectives at the beginning
of the outbreak.

(i) Enter the expression for the sequence w(n) which represents the number of removed at time n.:

wn)=wn—-1)+B*v(n—1)

Next we write the program that will allow us to view the graphs of the S, I and R populations as functions
of time, and to see how those graphs depend on the parameters A and B.

To write nMax you press

To write u(nMin) you press and similarly for v(nMin) and w(nMin)

To write u(nMax) you press

PROGRAM:SIR

:Input ‘‘SUSCEPT=’’, u(nMin)
:Input ‘‘INFECTD=’", v(nMin)
:Input ‘‘REMOVED=’’, w(nMin)

:Input ‘‘A="",A

:Input ‘‘B="’,B

:Input ‘‘nMax=’’, nMax
:0»Xmin

:nMax»Xmax

:0»Ymin

:u(nMin) +v(nMin)+w(nMin)»Ymax
:DispGraph
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You can view the table of values of the different sequences u(n), v(n) and w(n) by pressing

q 10. To analyze the SIR model and gain some insight into the parameters of the model we write the
equations in the form

AS = S(t+1)—S(t)=—-AS(t)I(t)

Al = TI(t+1)—1I(t) = AS(t)I(t) — BI(t)

AR = R(t+1)—R(t) =—-BI(t
An epidemic occurs if AI > 0 for some time: the group of infective grows in size at that time. If AI <0,

then the size of the infective class does not increase, and no wider outbreak of illness takes place. So the
first step to understand the spread of the disease is to understand the sign of Al. For this we write

AT = AS(t)I(t) — BI(t) = (AS(t) — B)I(t)

We see immediately that if I(t) = 0, then AI = 0. This is not surprising because if the population is
disease free (there are no infectives), it will remain that way.

Suppose then that I(t) > O at some time. Then Al will be < 0, = 0, or > 0 according to whether
AS(t) —Bis > 0,=0, or < 0. Since A > 0, we have that

e If S(t) > B/A, then Al > 0
e If S(t) = B/A, then Al = 0
e If S(t) < B/A,then AT < 0

We always have that AS < 0, so S(t) can never increase. This means that if S(0) < B/A, then S(t) < B/A
for all times. That is, if the size of susceptibles S(0) is below B/A, then Al < 0, and the disease decreases
in the population. On the other hand, if S(0) > B/A, then the number of infectives will grow and an
epidemic results.

The ratio B/A is thus important to understanding the spread of a disease. It is a threshold value which is
called the relative removal rate of the disease.

q 11. Write ro = A/BS(0). This number is called the basic reproduction number. Verify that ro > 1 if
and only if AI > 0.

This number 1 contains the same information as the basic reproductive ratio, but is absolute and easier to

understand. Write 1

1o = (As(0))

. . . . 1
then AS(0) represents the number of new cases arising from one infective per unit time, and B represents

the average duration of the infection.

q 12. One infective is introduced in a population of 500 susceptible individuals. The data indicates that the
likelyhood that a healthy indivudual becames infected from a contact with one infective is 0.1%, and that,
once becoming ill, it takes 10 days to recover, during which period the infective is contagious.

e What are A and B?
e What is the relative removal rate’?
e What is the basic reproduction number 1y?

e Will there be an epidemic?
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