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CHAPTER 1

Complex Variables

Overview

Complex numbers and their algebraic operations are presented in this Chapter in Sections 1.1
and 1.2. Complex functions, set, domain, and range are discussed in Section 1.3. Section 1.4
covers limit of a function, continuity, derivative, and analytic function. Section 1.5 covers Cauchy
Riemann equations and harmonic functions. Exponential and logarithmic functions are
discussed and presented in Section 1.6, trigonometric and Inverse trigonometric in Sections 1.7,
and hyperbolic and inverse hyperbolic in Section 1.8.
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1.1 — Complex Numbers and Basic Operation

Students taking algebra are taught to set the function y = f(x) equal to zero in order to obtain the
x-intersections. Let us consider the following function:
y=f(x) =x3+ 7x% + 31x + 25

If y is set to zero, only x = -1 is an acceptable solution as an x-intersection. Hence the graph of y
versus x intersects the x axis only at one point, even though setting a polynomial of degree
three to zero provides three roots. In this example the other two roots happen to be complex
numbers and the graph of y versus x deals with real numbers.

A complex variable z can be written as z = x + iy or as an ordered pair z = (X,y). The real part of
z is x and the imaginary part of z is y. The notation (x,y) is rarely used in engineering and
instead, rectangular form x + iy or polar form is utilized. The polar form of a complex number is
presented in Section 1.2.

x = Re(2) y=Im(z) (1.2)

If x =0, z is a pure imaginary number and if y = 0, z is a pure real number. The term i is the
imaginary unit defined as:

isj=v=1  =(0,1)andi*=-1,1=-i,i*=1, 5=, etc. (1.2)

Z=(xy) =x(1,0) + y(0,1) = x + iy = x +yi (1.3)

Complex number z; = X1 + iy1 = (X1,y1) can be geometrically shown in complex plane as
presented in Figure 1.1. The horizontal axis (x-axis) is referred to as the real axis and the
vertical axis (y-axis) is referred to as imaginary axis.

y 4 Imaginary Axis
Z1 = X1 + iy1 = (X1,Y1)
o

Y1

X

0 X1 'Real AXxis

Figure 1.1 Complex Plane, Rectangular Form
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Just as the Cartesian Coordinate system the real axis and the imaginary axis divide the complex
plane into four quadrants

Quadrant I: Real Part > 0 Imaginary Part > 0
Quadrant Il Real Part <0 Imaginary Part > 0
Quadrant IlI: Real Part <0 Imaginary Part < 0
Quadrant IV: Real Part > 0 Imaginary Part < 0

Pure real numbers are on the horizontal (real) axis and pure imaginary numbers are on the
vertical (imaginary axis). The origin “0” defines z = (0,0) = 0 + i0. Figure 1.2 shows the locations
of some complex numbers in the complex plane.

Example1: z1=-4 Z, =45 Z3 = -i3 Z4 =+i4
Zs = 2+i2 Ze = -2+i3 Z7 = -2-i Zs = 1-i3
A Imaginary
Zs @
®Zs
e Zs
Z1 . 0 Z> Real
Z7
23 4 oZ8

Figure 1.2 Examples of Some Complex Numbers

Complex Conjugate Z in Rectangular Form

The complex conjugate of a complex number z = x + iy = (x,y) is denoted by Z and is defined
as:

Z = X-iy = (X,y) (1.4)

Geometrically Z is the reflection of z with respect to real axis. Clearly Z = z and the complex
conjugate of a pure real number is itself.

Example 2. z1=3-i4=(3,-4) Zi=3+i4=(3,4)

22 =i2=(0,2) Z=—i2=(0,-2)
z3=10=(10,0) Z3=10 = (10,0)
Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
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y #Imaginary Axis
z1 = X1 +iy1 = (X1,Y1)
Vi .
X
Z2= 2> ==—x2 0 X1 =Real Axis
Y1 *Z1=x1- iy1 = (x,y1)

Figure 1.3 Complex Conjugate in Rectangular Form

Basic Algebraic Operations — Rectangular Form
Consider z; = X1 + Iy1 = (Xl,yl) and zz= Xz + |y2 = (Xz,yz)

Equality
Z1 = zzimplies xa= Xz and y1 = y» (1.5)
Both the real part and the imaginary part must be equal.

Addition

Zi+ Zp = (Xo +iy1) + (X2 +iy2) = (X1 + X2) +i(y1 + Y2) = (X1 + X2,y1 + ¥2) (1.6)
Subtraction

21- 2o = (Xo +iy1) - (Xa +1y2) = (X1 - X2) +i(y1 - Y2) = (X1 - X2,y1 - Y2) (1.7)
Multiplication

21.Z2 = (X1 + iy1).(X2 + iy2) = XaXo + iXayo+ iXoy1 + i2y1y2 kz = k(xa + iy1) = kxqg + iky1
2122 = (X1Xo - Y1y2) + i(Xayo+ Xay1) = (X1X2 - Y12, X1Y2+ XoY1) (1.8)

Integer Power (n =0,1,2,...)
Integer power of z is given by; z"= zz....z. Depending on the value of n, it is probably best for
this operation to be performed in polar form as discussed in Section 1.2.

Division

Z1 X1ty ,
—=————"—=a+ib 22#0
Z; Xty

The equations for a and b are to be determined. To do so both sides of the above equation are
multiplied by z».

(@ +ib)(x2+iy2) = X1 + iy1
Using equality, we can write:
axo - by2 = X1

ay, + bxo =y,
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Solving the two equations with unknown a and b results in:

_X1X2+ Y1Y2

_X2Y1— X*1)2
2, 2,2 -
X2+t Y32

and
2, 2
xX3t+y;

Hence,

Zy _ X1t iys _ XaXat y1Yo +i X2Y1~ X1Y2 _ (951952+ Y1Y2 xz)’1—X1Y2)

o 2 2 2 2 2 2 ) 2 2
Z; X2ty X5+ Y3 X5+ Y3 X3+ y; X3t Y3

(2.9)
It should also be noted that z" = (1/z)(1/z)...(1/z), where n is a positive integer and z # 0.
Some Complex Conjugate Application

Complex Conjugate is used in many applications. Some fundamental applications are
considered here.

_ Z+Z
zZ+Z=(x+iy)+ (x-1ly) =2x = x=Rez= (1.10)
_ Z—Z
Z-Z=X+1iy)-(x-iy)=i2y = y=Ilmz= Y (1.12)
ZZ = (X +1iy).(X - iy) = X% + y? (1.12)

Clearly z.Z is real and positive and only zero if z = 0. This provides an alternate method of
dividing complex numbers z; by z,. The numerator and the denominator of z1/z, are multiplied
by the complex conjugate of the denominator and the real and imaginary parts are separated.

Zy xptly; Xp— 1Yz X1Xo+Y1Yo | X2YV1—X1Y2 _ (x1x2+ Y1Y2 X2Y1— x13’2)

= = +
: ' : 2 2 2 2 2 2 ! 2 2
Zy X+ 1y, Xo— 1Yy x2+ Y> x2+y2 X2+ Y5 X2+ L)

As can be observed this is the same results obtained earlier.

It can also be shown that:

I+ 2, =71+ Z, (1.13)
Iy —Z3=71— 7, (1.14)
71.7,=71 .7, (1.15)
(Z1]Z3) = Z) | (Z) (1.16)

Example 3: If z, =2 +i5 and z; = -4 + i3, evaluate

a) 21+ 72> b) Z21- 22 C) 21.22 d) Z1/z; e) Z_1 f) 1/Z_2
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a) z1+2,=(2+i5)+(-4+i3)=-2+1i8

b) z1-z,=(2+i5)-(-4+i3)=6+i2

C) 21.22=(2+1i5).(-4 +i3) =-8 +i6 - i20 + i?15=-23 - i14
d) zi/z>=(2+i5)/(-4 +i3)

Zy _ (2+i5 ) (—4—i3) _ —8-i6—i20—i?15 _ 7 ;26
Z, \-4+i3) \-4-i3/ 25 © 25 25
e) Z;=2-1i5

_ 1 —4+i3 —4+i3 4 | .3
t)1/22=( )( .)= =—=+4+i—
—4-i3) \~4+i3 25 25 25

Fundamental Laws:
Here it assumed zi, z», and z3 belong to the set S of complex numbers

Commutative Law (Addition) Z1+22=22+ 271
Associative Law (Addition) Z1+(22+23)=(z1+22) + 23
Commutative Law (Multiplication) 21.22=22. 21

Associative Law (Multiplication) 21.(22.23) = (21.22).23
Distributive Law 21.(22 + 23) = 21.22 + 21.23
Additive Identity z2,+0=2

Additive Inverse z,-2,=0

Multiplicative Inverse z1.(Uz)) =1

Graphical Representation of Complex Numbers — Addition and Subtraction

A complex number z; = x; + iy; represents a single point in the complex plane and can be
thought of as tip of a vector z; = (x1,y1) = X1 + Iy1 as shown in Figure 1.4. Similarly z»is shown.
Addition and subtraction of complex numbers z; and z» (z1 + z; and z; — z2) can be interpreted
as addition of two vectors z; and z; and z; and —z; respectively, as shown in Figure 1.4.

y 4
Z1+ 72>
Z2

Z;

/ Z1- 22

><V

-Z>

Figure 1.4 Graphical Interpretation of Addition of z; and z,
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1.2 — Polar Form of Complex Numbers and Basic Operations

Complex number z = x + iy can be represented in the complex plane in polar form. This form
simplifies many of complex number operations and is used in variety of engineering application.
Figure 1.5 shows a complex number z in terms of a length (distance from the origin) and an
angle (measured from positive side of the real axis in the counterclockwise sense, in radians or

degrees). The length is denoted by r or |z| and is called magnitude, modulus, or absolute value.
The angle is denoted by 0 and is called simply angle, argument (arg z), or phase. The
magnitude is a distance from the origin and is positive. It is zero, if complex number z = 0. The
angle 6 is referred to as the principle value and is denoted by Arg z, when —TT <@ <Tr

(-180°< 6 < 1800°) Clearly 0 in general can be represented as any integer multiple of 21 (360°)
in counterclockwise sense or -211 (-360°) in clockwise sense as shown in Figure 1.6.

4 Imaginary Axis

" Real Axis

Figure 1.5 Complex Plane, Polar Form

A
/2, 511/2,..1 -3m/2, -7m/2.....
31/4, x-511/4,... ma,.. ~-7T1/4,...

m, 3, ... -1, -3,... 0, 2m.,..,-2m,...

5m/4,... -31/4,... <Ti/4,... 7T11/4,...

3n/2, 7m/2,.." -11/2, -511/2.....

Figure 1.6 Example of Some Argument of z

Clearly 0, T1/4, 311/4, T, -11/4, - 1/2, and -31/4 are the principle values (—11 < 6 < ) in this Figure.
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Referring to Figure 1.4 we can write
X=rcos0 and y=rsin® (2.17)
As a result the polar form of complex number z can be represented as
Z=rcosB+irsinB®=r(cos B +isin B) (1.18)

We can consider (1.17) as polar to rectangular conversion. Similarly we can write;

r=4x%+ y? and ©=Argz=arctan % if x>0 (1.19)
= arctan %-Tr, ifx<Oandy<0

=arctan%+1'r, ifx<Oandy>0

The addition and subtraction of 1 in (1.19) has to do with the fact that the domain of arctan is
(-1 /2, 1 /2).

Considering the magnitude of a complex number z is the distance from z to the origin and its
angle is measured from the positive side of real axis, it should not be necessary to use equation
(1.19) to convert a complex number that is pure real or pure imaginary from rectangular to polar
from and such conversion should be obvious. For example z = 2 has a magnitude of 2 and the
angle of 0, z = -3 has a magnitude of 3 and the angle of 11, z = i5 has a magnitude of 5 and the
angle of /2, and z = -i6 has a magnitude of 6 and the angle of —11/2. Similarly if the angle of a
complex number indicates it is located on the real or imaginary axis, there should be no need to
use equation (1.17) to convert from polar to rectangular form.

Example 4: Perform the following conversions:

a) z=-1+ito polar form
b) z =10 (cos /3 + i sin T1/3) to rectangular form

1
a)r=y(-12+ (1)2=+2 6 = arctan — + 1= (-T/4) + T = 31i/4
b)z=10(cos /3 +isinT/3)=10cosm/3+i10sinT/3=5+ i5v/3
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Knowing the magnitude of a complex number z is the distance from the origin to the complex
point z and using the principle of vector addition and subtraction, |zi|, |z2|, |z1 - z2],and
|z1 + z2| can be shown geometrically as in Figure 1.7.

4AIm A |21+ z5]

7 17 |z1- z2| = |z2- z4]

|z2| |Z1 4}

» Real

Figure 1.7 Distances |z|, |Z2|, |z1+22|, and |z1-Z2|

Complex Conjugate Z in Polar Form

Complex conjugate of a complex number z = r (cos 0 + i sin 8) in polar form is;
Z =r(cos -0 +isin-8) =r (cos 0 - i sin O) (1.20)

Clearly the magnitude of Z the same as z and the angle Z is opposite sign of angle of z, as
shown in Figure 1.8.

4 Imaginary Axis
y [ » 7z
r= |Z I
0
0 -6 X > Real Axis
|Z]
vyl 7

Figure 1.8 Complex Conjugate in Polar Form

Triangle Inequality

The triangle inequality states that the sum of two lengths of any two sides of a triangle is greater
or equal to the length of the third side, regardless what sides are selected. Using triangle
inequality and having discussed the geometrical description of magnitudes of complex numbers
(Figure 1.7), we can write:

|21+ 22| < |z1] + |22 (1.21)
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Using (1.21), it can be shown that:
|21+ z2| 2 |z1] - |22 (1.22)
Equation (1.21) can be extended to:

|z1+ z2 +....420| S |za| + |Z2|+...+ |z4| (2.23)

Basic Algebraic Operations — Polar Form
Consider z3 = r1 (cos 61 + i sin 81) and z>=r2 (cos 62 + i sin 62)

Equality
z; = zzimpliesri=r,and 81= 0> + 2k (1.24)

Addition

Complex numbers can be added in polar form, if their arguments are the same or 180°apart. In
other words, they have to be located on the same axis. Here axis is used in a general term
indicating the same angle 6 or 8 + 180¢°.

Z1+ z2 = r1(cos 81 + i sin B1) + ry(cos 61 + i sin B1) = (r1+r2)(cos 61 + i sin 6,) (1.25)

However, in general the complex numbers z; and z, can be converted to rectangular form,
added, and converted back to polar form, if so desired.

Subtraction

Similarly complex numbers can be subtracted in polar form, if their arguments are the same or
180capart. In other words, they have to be located on the same axis. Here axis is used in a
general term indicating the same angle 6 or 6 + 180°.

Z1- Z2 = r1(C0s 61 + i sin B1) - rz(cos 61 + i sin 61) = (r1-r2)(cos 61 + i sin 6,) (1.26)

Here it is assumed r1 > r2. Again, in general the complex numbers z; and z, can be converted to
rectangular form, subtracted, and converted back to polar form, if so desired.

Multiplication
Z1.Z2 = r1(cos 61 + i sin B1).r2(cos B2 + i sin By)
=il [cOs (01+62) + i sin (01+62)] (1.27)

The proof of equation (1.27) is left as an exercise.

Integer Power (n=0,1,2,...)
Using equation (1.27), we can write:

z" = [r(cos 6 + i sin B)]" = r"(cos nB + i sin nB) (1.28)

Depending on n, this operation may produce a rather large magnitude and an argument. The
argument can be written in principle form. Equation (1.28) is known as De Moivre’s Formula and
is simply an extension of equation (1.27).

Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
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Division
zy _1i(cosb +isinby) 1 o
Z,  15(COSOy+isinB,) 1, [cos(8: = 02) + isin(6, — 0,)] 22#0 (1.29)

The proof of equation (1.29) is left as an exercise.
Using equations (1.28) and (1.29), we can write:

z" = (1/r")(cos -nB + i sin -nB) nz0 & z#0 (2.30)

Based on the results obtained above, the following observations are made:

|z122| = |z41]|Z2| = rar2 arg z1z> = arg z1 + arg z> = 81+6, (1.31)
|Zl/22| = |21|/|22| =r4r arg z1/72 = arg z: - arg z2 = 0:-6, 2,#0 (132)
ZZ = (X +iy).(x - iy) = r(cos 8 + i sin 8).r(cos -6 + i sin -0) = x? + y? = 12 = |z|? (1.33)

Equations (1.31), (1.32), and (1.33) have various applications in engineering, when one is
purely interested in magnitude or phase.

Example 5: If zy = 5(cos 11/3 + i sin 11/3), zo = 2(cos 211/3 + i sin 211/3), zz = (cos /2 + i sin 11/2),
z4 = 2(cos -21/3 + i sin -211/3), and zs = (1 + i), evaluate

a) z1+ 24 b) z1— 24 C) 21.22.23 d) z1/z; e)Z,Z5
f) (zs)*°

a) z1+ zs4=5(cos 1/3 +isin 11/3) + 2(cos -211/3 + i sin -21/3) = 3(cos /3 + i sin 1/3)

b) z1—z4=5(cos /3 + i sin T1/3) - 2(cos -21/3 + i sin -21/3) = 7(cos /3 + i sin 11/3)

C) Z1.Z2.z3=5(cos 1/3 + i sin 11/3).2(cos 21/3 + i sin 211/3).(cos 1/2 + i sin 7/2) =
10(cos 311/2 + i sin 311/2) = 10(cos -11/2 + i sin -11/2)

d) zi/z; =[5(cos 11/3 + i sin 1/3)])/[2(cos 211/3 + i sin 211/3)] =
5/2[(cos (11/3 -211/3) + i sin (11/3 -211/3)] = 2.5(cos -11/3 + i sin -11/3)

e) Z,Z; = 2(cos 21/3 + i sin 211/3). (cos -1/2 + i sin -11/2) = 2(cos /6 + i sin T1/6)

f) (z5)° = (1 +i)°=[V2 (cos /4 + i sin T/4)]'° = 32 (cos10T/4 + i sin10T/4) =
32(cos 11/2 + i sin 1/2) =32

Root of Complex Numbers

Equation (1.28) can be extended to obtain the nth root of a complex number z = r(cos 6 + i sin 6).
Given w" = z, then w = [ z ] s referred to as the nth root of complex number z. We assume w
to be a complex number denoted by:

w = R(cos @ + i sin @) (1.34)
The objective is to evaluate R and ®. Using w" = z, we can write:
[R(cos @ + i sin ®)]" =r(cos 6 + i sin 6)
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R"(cos n® + i sin n®)] = r(cos 6 + i sin B) (2.35)
Applying equation (1.24) for equality

R" =T = R=4Yr
and

0 + 2km
o )
n

n®= 0 + 2km = (1.36)

Hence, given z = r(cos 6 + i sin 8) and w" = z, there are exactly n distinct roots and the nth root of
the complex number z is given by

0 + 2km 0 + 2km
w=[z]¥m="/r (cos T +isin T) (2.37)

k=0,1,...,n-1

As can be noted in equation (1.37), all the roots have the same magnitude (V/r) and the angles
of the roots are equally separated by (211/n). Hence all the values of w lie on a circle of radius

(A7) and separated by an angle (211/n). It is also important to note that if k is selected as n, n+1,
n+2,...the previous roots are simply repeated, indicating there are only n roots to be evaluated.

Example 6: Evaluate w, given

a) w*=i16
b) wé = 27
c)w?=1-i

a) w* = 16 (cos T1/2 + i sin 11/2)

W:4\/16(COSM +isin%) k=0,1,2,3

k=0 w1 = 2 (cos T1/8 + i sin 11/8)

k=1 wz = 2 (cos 511/8 + i sin 511/8)

k=2 w3 = 2 (cos 911/8 + i sin 911/8)

k=3 ws = 2 (cos 1311/8 + i sin 1311/8) 4 Roots Shown in Figure 1.9a

b) w2 = 27 (cos 0 + i sin 0)

W=3\/27(cos% + isin %) k=0,1,2
=0 wi =3 (cos 0 +isin0)

1 w2 = 3 (cos 211/3 + i sin 211/3)
2

k
k
k ws = 3 (cos 411/3 + i sin 411/3) 3 Roots Shown in Figure 1.9b

c) W2 =1 - i = /2 (cos -T1/4 + i sin -11/4)

2 2
k=0 wi = = V/2 (cos -T1/8 + i sin -T1/8)
k=1 W2 = = V2 (cos 7T/8 + i sin 7T/8) 2 Roots Shown in Figure 1.9¢
Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
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W> W2
W2
W1 W1
W3 Wy
W24 W3
Figure 1.9a Figure 1.9b Figure 1.9c

Using equations (1.28) and (1.37), we can write the rational power of z as
wh=z" =

0 + 2km

w=[z]™" =37 [cos m(%) + i sin m( )] (1.38)

k=0,1,...,n-1

1.3 - Complex Set, Function, Domain, and Range

Complex Set

Prior to defining a complex function, it is necessary to define a complex set. As discussed in the
previous sections, a complex number z is represented as z = x + iy =r (cos 0 + i sin ). A
complex set D is a collection of finitely or infinitely many complex numbers. These complex
numbers can be interior points, boundary points, or exterior points. A complex set can be open
or closed, connected, simply connected or multiply connected, or bounded or unbounded.
These terms are defined below:

Neighborhood of zo:
All point z that satisfy; |z - zo| <€ wheree>0

Interior Points of a Set:
Points for which there exists at least a neighborhood of z, all whose points belong to that set.

Boundary Points of a Set:
Poaints for which every neighborhood of zo contains points that belong to that set as well as
points that don’t belong to that set

Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
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Exterior Points of a Set:
Points for which there exists at least a neighborhood of z, none of whose points belong to that
set.

Connected Set:
It is a set that any two points of this set can be connected by a number of line segments all
belonging to the set.

Simply Connected Set:
It is a connected set that every simple closed curve in the set only contains points of that set. A
simple closed curve is one that does not intersect itself.

Imag

Figure 1.10 Simply Connected

Multiply Connected Set:
It is a connected set that there is at least one simple closed curve in the set with one or more
points that don’t belong to the set.

Imag

Figure 1.11 Multiply Connected

Bounded and Unbounded Sets:
If all the points, z in the set satisfy:

|z | <p,

Then the set is called bounded. If a set is not bounded, then it is called unbounded. For
example, a set defined by all the points |z | = 6 is bounded and the set defined by |z | > 10 is
unbounded.

Let us now consider some examples of sets.

Example 7: Sketch the set of complex points described by;

a)lz|=1
b)|lz|>1

Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
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c)lz|<1
djz-A+ihl=1
e)l<|z+i2|<2
fl-1<lmz<?2
g)0<Rez=<1

a) |z|=1, points on a circle with center at z = 0 and radius 1.

Figure 1.12

b) |z | > 1, exterior points to a circle with center at z = 0 and radius 1. Boundary point
excluded, since there is no equality included with the greater than sign.

Im

Figure 1.13

C) |z | < 1, interior points to a circle with center at z = 0 and radius 1. Boundary point
excluded, since there is no equality included with the greater than sign.

Figure 1.14
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d) |z- (1 +1i)] =1, points on a circle with center at z = 1 + i and radius 1.

L Im

| 1 Re
Figure 1.15

e) 1< |z +i2| £ 2, interior points between two concentric circles with center at z = -i2 and
radii 1 and 2. Boundary points of inner circle excluded, but the outer circle included.

L Im

1 2

_________________________________________

-4
Figure 1.16

f) -1 <Im z < 2, set of complex points whose imaginary parts are betweeny =-1andy = 2.
The boundary points on horizontal lines y = -1 and y = 2 are excluded. The real parts
extends from —oo to +oco.

L Im

1

Figure 1.17

Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
California State University, Northridge



17

g) 0 = Re z< 1, set of complex points whose real parts are between x =0 and x = 1. The
boundary points on vertical lines x = 0 and x = 1 are included. The imaginary parts
extends from —oo to +oo.

Figure 1.18

It is important to note that |z | is simply the length from the complex variable z to the origin,
z = 0. Similarly for a given complex point z1, |z - z1| represents the length from the complex
variable z to z;. As can be recalled

|Z|: /x2+y2 and |z—zl|=\/(x—x1)2+(y—y1)2

This should help to better understand example problems 7a, b, ¢, and d. It should be clear that
the magnitude |z - z4| is always greater or equal to zero and can never be negative.

Complex Function

A function f is a rule that assigns to each complex point z in a set D, a complex point w in a set
R. Hence we define the complex function of a complex variable z belonging to domain D as;

w = 1(z) = u(x,y) + iv(x,y) (1.39)

The real part of the function f(z) is u(x,y) and the imaginary part of f(z) is v(x,y). In general f(z) is
complex function of x and y, where u(x,y) and v(x,y) are real functions of x and y. This can be
interpreted as mapping a complex point z in z-plane to a complex point w in the w-plane as
shown in Figure 1.19.

y & Imag

N Dl J xre R U Re
y

v
v

Figure 1.19 Complex Function w = f(z) = u(x,y) + iv(X,y)
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Example 8: Represent the given functions in the form w = f(z) = u(x,y) + iv(X,y),
ayw="f(z)=z>+2z+10
byw=1f(z) = 1/z
cow="f(z)=(z+1/(Z-1)
dw="1z) =2z
a)W=(X+iy)?+2(x+iy) +10 =x2 +i2xy - y> + 2x + i2y + 10 =
w=(X>-y?+2x+10) +i(2xy + 2y) = u(x,y) = X2 - y2 + 2x + 10 and v(x,y) = 2xy + 2y
b) w = 1/ = 1/(x+iy) = (x-iy)/[(x+iy)(x-iy)] = [X/(x*+y?)] + i[-y/(x*+y?)] = u(xy) = [x/(x*+y?)]
and v(x,y) = [-y/(x*+y?)]
C)w=(z+1D/NZ-1) = [x+1 +iy)/[x-1 - iy] = [x+1 + iy] [x-1+ iy)/[x-1 - iy] [x-1 + iy] =
[ - 1-yA)UI(x - 1)? + y2] +i2xy/[(x - 1)> +y7] = u(xy) = [ - 1 - y))/[(x - 1)* + y’] and
v(x,y) = 2xy/[(x - 1)* +y?]

d) w = zZ = (x+iy)(x-ly) = X% + y? = u(x,y) =x>+y2and v(x,y) =0

Example 9: Evaluate f(z) = 1/zatz=3 + i4

This problem can be solved by substituting x = 3 and y = 4 in u(x,y) and v(x,y) of example 8b. Or
one can simply substitute z = 3 + i4 in f(z) = 1/z and perform the operation. The final result is the
same.

f(3+i4) = 1/(3 + i4) = (3 - i4)/[(3 + i4)(3 - i4)] = (3/25) + i(-4/25)

Domain and Range

Referring to the definition of a complex function w = f(z) stated above and Figure 1.19, domain
and range can be defined as:

Domain, D:
The set of allowable and permissible values of z in w = f(z). D can include the entire z-plane or
portion of it based on any given restriction.

Range, R:
The corresponding set of all values of w in w = f(z).
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1.4 - Limit, Continuity, Derivative, and Analytic Function

Limit

Let w = f(z) and assume this function is defined in some neighborhood of z, but it may or may
not be defined at zo. We write the function f(z) has a limit wp as z approaches zo.

lim f(2) = wo (1.40)
Z— Zo

and if for any real € > 0, one can find a real ® > 0 such that for all z satisfying |z — zg| < & implies
[f(z) — wol| < €. Figure 1.20 shows a geometrical interpretation of this limit.

1 Ay

Figure 1.20 Geometrical Interpretation of Limit of a Function

Similar to real calculus, if

lim fi(z) = Ly (1.42)
Z — Zo
lim fo(z) = L (1.42)
Z — Zo

then
lim [f1(z) + f2(2)] = L1+ L2 (1.43)
Z — Zo
lim [f1(z) . f2(2)] = Li.L2 (1.44)
Z — Zo
lim [f1(z)/f2(2)] = La/L2 L,#0 (1.45)
Z — Zo
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Continuity

Function w = f(2) is continuous at z; if it is defined at zo and if limit of the function at z, is equal
to the value of the function at zo.

lim f(z) = f(zo) (1.46)
Z— 2

Derivative

The differentiation of a complex function w = f(z) is analogous to real calculus. If w = f(2) is
defined at zo, the derivative dw/dz = df(z)/dz = f (z) at zois defined as

dw/dz = df(z)/dz = f (z0) = lim  f(zo + Az) — f(z0) (2.47)
Az—0 Az

The increment Az = Ax + iAy can approach zero on infinitely many paths, some of which are
shown in Figure 1.21. Regardless of what path is taken, equation (1.47) should result in the
same result for the derivative to exist.

Ay

Zo + Az

A

A

Zp

v

Figure 1.21 Example of Four Possible Paths of Infinitely Many Az—0

Example 10: Differentiate f(z)

a)w="f(z) =522+ 2z
byw=1f(z) = 1/z
cow=f(z)=2
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a)f (2)=lim f(z+ AzZ) —f(z)

Az—0 Az
=lim 5(z+Az)*+2(z+Az) - 522-2z
Az—0 Az
= lim 522+ 10z Az +5(Az)> + 2z + 2Az - 57%- 2z
Az—0 Az
=Ilim 10z Az + 5(Az)? + 2Az
Az—0 Az
=10z + 2

b)f @) =lim f(z+A2)-f()

Az—0 Az

=lim 1U/(z+Az)- 1z
Az—0 Az

=lim zZ-2-Az

Az—0 Az(z + Az)z

=-1/7°
of@=lim z+Az—7Z Using Equation (1.14) =
Az—0 Az
=lim Z4+Az—2Z
Az—0 Az
=lm _Az Az = Ax + iAy and Az = Ax — iAy
Az—0 Az

No cancellation can occur in the last expression. As indicated above, there are infinitely
many paths for Az—0. Let us consider, 1) Ax—0 then Ay—0 2) Ay—0 then Ax—0

1) f(z)=lim Ax—iAy =-1
Ax—0 Ax + iAy
Ay—0

2) f@=lim Ax—iAy =1
Ay—0 Ax + iAy
Ax—0

Hence w = f(z) = Z does not have a derivative.
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Certainly we are not expected to obtain f (z) using the limit definition of equation (1.47) for every
given f(z). For example a polynomial of the form

f(z) = anz" + an1z2™+ ... +t @1z + a0 (1.48)

is an analytic function. Furthermore a rational function of z of the form

f(z) = [anz" + An1Z" M+ ... + @1Z + Ag] / [bmz™ + bmaz™+ ... + b1z + bo] (1.49)

is analytic, except for those values of z for which the denominator is zero. The constant
coefficients an, an-1,...,a1, @ and bm, bm.1, ...,b1, boare in general complex.

The definition of derivative given by equation (1.47) is identical to f (x) in real calculus. Hence
the formula and the rules for differentiation are the same. Let us assume f(z), f1(z), f2(z),...,fn(2)
are differentiable and C is a constant. Here are some general rules of derivative which should
look familiar.

F(z)=C F(z)=0 (1.50)
F(z)=2" nis a integer F (z) = nz™D (1.51)
F(z)=f"(z) nisainteger F'(z) =nf"(2).f (2) (1.52)
F(z) = Cf(2) F (2) = Cf (2) (1.53)
F(2) = f(2) + fo(2) +...+fa(2) F'(2) = 1(2) + f 22) +...4f o(2) (1.54)
F(2) = f1(2).f2(2) F'(2) = f 1(2)f22) + f1(2)f 2(2) (1.55)
F(z) = f(2)/f2(2) F(2) = [ 1(2)f(2) - @) 22))[f22)]? (1.56)
F(2) = f(2) © f2(2) = f1(f2(2)) F'(2) = f 1(f2(2)).f 2(2) (1.57)

The derivative of other complex functions, such as exponential, logarithmic, trigonometric, and
hyperbolic function will be discussed 1.6, 1.7, and 1.8 respectively.

Analytic Function

A complex function f(z) is analytic at a point zo in domain D, if f(z) is defined at zo and is
differentiable at zo. This definition of analyticity can be extended to an entire domain D or a
subset of domain D. Clearly f(z) = 1/z is analytic everywhere except at z = 0 and the function

f(z) =Z is not analytic.
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1.5 - Cauchy-Riemann Equations and Harmonic Functions

Cauchy-Riemann Equations in Rectangular Form

Theorem 1.1 Cauchy-Riemann Equations — Rectangular Form
Let w = f(z) = u(x,y) + iv(x,y) be differentiable at z = x + iy. Then partial derivatives u x, Uy, V x,
and v y exist and satisfy the following equations:

Ux=Vy and Uy=-Vy (1.58)

Furthermore if f(z) is analytic in D, then u x, Uy, v x, and v y exist and satisfy equation (1.58).
Equation (1.58) is called Cauchy-Riemann equations or conditions.

Proof:

Since f(2) is differentiable, we can write

f(z)= lim _f(z+Az)—f(z) (1.59)
Az—0 Az

The proof is based on writing equation (1.59) in terms of x and y. Next we let Az = Ax + iAy —0
on two different paths 1) Ax—0 then Ay—0 2) Ay—0 then Ax—0. This process will result in two

different equations for f (z). Since f(z) is assumed to be differentiable, the two equations must
be one and the same.

' (z) = lim [U(x+Ax , y+Ay) + iv(x+Ax , y+Ay)] - [u(x,y) +iv(x,y)] (1.60)
Ax + iAy —0 Ax + iAy

Now let us consider 1) Ax—0 then Ay—0. We let Ax—0 in equation (1.60).

f@=1lm U, y+Ay) +iv(x, y+Ay)] = [u(x, y) + iv(x, Y)]

Ay —0 iAy

f'(z) = lim [u(x, y+Ay) — u(x, y)] +i[v(x, y+Ay) —v(x , ¥)] with 1/i=-i=
Ay —0 iAy

fz)=lm  [v(x,y+Ay) —v(x,y)] -ilim  [u(x, y+Ay) —u(x, y)]
Ay —0 Ay Ay —0 Ay

F=2 (2 i 1.61

(Z)—ay oy~ Vy—luy (1.61)
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Next let us consider 2) Ay—0 then Ax—0. We let Ay—0 in equation (1.60).

f'(z) =lim [U(x+Ax, y) + iv(x+Ax , y)] = [u(x, y) +iv(x, Y]

Ax —0 Ax
f'(z) =lim [Ux+Ax , y) — u(x, y)] +i[v(x+Ax,y) —v(x, y)]
Ax —0 Ax
f'(z) =lim UX+Ax,y)— u(x,y)] +ilim  [v(x+Ax,y) —v(x, y)]
Ax —0 Ax Ax —0 Ax
. u . 0v .
f(Z)=a+la=Ux+|Vx (1.62)

Equations (1.61) and (1.62) must be the same for f(z) to be differentiable. Hence, setting the two
equations equal, we obtain,

ov . o0u ou . 0v

—_—]— = — l— =

dy dy 0x ax

ou v ou ov

—=— and — = —— or Ux=Vvy and uy=-v 1.63
dx 9y dy Ax x = Vy y= -Vx (1.63)

Once it is shown f(z) is analytic and both conditions of equation (1.63) are satisfied, either of the
two equations (1.61) and (1.62) can be used to obtain derivative of f(z), if so desired.

Example 11: Check if the given f(z) is analytic and if so, evaluate f (z) using equation (1.61) or
(1.62)

a)f(z)=z+2
b)w=1f(z) =[ Z ]?

a) f(z) = 22 + 2 = (x + iy)® +2 = x3+ 3x2(iy) + 3x(iy)? + (iy)® + 2 = (x3- 3xy? + 2) +i(3x?y - y°)
Ux=Vy = 3x? — 3y?= 3x2 — 3y?
Uy=-Vy = -6xy = -(6xy)

Function f(z) is analytic and using equation (1.62) we have

f(2)=ux+ivy = (3x2—3y?) +ibxy = 3[(x2 — y?) + i(2xy)] = 3(x + iy)? = 322

b) f(2) = [ Z I = (x - iy)* = (*- y?) + i(-2xy)
Uy=Vvy = 2X# — 2X
Uy=-vy = =2y # — (-2y)

Function f(z) is not analytic.
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Cauchy-Riemann Equations in Polar Form

Theorem 1.2 Cauchy-Riemann Equations — Polar Form
Let w = f(z) = u(r,8) + iv(r,0) be differentiable at z = r(cos 6 + i sin 8). Then partial derivatives u r,
Ue, Vi, and v g exist and satisfy the following equations:

rur=ve and rvi=-ue (1.64)
and
f(z)=(cos O -isinB)(u,+iv,) =(cosB-isinB)(Ve-iuag)r (1.65)

Furthermore if f(z) is analytic in D, thenu, ue, vV, and v g exist and satisfy equation (1.64).
Equation (1.64) is called Cauchy-Riemann equations or conditions in polar form.

Proof:
We use Theorem 1.1 and note,

Ux=Urlrx+UgBx
Uy=U ry+ueBy
Vx=Vilfx+VegBx
Vy=V ry+VveBy

, y . .
Since r =/x%2 + y? and 6 = arctan ; , We can evaluate r , r y, 0 x, and 8 y and substitute in the

above four equations. After substituting x =r cos 6, and y = r sin 8 and simplifying, we obtain

Ux=UrCos B -upg(sinB)/r (1.66)
Uy=U,Sin B8+ uyg(cos B)/r (1.67)
Vx=Vy COS B -Vg(sinB)/r (1.68)
Vy=V, Sin B + Vv (cos B)/r (1.69)

Since ux = vy and uy = -vx , we write

UrcosB-ueg(sinB)r=v, sin B +vg(cos B)/r (1.70)
UrsinB@+ue(cosB)r=-v, cosB+ve(sinB)r (2.71)

If we multiply equation (1.70) by cos 8 and equation (1.71) by sin 6 and adding them results in
Uur=velr = rur=ve (1.72)

If we multiply equation (1.70) by — sin 8 and equation (1.71) by cos 6 and adding them results in

Ueg/r=-v, = rvi=-ug (2.73)
This proves the first segment of Theorem 1.2. To evaluate the derivative in polar form, consider
equations (1.61) and substitute v y and u yusing equations (1.69) and (1.67).
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f(z)=Vy—iuy=[v, sin®+vg(cosB)r]-ifursin®d +ug (cos )] (1.74)
Substituting for v gand u ¢ using equations (1.72) and (1.73) in equation (1.74) gives

f(z)=[v: sin®+ru,(cosB)r]-ilu,sin®-rv,(cosB)/I
=[v,sin®+u,cosB]-i[u,sin®-v,cos 0]
=[cosO-isin®)][ur+iv] (1.75)

Similarly substituting for v rand u ; using equations (1.72) and (1.73) in equation (1.74) gives

' (z) = [(-u o/r) sin B + v  (COs B)/r] - i [(V o/r)sin 8 + u ¢ (cos 6)/r]
= (1/N[(-uesin®+vgcosB)-i(VvesinBO+ uecos 0)]
=[cosB-isinB][ve-iugl/r (1.76)

Equations (1.74) and (1.75) prove the second segment of Theorem 1.2.

Harmonic Functions

If a function {(x,y) has first and second continuous partial derivatives in some domain D and
satisfies Laplace’s partial differential equation,

0%¢ 0%¢
Vzczﬁ‘l'a_yZ:Cxx'*ny:O (177)

It is called a harmonic function.

Theorem 1.3

If w = f(2) = u(x,y) + iv(x,y) is an analytic function in some domain D, then the real part (u) and
the imaginary part (v) of f(z) satisfy Laplace’s partial differential equation or in other words are
harmonic functions.

Proof:

Since f(z) is analytic, we have

Ux = Vy and Uy: ‘Vx

Taking the partial derivative of uy = vy with respect to x and uy = -vy with respect to y results in
Ux=Vy and u=-vyx adding the two equations =

U+t Uy=0 (1.78)
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Taking the partial derivative of ux = vy with respect to y and uy = -vx with respect to x results in

Uy = Vyy and  Uxy = -Vxx subtracting the two equations =

Vix + Vyy =0 (2.79)

Example 12: The f(z) = u(x,y) + i v(x,y) is analytic. The real part of this function is given as
u(x,y) = x3- 3xy? + 5. Evaluate the imaginary part of f(z), given f(1 + i) = 3 + i5

Ux=Vy = vy = 3x2 - 3y? v(X,y) = 3x?y - y® + g(x)
Vx=-Uuy = 6xy + g (X) = - (-6xy) gx)=c

f(z) = (x*- 3xy? + 5) +i(3x%y - y® + ¢)

fl+i)=3+i5 = (1-3+5)+i(3-1+c)=3+i5 =  3+i(2+c)=3+15
gxX)=c=3

f(z) = (x3- 3xy? + 5) +i(3x%y - y* + 3)

Example 13: Show the real part and the imaginary part of f(z) = z3 + 5z> + 10 are harmonic
functions.

f(z) = 22 + 522 + 10 = [x3 + 3x(iy) + 3x(iy)? + (iy)®] + [5x% + 5(i2xy) - 5y?] + [10]
= (x3- 3xy? + 5x? - 5y? + 10) + i(3x%y - y® + 10xy)

Ux = 3x%-3y? + 10x U= 6Xx+ 10

uy=-6xy- 10y Uy=-6x-10 = U+ Uyw=0
V x = 6xy + 10y V xx = 6y

vy =3x%- 3y? + 10x V yy = -6y = Vi +Vy=0

1.6 - Exponential and Logarithmic Functions

Exponential Function

Exponential function f(z) = e % is defined as

fz)=eZ=eX*M = gXegW (1.80)
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The term e Y can be expanded using Maclaurin series as

eV = 1+ (iy)/1! + (iy)?/2! + (iy)¥3! + (iy)*4! + (iy)5/5! + ...

eV =(L-y220+y4a- ) +i(y/ll-y331+y5/5!+...) =

eY=cosy+isiny (1.81)

Using equation (1.81), we note that

ei21'r=1’ eiTr__l ei1'r/2=i e-i21‘r:11 e-iTr__l e-i1'r/2:_i

Equation (1.81) is known as Euler formula. Substituting equation (1.81) in equation (1.80)
results

fz)=e?=e*eY=eX(cosy+isiny) (1.82)

Some Properties of e *

Using equations (1.81) and (1.82), we observe

a) fz)=e?=e* ify=0 (1.83)
b) e?]|=e* and arge’=y+2nm (n=0, +1,42,...) (1.84)
c) leY|=1and argeY=y+2nm (=0, +1,42,..) (1.85)
d) e?.e? =eX(cosy:+isinyi).e*?(cosy,+isin y)

= e "L, e *[(cos y1C0S V2 - Sin y1Sin Y2)+i (Sin y1 COS Y2 + COS Y1 Sin 2)]

= e 17 [cos (ya +y2) +isin (va +y2)] =

el g2 - @422 (1.86)

e) et/ e? =eX(cosy, +isiny)/e*®(cosy:+isinys)
e e >(2[(005 y1 +1isin y1)(Cos Y2 - i sin y2) / (COS y2 + i Sin y2)(COS Y- - i Sin Y>)

Note: (cos y2 + i sin y,)(CoS y2 - i sin yz) = cos?y, + siny, =1
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= e 2% [(cos y1c0s y2 + sin yisin y2)+i (sin y1 €S y2 - coS y1 Sin y2)]
= e (1%2) (005 (yy - y2) + i sin (y1 - V2] =

e z1 | e 22 _ e (z1-z2) (1.87)
f) f(z) = e “is periodic with period of i21
e Z=gZHom (1.88)

This is simply to show using equation (1.86) and having shown e 2T~ 1. This is also
clear by examining equation (1.84). However, the region defined by -m <y <Tris
referred to as the fundamental region as is shown in Figure 1.22.

Im

Figure 1.22 Fundamental Region of e *

Derivative of f(z) = e ¢

Using Cauchy-Riemann equations, we can show f(z) = e * is analytic
fz)=e“=e*(cosy+isiny) u(x,y) = e *cosy and  v(x,y)=e*siny
Ux=vy=eXcosy
Uy=-Vx=-e”*siny

To find f (z), equation (1.62) can be used

f(z)=ux+ivi=eXcosy+ie*siny =e*(cosy+isiny)=e? (1.89)

Similarly to real calculus, given g(z) is analytic we can write

F(z) =e 9@
F2)=¢(2) .9 (1.90)
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An Alternate Polar Form of z

We saw earlier that the polar form of complex number z is

Z=r(cos B +isinB)

Using Euler formula, we can write z as

z=r(cosB+isinB)=re® (1.91)

As an example z = -1 + i can be written z = V2 e B4, Equation (1.91) is a short version of polar

form of z and is routinely used in engineering problems and applications dealing with complex
variables.

Example 14: Evaluate f(z) =e “atz = -1 + i2

fiz)=e1*2?=e 1 (cos2+isin2)=0.368(-0.42 +i0.91) = - 0.153 + i 0.334

Example 15: Solve e “=1-i2forz=x + iy

le?|= eX=|1-i2|=+/5 eXcosy=1 eX*siny=-2 =
x =In+/5 = (1/2)In 5 = 0.805 cosy=0.447 siny=-0.894 = y=-1.11
z=0.805-i(1 .11 + 2nTr) n=0, +1,+2, ..

Logarithmic Function

The natural logarithm of z represented by In z is the inverse of exponential function exponential
function.

w=Inz=logz eV=z z#0 (1.92)

Represent the given z in polar form (z =r eie) and let w = u + iv. The objective is to compute u
and v. Using equation (1.92)

W_ u+iv 0

eV=¢ =re
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Equating magnitude and phase results in

el=r = u=inr and v=0+2nm

Hence

w=Inz=Inr+i(0+ 2nm) (1.93)

When v is restricted to —11 < v <, the corresponding logarithm of z is referred to as the
principle logarithmic function of z and is denoted by Ln z.

Lnz=Inr+iB (1.94)

Some Properties of In z

Using equations (1.81) and (1.82), we observe

a) In (21 Zz) =lnzi+1Inz (195)
b) In(zi/z2)=Inzi-Inz; (1.96)

Derivative of f(z) = In z

Using Cauchy-Riemann equations, we can show f(z) = In z is analytic
f(z)=Inz=Inr+i(8+ 2nm)

Since derivative of a constant is zero, we can ignore + 2n1r and assume 0 = arctan (y/x) without
addition or subtraction of , if the real part of z < 0.

f(z) = In {/x? + y? +iarctan (y/x) = (1/2) In (x? + y?) + i arctan (y/x)
u(x,y) = (1/2) In (x? + y?) and  v(x,y) = arctan (y/x)

Ux=(1/2)2x)/(x* +y?) =x/(x>+y?) and vy = A/X)/[1+ (y/X)?]=x/ (X2 +y?) D U=V
Uy = (12)2y)/(x% +y?) =yl(x* +y?) and - v = -(-y)[L + (yX)7] =y [ (X + y?) = uy= -
To find f (z), equation (1.62) can be used

f(2) = Ux+ivx=[XOE+y2)]+i[y (6 +y?)]=(x—iy)/(Z+y?) =1z (1.97)

Similarly to real calculus, given g(z) is analytic we can write

F(z) =Ing(z) g(z)#0
F(2=9(2/9@) (1.98)
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Complex Power

Having explained exponential and logarithmic functions of complex variable z, we can now
consider complex power A B, where both A and B in general are complex.

AB=gBINA (1.99)

Example 16: Evaluate a) (1 —i) ¢ * 9 b) 2!

a) (1-i)A+D=e@+DInA-D] _ o (LHDINV2Z + i(—%i Znn)]

eln\/2_+ (%i Znn)ei (lnx/?—%i 2nm) _
V2 e(Z + Znn) [cos (lnx/i -m/4) +isin (ln\/i -m/4)]

b) 2i= eWin2 _ pln2+i(0+2nm)] _ (1 2nm) [cos (In 2) +isin (In 2)]

1.7 —Trigonometric and Inverse Trigonometric Functions

Trigonometric Functions

Similar to real trigonometry, Euler equation in complex form and the complex trigonometric
functions sin z, cos z, tan z, cot z, sec z, and csc z are defined.

iz

e =cosz+isinz (1.100)
1 . i
sinz=— (e — e™2) (1.101)
1 . .
cosz== (e'? + %) (1.102)
sinZ
tanz = (1.103)
cosZ
cosZ
cotz = — (1.104)
sinZ
1
secz= (1.105)
cosZ
1
CSC Z = — (1.106)
sinZ
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If z is replaced by x in the above equations, we obtain the same familiar functions considered in
real trigonometry. Furthermore using the above definitions we can write

sin (-z) =-sinz, cos(-z)=cosz, tan(-z)=-tanz, cot(-z)=-cotz (1.107)

Since e Z and e  are analytic everywhere, sin z and cos z are also analytic everywhere. The
functions tan z and sec z are analytic functions except at the points z where cos z becomes
zero. The functions cot z and csc z are analytic functions except at the points z where sin z
becomes zero. Since d(e ?)/dz = e Zand d(e ?)/dz = ie Z, we can write the following derivatives
which should look familiar.

f(z) =sinz f (z) = cos z (1.108)
f(z) = cos z f(z)=-sinz (1.109)
f(z) = tan z f(z) = sec 2z (1.110)
f(z) = cot z f(z)= -csc?z (1.111)
f(z) =secz f(z) =sec ztanz (1.112)
f(z) = csc z f'(z) =- csc z cot z (1.113)

Some General Complex Trigonometric Identities

cos?z+sinz=1 (1.114)
€Oos (z1t z2) = €cOS z1 €COS Z2 + sin z1 Sin 2 (1.115)
sin (z1t z2) = sin z1 €OS z2 + €OS 21 Sin z2 (1.116)
Sin2z=2sinzcosz (2.117)
cos 2z=cos’z-sin?z=1-2sin?z=2cos’z-1 (1.118)

cos (z) = cos (X + iy) :% (eiz + e—iZ)=% (ei(x+iy) + e—i(x+iy)

1. _ i —i 1 . . . .
:E[e YeX 4+ eYe™) = [e7 (cos x + isinx) + e (cos x — isinx)]

= % [cosx (e7Y + eY) —isinx(e¥ —e™Y)]

cos z=cos xcoshy—isinxsinhy (1.119)

Similarly,
sin (2) = sin (x + iy) :% (e — e_iZ)zi (eXFy) — gmi(x+iy)
= % [e™Ye* — eYe™ ) :% [e™¥ (cos x + isinx) — e¥(cos x — isinx)]
=1 [sinx (e + eY)] — il [cos x(e™Y —eY)]
2 2
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sinz=sinxcoshy+icosxsinhy (1.120)

Using equations (1.119), (1.120), and cosh? y —sinh? y = 1, we can write
|cos z|?> = cos? x + sinh? y (1.121)

|sin z|? = sin? x + sinh?y (1.122)

Equations (1.119) and (1.120) can be used to show Cauchy-Riemann equations hold and
evaluate the derivatives of sin z and cos z.

Example 17: Evaluate f(z) =sinzatz=-1+1i2

f(z) = sin z = sin (-1 + i2) = sin -1 cosh 2 + i cos -1 sinh 2 = (-0.841)(3.762) + i (0.540)(3.627)
=-3.164 +i1.959

Example 18: Evaluate z, if cos z = 2
cosz=cos xcoshy—isinxsinhy=2 =

cos X coshy =2
sinxsinhy=0

From the second equation sinh y = 0 = y = 0. This cannot be, since y = 0 implies cos x = 2 in
the first equation. Hence in the second equation

sinx=0 = x=nm (n=0,+1,+42,..)

If x = n1T is substituted in the first equation = cosh y <0 (for n odd), which is not
possible. Hence;

X = 2nTT (n=0, £1,+2,..) using cos x coshy =2 =>
coshy=2 = y =1.317

Z=X+iy=2nm+i1.317 (n=0, £1,%2,..)

Inverse Trigonometric Functions

We know trigonometric functions are periodic and as a result the inverse of these function do
not exist. The inverse of trigonometric functions are multiple-valued functions. If we ignore the
multiple-valued condition, we can obtain equations fo sin ! z, cos "z, etc. For example let
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w=cos 1z (1.123)

1 M .
z=cosw== (eW +e™") (1.124)

To obtain w, we multiply both sides of equation (1.124) by 2eW solve the resulting quadratic

equation for eiW, and finally take natural log as follows
e2?W _27eW 1+ 1 =0
e =z +/722 -1
w=coslz=-iln(z +Vz2 - 1)

Considering the plus sign (principle value of In), we obtain

w=costz=-iln(z+Vz?—1) (1.125)
Similarly,
w=sintz=-iln(iz+V1—2z2?) (1.126)
 iag
w=tan1z==In i (1.127)
2 1-Z

It can be shown that he derivative of inverse trigonometric functions are given by.

i(2) = sin iz f(2) = \/% (1.128)
f(2) = cos 1z f(2)=- J% (1.129)
f(z) = tan 'z f(z) = - +122 (1.130)

The proof of equations (1.128), (1.129), and (1.130) is left as an exercise.

1.8 —Hyperbolic and Inverse Hyperbolic Functions

Hyperbolic Functions

Similar to real calculus, we define functions sinh z, cosh z, tanh z, coth z, sech z, and csch z.

35
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sinh Z

tanh z =
shZz
coshZ

coth z =
hz

sechz=
coshZz

cschz =
sinh Z

(1.131)

(1.132)

(1.133)

(1.134)

(1.135)

(1.136)
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If z is replaced by x in the above equations, we obtain the same familiar functions considered in
real trigonometry. Furthermore using the above definitions we can write

sinh (-z) = -sinh z, cosh (-z) = cosh z, tanh (-z) = -tanh z,

coth (-z) =-cothz (1.137)

Since e ? is analytic everywhere, sinh z and cosh z are also analytic everywhere. The functions
tanh z and sech z are analytic functions except at the points z where cosh z becomes zero. The
functions coth z and csch z are analytic functions except at the points z where sinh z becomes

zero. Since d(e ?)/dz = e %, we can write the following derivatives which should also look

familiar.
f(z) = sinh z
f(z) = cosh z
f(z) =tanh z
f(z) = coth z
f(z) = sech z
f(z) = csch z

f (z) = cosh z
f (z) = sinh z

f (z) = sech 2z

f(z)= -csch?z
f (z) = - sech z tanh z
f (z) = - csch z coth z

Some General Complex Hyperbolic Identities

cosh?z -sinh?z=1
coshiz=cos z
sinhiz=isinz
Cos iz =cosh z
siniz=isinhz

cosh (z1+ z2) = cosh z; cosh z; + sinh z; sinh z2
sinh (z1+ z2) = sinh z; cosh z, + cosh z; sinh z;
cosh (z) =cosh x cosy +isinh x siny
sinh (z) = sinh x cos y +i cosh x siny

Ali Amini, Ph. D.
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(1.140)
(1.141)
(1.142)
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(1.148)
(1.149)
(1.150)
(1.151)
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The proof of above equations and some other Hyperbolic Identities can be easily shown using
the definitions and is left as an exercise.

Equations (1.151) and (1.152) can be used to show Cauchy-Riemann equations hold and
evaluate the derivatives of sinh z and cosh z.

Example 19: Evaluate f(z) =sinhzatz =-2 - i2

f(z) = sinh z = sinh (-2 - i2) = sinh -2 cos -2 + i cosh -2 sin -2
= (-3.627)(-0.416) +i (3.762)(-0.909) = 1.509 —i 3.421

Inverse Hyperbolic Functions

Similar to inverse trigopnometric functions, we can consider the inverse hyperbolic functions. For
example let

w =cosh*z (1.153)

1 -
z=coshw=> eV +e™™) (1.154)

To obtain w, we multiply both sides of equation (1.154) by 2e% | solve the resulting quadratic
equation for eW, and finally take natural log as follows

e?W —2zeW+1=0
eW=z4++vz2-1
w=cosh?z=1In(z £Vz?—-1)

Considering the plus sign (principle value of In), we obtain

w=cosh1lz=In(z+Vz?—-1) (1.155)

Similarly,

w=sinh?z=In(z+Vz?+1) (1.156)

1. 1+4Z
w=tanhlz==In— (1.157)
2 1-Z
The derivatives of inverse hyperbolic function can be obtained using implicit differentiation. This
is left as an exercise.
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CHAPTER 2

Integrals of Complex Functions

Overview

Integrals of complex functions are presented in this chapter. Section 1.1 addresses line
integration in rectangular form and parametric form. Examples are given for writing parametric
representations of different paths. Cauchy — Goursat Integral Theorem is covered in Section 2.2
and some application of this theorem is presented in Section 2.3. Cauchy Integral Formulas for
derivatives of a complex function are presented in Section 2.4. Section 2.4 ends with Liouvill's
Theorem.
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2.1 -Line Integration

Here we consider integrating a complex function f(z) along a piecewise defined curve C in the
complex plane from some initial complex point zo to zn. Curve C is referred to as path or contour
of integration.

fZZOn f(2)dz (2.1)
C

Let us assume f(z) is a continuous function and C is a smooth curve divided into n partitions as
shown in Figure 2.1.

ﬂ‘ Im

—» Re

Figure 2.1 Path of Integration and Partitioning of the Path

Equation (2.1) can next be written as,

fZZOn f(Z)dZ = Alér_r)lo 2221 f(Zk) AZR (22)
C

As AZ — 0 the number of partitions approaches infinity. Equation (2.1) can be written in terms
z=x+iyand AZ = Ax + i Ay.

fzzonf(Z)dZ = lim YU (ug + ivg) (Axy + iAyy)

Ax+iAy—0
C
= lim  Y3R_ (upAxy, — v Ayy) + i(vAxg + uAyy)
Ax—0 & Ay—0
[f(2)dz = [udx —vdy + i [vdx + udy (2.3)
C C C
Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016

California State University, Northridge



40

If curve C is a closed curve, equation (2.3) is simply represented as

¢ f(2)dz = $udx —vdy + i $ vdx + udy (2.4)
C C C

One may presume the answer to equation (2.4) is zero, since the lower and upper limits of
integration are the same. Or, the usual method of integral calculus can be used to evaluate
equation (2.3) and simply ignore the path of integration. As it will be discussed, this depends on
whether or not f(z) is analytic in the given domain where path C is.

There are several methods of evaluating the integral of equation (2.1).

Cartesian Method of Line Integration
Equation (2.3) and the Cartesian representation of curve C can be used to evaluate the integral.
We show this using a simple example.

1+i2 _
Example 1: Evaluate fo ' Z 2dz where path C is shown in Figure 2.2.

C
Am
1+i2
C
0 *Re
Figure 2.2 Path of Integration
C: y = 2X dy = 2dx 0<x<1 0<y<?2 and

[ Z]% = (x-iy)? = (@- y?) + i(-2xy).

Using equation (2.3), we have

f1+i2 524y = gﬁudx —vdy + igﬁvdx + udy integrating on C

0
J(x? = y*)ydx = (=2xy)dy + i [ (—=2xy)dx + (x* — y*)dy =
C C
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fol(xz —4x?)dx — (—2x)(2x)(2dx) + ifol(—Zx)(Zx)dx + (x? — 4x?)(2dx) =

1. 2 .1 24 5 .10
f05xdx+1f0—10xalx—3 i

It is of importance to note that even though the procedure shown for this example seems simple
and not time consuming, as the integrand f(z) and path of integration C become more complex,
evaluating the integral of f(z) on path C using equation method which is based on using
equation (2.3) or equation (2.4) as applicable becomes very tedious.

Parametric Method of Line Integration
Equation (2.3) and the Cartesian representation of curve C can be written in parametric form in
terms of parameter t. Consider the original integral form of equation (2.1).

[ f(2)dz
C

First we represent path C in parametric form z(t), unless it is already in that form.
C: z(t) = x(t) + iy(t) or  z(t) =r(t) e®0 a<t<b (2.5
Next we substitute z(t) in the integrand f(z(t)). Finally we write dz as

dz = ZY g4 (2.6)
dt

where z(t) in equation (2.6) is the same as equation (2.5).

ﬂ‘ Im

d

zo=x(a) + iy(a)

Zn=X(b)+iy(b)

— Re

Figure 2.3 Parametric Path of Integration

The parametric form of equation (2.1) is

M f@dz =[] @) =2 dt @)
C

The proof of equation (2.7) is rather simple and is considered below.
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Theorem 2.1 Parametric Method of Line Integration
Let function f(z) be defined on path C represented in parametric form as described by equation
(2.5), then the integral of f(z) on path C is given by

dz(t) dt

[ f(2)dz = [ f(z(V)
C

Proof:

Substituting for f(z(t)) and dz(t)/dt on the right hand side of equation (2.3), we can write
Zn _ _ .
on f(2)dz = udx —vdy + i [vdx + udy
C C C

With curve C represented as z(t) = x(t) + iy(t). Furthermore dx=(dx/dt)dt and dy=(dy/dt)dt, we
can write

[ f@dz = [ Tu((©, y(0) 52 dt = v(x(0,y(©) 2 dt] +
c i [V, y(9) 22 dt + uf(x(), y() L2 dt]
= [V[u(x(), y(t)) + 1 v(x(t), y(O)] [“"“) i de
= [ f(z() =2 dt

Prior to using equation (2.7) in evaluating a line integral using parametric form, it is useful to
consider some examples of parametric representation of different paths.

Example 2: Write the parametric representation of the following paths

a) Straight line from z =01t0 z; = X1 + iy1

b) Straight line from z; = X1 + iy1 t0 22 = X2 + iy2

c) A circle centered z = 0 with radius p in Counterclockwise direction

d) An upper semicircle centered at z = 0 with radius p in Counterclockwise direction
e) A circle centered at the zo = Xo + iyo with radius p in Counterclockwise direction

f) An ellipse centered at z = 0 whose Cartesian equation is

g) An ellipse centered at z = h + ik whose Cartesian equation is

(x—h)? (y-k)? _
a? + b2 =1
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b) C:

c) C:

Ali Amini, Ph. D.

z(t) = z1t = (X1 + iyt = txq + itys

Figure 2.4

v
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Z() = 21 + (22— z)t = (X1 + iy1) + [(X2 +iy2) - (X1 + iya)]t 0<t<1
A
= [Xa + (X2 - x))t] + i [ys + (y2 - yo)t] Z2 =Xz +iy2
0 / >
Z1 = X1+ |y1
Figure 2.5
zt)=pet=p(cost+isint) 0<t<2m
A
Z
-
Figure 2.6
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d) C: z(t)=pet=p(cost+isint) 0<t<m
Same equation as in part (c)

e) C: zZ(t)=zo+ pe't=zo+ p (cost+isint) 0<t<2m

=(Xo+pcost)+i(yo+ psint)

Figure 2.7

y2

.ox? =1
f) C: ;‘l‘ b_z_
z(t)=acost+ibsint

Centeratz=0

Figure 2.8
o (x=n)? L -k
g) C: — + oz = 1
z()=(acost+h)+i(bsint+Kk)
Center at zo = h + ik
Figure 2.9
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1+i2  _
Example 3: Evaluate fo ' Z 2dz where path C is shown in Figure 2.3.

C
Am
1+i2
C
0 "Re
Figure 2.10 Path of Integration
C: zt) =1 +i2t=t+i2t 0<t<1 and  (dz/dt) = (1+i2)

Using equation (2.7), we have

N f(z(t))% dt= [ [(t+:20) J2(1 +i2)dt = (1-i2)2(1+i2) [, t3dt

This is the same result obtained in example 1.

If curve C is represented by y = f(X), it suffices to represent the parametric form of this curve as,
C: z(t) =t +if(t)

ﬂ‘ Im

z(t) = t + if(t)

y=f(x)/

—» Re

Figure 2.11 Parametric Path of Integration for y = f(x)
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Example 4: Sﬁf(Z)dZ = é
C C

1
(z—zp)"

46

In the above equation, n is an integer and C is a closed circle of radius p with

center at zg in counterclockwise direction.

Using example (2e), we write z(t)=zo + p et 0<t<2m

Using equation (2.7), we have

PH2(0)) LR gt = [T L (ip) eitdt = ip—™ [*T lO-Mitgt =
I, . p p .

d 0 (zo+ peit-zp)

[(ipE™)/i(1 — n)][e!d™E2" =0 forall n=1
= 2mi forn=1
1
dz = 2mi
¢ (z—z9)
C

Also if zo = 0 and the center of the circle is at z = 0, we have

gﬁidz:zm
c

Theorem 2.2 ML — Inequality

(2.8)

=

(2.9)

(2.10)

Let function f(z) be a continuous function for all values of z on curve C and let |f(z)|] < M. Let the

length C from initial to final point of integration be L. Then

[ f(2dz| <mL
C

Proof:

Using equation (2.2), we write

[ f)dz = Jim $R_, f(Zi) A%,
C

| lim Y3 1 f(Zy) AZ| SAI}Y_T}O Yi=1 1f(Zy) AZy|

AZ—-0
| im Yik=1f(Zy) AZ,| < lim Yk=1 1 (Zi AZy|
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|lim S £(Z) AZ] <M lim TR A7 |

As AZ - 0, we can conclude

|/ f(2)dz| <™ [ |dz]|
C C

with L = [ |dz| = length of curve C, we now have
C

| f(2)dz] <ML
C

Some Properties of Line Integrals

Q) kf(z)dz =k [ f(z)dz K is a complex constant (2.12)
C C

0)[[fi(2) £ fo(2)]dz = [ fi(2)dz * [ f,(2)dz (2.13)
C C C

c) fZZ: f(2)dz = fzzlz f(2)dz + sz23 f(2)dz (2.14)
C Ci C.

Curve C consists of partitions C; and C,. This rule can be extended to as many partitions that
make up curve C.

ﬂ‘ Im

Z2

C: Z3

.
N N

Figure 2.12 Curve C Consisting of partitions C1 and C;

d) fZZ: f(2)dz =— fZZ: f(2)dz (2.15)
C: C

Curves C; and C; are exactly the same, but in opposite directions.

47
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i
Example 5: Evaluate fo Z dz, where C consists of straight horizontal line fromz=0toz=1

C
and a quarter circle from z = 1 to z =i as shown.

Alm
z=i
z=1 >Re
Figure 2.13
ClL z(t)=t 0<t<1 dz/dt=1
C2: z(t)=el 0<t<m/2 dz/dt =i elt

1
N | =
+
/N
N | =
N—
—
mw.
Bl
I
—_
e

[izdz=[le() de+ [T e iet)dt = L+ G
C
= -(112)

i
Example 6:  Evaluate fo Z dz, where C consists of straight vertical line fromz=0to z =i.
C

C: z(f)=it 0<t<1 dz/dt = i

i 1, ..
J,zdz = [ it(i) dt =-/2)
C

It is not a coincident that the results of examples 5 and 6 are the same. This happens when the
integrand f(z) is analytic in a simply connected domain. Simply connected set was defined in
Section 1.3. The line integrals that are independent of the path of integration and its implication
will be discussed in more detail in Section 2.3.
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2.2 —Cauchy - Goursat Integral Theorem

Here we consider integrating a complex function f(z) on a simple closed curve C. We begin our
discussion assuming curve C is in a simply closed domain D and the function f(z) is analytic
everywhere in domain D.

The simply and multiply connected sets were defined in Section 1.3. Here we define simple and
not simple closed paths and review the definitions of simply and multiply connected domains.

Simple and Not Simple Closed Paths

A closed curve C that does not intersect itself at any point is called a Simple closed path. If a
closed curve C intersects itself at one or more points, it is called Not a Simple closed path. This
definition is illustrated in Figure 2.14 and Figure 2.15.

Im

FE N
Ve

Re Re

Figure 2.14 Simple Closed Paths

Alm
T e
Re \j Re

-

Figure 2.15 Not Simple Closed Paths

Simply and Multiply Connected Domain

A simply connected domain is a set that every simple closed curve in the set only contains
points of that set. A multiply connected domain is a set that there is at least one simple closed
curve in the set with one or more points that don’t belong to the set. This definition is illustrated
in Figure 2.16 and Figure 2.17.

Im Im

Figure 2.16 Simply Connected Domain
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Figure 2.17 Not Simply Connected Domain

Theorem 2.3 Cauchy — Goursat Integral Theorem
If the complex function f(z) is analytic everywhere in a simply connected domain D and C is any
simple closed path C in D, then

(2.16)

¢ f(z)dz=0
C

Figure 2.18 Simple Closed Curve in a Simply Connected Domain

Proof:

The proof of Cauchy — Goursat theorem is based on Green’s theorem and use of Cauchy-
Riemann equations. Green’s theorem relates line integrals and double integrals. Here we simply
state Green’s theorem and refer the reader to calculus for the proof of the theorem.

Green’s Theorem: Let P and Q be functions of (x,y), defined over a region D, bounded by curve
C and have continuous partial derivatives. Let C be positively oriented, piecewise smooth, and a
simple closed curve, then

aQ op
¢ P(x,y)dx + Q(x,y)dy = ffa — a)dxdy (2.17)
C D
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Since the function f(z) = u(x,y) + i v(x,y) is assumed to be analytic, the integral of f(z) on a
closed path C can be written as

¢ f(2)dz = $udx —vdy + i $ vdx + udy
C C C

Applying Green'’s theorem to this integral results in
0 0 ) 0 0
§f@dz = [[[(=57) = (5 )ldxdy +1 [I(5;) = (5 ldxdy 219
C D D

Using Cauchy-Riemann equations u_ v and u_ _0v in equation (2.18)
g y g "dx 9y dy  ox q '

$f(z)dz=0
C

Example 7: Evaluate § f(z)dz for the given f(z) and the closed path C in CCW direction

C
a) f(z)=z2+4z+e*+10 C:|z-i2]=10
Z+5
b) f(z) = m C: Alm
2
C
=3 3 » Re
-2

Figure 2.19 Path C — Example 7b

a) § f(z)dz = 0, since f(z) = 22+ 4z + €? + 10 is analytic everywhere in the region
C enclosed by C.
b) § f(z)dz = 0, even though f(z) =

zZ+5
m is not analytic at z =5 and z = +i3.

C However f(z) is analytic everywhere in the region enclosed by C and
the points z = 5 and z = i3 are all outside this region.

It is important to revisit example 4 of this Chapter. In example 4 we considered the following
integral
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Sﬁf(Z)dZ = Sﬁ (z—io)" dz C:z(t)=|z—20|=p or z(t) =20+ pe'

C C CCW direction

We saw

1
) dz=0 foralln=1

(z—2zp)™
= 2mi forn=1
Clearly the results for n > 1, does not follow from Cauchy — Goursat Theorem. For example
f(z) =

=202 is not analytic at z = zo. Hence the condition for f(z) to be analytic in D is sufficient
—40

rather than necessary for Cauchy — Goursat Integral Theorem.

2.3 —Some Applications of Cauchy - Goursat Theorem

In this section we consider some basic applications of Cauchy — Goursat Integral Theorem. We
consider a simply connected domain and integration independence of path. We also apply
Cauchy — Goursat Integral Theorem to multiply connected domains.

Simply Connected Domain
We saw, if f(z) is analytic everywhere in a simply connected domain D and C is any simple
closed path C in D, then

$f(z)dz=0
C

We partition the counterclockwise closed curve C into curves C, and C; at points z: and z; as
shown at in Figure 2.20. Using Cauchy — Goursat Integral Theorem

fzsz(z) dz + fzzzlf(z) dz=0 =

C: Cz
Z2 — Z1
[f@dz=[f@dz =
Ci C Alm
/ Ci 022
/ ~ [
Z1 k_//kC'Z VRe
Figure 2.20 Closed Path C — Partitioned
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Considering curve C3 to be the same as C2, but in opposite direction as shown in Figure 2.21,

we have
[ f@dz=[f(z)dz (2.19
C: Cs Alm

\
l

Z; k_//kcs " Re

Figure 2.21 Closed Path C — Partitioned

Independence of the Path of Integration
Based on the above discussion and equation (2.19), we can state the following Theorem.

Theorem 2.4
If f(z) is an analytic function everywhere in a simply connected domain D, then the integral

[ f(2)dz

C

is independent of the path of integration C.

Theorem 2.5 Existence of Antiderivative of f(z)
If f(z) is an analytic function everywhere in a simply connected domain D, then

¥4
fzf f(2) dz = F(z) - F(z2) (2.20)
where F(z) defined as antiderivative of f(z) is an analytic function and F’(z) = f(z) in D.

Proof:

Let us define F(z) as

zZ
F(z) = le f(z)dz (2.21)
Using equation (2.3), we have
F(z) = [ f(z)dz = [udx — vdy + i [ vdx + udy (2.22)
Zq '
The limits of the integration are from x; to x and y1 to y. The real part and imaginary parts of F(z)
are
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Re F(z) = [ udx — vdy Im F(z) =[ vdx + udy
Using Cauchy-Riemann equations, we can write

[Re F(2)] x=[Im F(2)]y and [Re F(2)]y = - [Im F(2)] x >

u(xy) = u(xy) and -V(X,y) = -v(xy)

Hence Cauchy-Riemann equations hold for F(z) and as a result F(z) is an analytic function.
Using equation (1.62), we can obtain the derivative of F(z) as

F'(2) = [Re F(2)] x +i [Im F(2)] x = u(x,y) + iv(X,y) =

F(2) =f(2) (2.23)

Now let us consider the integral, fzzl f(2) dz. Using F'(z) = f (z), we can write.
C

J'Zle f(2)dz :fzle F'(z)dz = F(Z)]Z = F(z2) - F(z1) (2.24)

Example 8: Evaluatefzz2 f(z)dz for the given f(z) and path C.
1

C
a) f(z)=z2+2 Path C consists of C; and C; as shown below
AIlm
C
>z, =1+
Ci
—® Re
Z1 = -1
Figure 2.22
b) f(z) =sin2z Path C as shown below
Alm _
Z=1+I
C
z1=0 "Re
Figure 2.23
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a) Since f(z) = z2+ 2 is analytic everywhere in the region, the integral of f(z) is
independent of the path and

f_lfl(z2 + 2)dz = (1/3)8 + 2z]1i= [(U/3)(1 + i)* + 2(1 + i)] — [(1/3)(-1)® + 2(-1)]
=1/3(11+i8)
b) Since f(z) = sin 2z is analytic everywhere in the region, the integral of f(z) is
independent of the path and

1+i . . .
J,  sin2zdz = (-1/2)Cos 2z]§*! = (-1/2)[cos (2 + i2) -1]
= (-1/2)[cos 2 cosh 2 —isin 2 sinh 2 — 1] = 1.283 + 1.649i

Multiply Connected Domain
We now apply Cauchy — Goursat Integral Theorem to multiply connected domains. Let us start
with a doubly connected domain as shown in Figure 2.24. We begin with

¢ f(z)dz=0
C

Figure 2.24 Doubly Connected Domain

Curve C consists of curves C,, Ca, Cs, and Cg. In other words let us assume we start at any
point on the lower portion of curve C, and move the point in counterclockwise direction. Once
the point gets to the cuts (Caand Cg), the point goes on the curve Ca and moves to get to curve
Cs. The point then moves on Csin clockwise direction until it reaches the cuts and gets on Cs.
The point moves on Cg until it gets back to C,. The point moves on C, from where the cuts are
and completes the contour. Even though the point leaves C; at the cuts, it gets back on it after
going on Ca, Cs, and Cg with the directions shown and completes the contour. Function f(z) is
analytic everywhere in the region enclosed by curve C described here.

$f(2)dz=¢f(2)dz+ [ f(z)dz+ ¢ f(z)dz+ [ f(z)dz=0 (2.25)
C C: Ca Cs Cs
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The second and fourth integrals on the right hand side of equation (2.25) cancel. Hence we
have

$f(z2)dz=—¢f(2)dz

C. Cs
¢ f(2)dz = ¢ f(z)dz (2.26)
C. Ci

As can be noted, C1 is the same as C3 but in counterclockwise direction as shown below.

Figure 2.25 Doubly Connected Domain

Referring to example 4 in this Chapter, we saw

1
gﬁ dz =2m Where Cis a circle of radius p and center at zo in CCW direction

(z—20)
C A
p C
(o]
Zo
) >
Figure 2.26

Based on equation (2.26) and the above discussion

1 .
45(2_20) dz = 2mi
C

for any closed curve C in counterclockwise direction which encloses zo.
Based on Cauchy — Goursat Integral Theorem this integral is zero, if curve C does not enclose
Zo, which implies f(z) is analytic in the region.
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Obviously the same conclusion can be made, if zo = 0
1
$=dz = 2mi
z
C
for any closed curve C in counterclockwise direction which encloses z = 0

Similarly this integral is zero, if curve C does not enclose z= 0.

Let us now consider a triply connected domain as shown in Figure 2.27. Once again we begin
with

$f(z)dz=0

Figure 2.27 Triply Connected Domain

Similar to the Figure 2.24 for the case of doubly connected domain, we make cuts in both
direction from curve C; to curves C, and Cs. We next apply Cauchy — Goursat Integral Theorem
with closed curve C consisting of curve C., C4 (opposite direction of C,), Cs (opposite direction
of Csz), and the four cuts (two from C; to C4 and two from C; to Cs). We also note the integrals
over the cuts cancel. It can be shown that

$f(2)dz=¢f(2)dz +¢f(z)dz (2.27)
C: C Cs

Similar procedure can be used to extend for the cases higher than triply connected. As will be
observed similar process will be used in proof of Residue Theorem.

Example 9: Evaluate ¢ f (z)dz for the given f(z) and path C.

C
Z+10 . . . .
f(2) = ——— C: |z| = 4 in counterclockwise direction
Z3+447%2-5Z
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22+ 4z°-5z2=2(z-1)(z +5) Im

s
_Soul " Re

Figure 2.28

4

Using partial fractions, we write

. Z+10 z+10 -2 11/6  1/6
1E(Z)_23+422—sz T Z(Zz-1)(Z+5) =z + Z-1 +z+5
/

Z+10
éZ(Z—l)(Z+5) Eﬁ dz
C C
= Tr/3

z+§ (Z/ ® dz = -2(2mi) + (11/6)(2mi) + 0

2.4 - Cauchy’s Integral Formulas

In Section 2.3 we saw some applications of Cauchy — Goursat Integral Theorem. Perhaps some
of the most significant applications of Cauchy — Goursat Integral Theorem is Cauchy’s Integral
Formulas. These additional applications are presented in this section.

Theorem 2.6 Cauchy’s Integral Formula
If f(z) is an analytic function everywhere in a simply connected domain D and C is a simple
closed path in D, then

95 / (Z) dz 21 f(20) (2.28)

where z, is any point inside path C and integration is in counterclockwise direction.

Proof:
We write f(z) as

f(2) = f(zo) + f(2) - f(zo) (2.29)
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Substituting equation (2.29) in equation (2.28) results in

f(Z) f(Zo) f(Z)—f(Zy)
¢ d ¢ d éz_—o dz

C
1 f(Z)-f(Zo)
Zf(ZO) §Z—_Zodz + ﬁTOOdZ (2.30)
C C

From our discussion in Section 2.3, we have

f(z0) § Z_LZO dz = 2mi f(z0) (2.31)
c

To show the second integral in equation (2.30) is zero, we can replace C by a small circle C; of
radius p with center at zo as shown in Figure 2.29.

Figure 2.29 Replacing C by Small Circle C1 Containing zo

The function f(z) is analytic and hence continuous at zo. Based on definition of continuity, for any
€ > 0, there exists a ® > 0 such that |f(z) — f(zo)| < € for all z satisfying |z — zo| < 8. By selecting p
to be smaller than & and using ML — Inequality Theorem of Section 2.1, we can write

if(Z) f( O)dzl < ML

Ci

Here M = % and L is the length of curve C; (211p). Hence with ML = i (21mp) = 2me, we have

< 2T

¢f(z) f(ZO) le

Ci
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We can select € > 0 as small as possible (¢ — 0+). Hence the second integral on the right hand
side of equation (2.30) is zero.

Example 10: Evaluate ¢Z2—+2 dz
) (Z2+1)(z2%2-1)
C
C: |z —i] = 1 in counterclockwise direction
Alm
1¢ C

|

-1 1 Re
()_1
Figure 2.30
Z+1)(Z?-1)=(@+i)(z-)z+1(z-1)
Since z =i is the only point enclosed by C =
fﬁ Z%+42 dz = 45 (Z%2+2)/[(Z + )(Z2?-1)] dz = omi (Z%2+2) lpei =
(Z2+1)(z2-1) (Z-1) T T r D@m= T
C C
(-1+2)
T —(Zi)(—l—l) =-T1/2

An alternate form of Cauchy’s Integral Formula of equation (2.28) can be written as

-1 §f@
f(zo) = o— gﬁZ_ZO dz (2.32)
C

Similar to equation (2.32), we now develop equations for f'(zo), f*"(2o),...,f ™(z0). This is shown
explained in the following theorem.
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Theorem 2.7 Cauchy’s Integral Formula for Derivatives of Analytic Function f(z)
If f(z) is an analytic function everywhere in a simply connected domain D and C is a simple
closed path in D, then

n!
f M(z0) = 95 o fZ( ))n+1 dz (2.33)

C
where zq is any point inside path C and integration is in counterclockwise direction.

Proof:
The proof for the case of n = 1 is presented here. We start with f (zo) using the definition

f(Zy+AZ)—f (Zo)
AZ

f'(z0) = lim
(O) AZ—-0

Using equation (2.32), we write

fZHAD)—~f(Z)) _ 1 1 ¢ f(2) 1 1 f(2)
> ST vl ey L abemrd e b L

Az 2mi 2mi Z-Zy
C C
(Z-Zo)f(2)-[(Z—(Zo+AD)f(Z) ;, 1 £(2)
2miAZ ¢ [Z2-(Zo+A2)][Z~Zo] 2= o 95[z—zo—Az][z—Zo] dz (2.39)
c C

If we show the integrals of equation (2.33) for n = 1 and (2.34) are the same as AZ — 0, the
theorem is proved. To do so, let us ignore the (1/2mi) factor which is the constant coefficient in
both and consider the difference between the two.

f(Z) f(Z) f(Z)(Z-2y)-f(Z)[Z—-Zy—AZ]
‘(ﬁ[Z—ZO—AZ][Z—ZO] 45 ; dz Sﬁ [Z-Zy—AZ][Z-Z,]? dz
C
_ Azf(2)
=¢ AT AT dz (2.35)
C

The function f(z) is analytic and hence continuous. Therefore f(z) is bounded (|f(z)| < P).
Furthermore, the distance between all z on C and z,, is assumed to be greater than some
positive real number p (|z — zo| = p). This implies

1 1
zZ—7 2 > 2 = < —
-zl =p 222 — p?
We also note that
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|z—=20| = |z—20- Az + Az| < |2 —20- Az| + |AzZ| = p =

|z —2z0- Az| = p - |Az|

We now assume Az < p/2, we can write

|z —20- Az| = p - p/2 =
1 2
—20- Az| = p/2 =1 <=
|z -20-Az| 2 p/ 1Z-Zo—AZ| — p

62

Let the length of curve C be L. Using ML — Inequality Theorem of Section 2.1 and equation

(2.35), we have

|93 AZf(Z) ~dz| < (AZ)(P) (%) (#)L

[Z2-Zy—AZ][Z-Z)?

As we let Az— 0, the left hand side of equation (2.35) approaches zero and we conclude

(2.36)

(1) _ 1 f(2)
f D(ze) = 95 (Z 7y dz
e (D)o = f(Z)
2mi f M(zg) = § 27 dz
C
Example 11: Evaluate gﬁﬂ dz for the given f(z) and path C
) (Z2+4)(z-2)2 g P '
C
C: As shown in Figure 2.31
Alm
2 o
.
& 2 Re
_2 (0]
Figure 2.31
(Z2+4)(z-2)2=(z+i2)(z-i2)(z-2)(z-2)
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Since z = 2 and z = 2 are the only points enclosed by C, we define f(z) as

f(2) =

7242742

Z4a) and use equation 2.36

f(2) @ (22+2)(z +4)— 22(2 +27+2) .
¢ -2 dz =2mif®(2) =2n on? 1,_,=in/4
C
Let us examine equation (2.33) in the following form,
n! (2 f(2)
|f (n)(zo)l = | 2T ¢ (Z_Zo)n+1 § (Z 7 )n+1 le (237)

C

As discussed in Theorem 2.7, f(z) is bounded (|f(z)| < P). Without loss of generality, let us
assume C is a circle at zo and radius p. Using equation (2.37), and ML — Inequality Theorem
with L = 2mp, we have

n'pP
|f (n)(Zo)I < p_n (2.38)

Theorem 2.8 Liouville’s Theorem
If f(z) is bounded and is an entire function for all values of z, then f(z) is constant.

Proof:
Using equation (2.38) with n = 1, we have

P
f D(z)| <=
|t H(z0)] p
Since we can select p arbitrary large, this indicates

fW(ze) =0

for all zo and proves f(z) is constant.

63
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CHAPTER 3

Complex Series and Residue
Theorem

Overview

Section 3.1 begins with sequences and series along with ratio and root tests for convergence,
followed by geometric and power series in Section 3.2. Taylor and Maclaurin series are
discussed in Section 3.3. In Section 3.4 Laurent series and definition of residue are presented.
Section 3.5 covers the definition of poles and zeros. Evaluation of residue of a simple pole and
repeated pole is discussed in Section 3.6. Residue Theorem is covered in Section 3.7. Section
3.8 presents some applications of Residue Theorem to real integrals.
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3.1 —Sequences and Series of Complex Values

Here we begin with the definition of complex sequences and extend to complex series. Many of
the definitions, tests, and theorems are similar to what we observed in real calculus.

Complex Sequences

A complex sequence denoted by {Z} is a collection of terms. The value of ncanbe n=1, 2, 3,
...orn=0,1,2,...as

{Zl, Zo, 23,....} or {Zo, Z1, Zz,....} (31)
The terms of the sequence in general are complex. As an example

{20} ={Z0, Z1, Zo,..} = {1 —1), (L —0)% (1 —i)3,...}

Depending on the particular application, n can begin with any integer suchas n=...,-1,
or 0, or 1,... . In most application the initial value of n is either 0 or 1. The terms of the sequence
can be complex or real consisting of a random values or be characterized by an equation or
pattern.

Convergence
The sequence {Zn} = {Zo, Z1, Z>,...} converges to a value L and is called convergent sequence, if

limZo=L=Ly+iLs (3.2)

n — oo

Using the definition of limit, equation (3.2) implies that as n increases, for some n > N we can
write

|Zo—L|<¢ (3.3)

The limit L must be unique. Equation (3.3) simply indicates for n > N, all values of Zn are inside
the disk whose center is at L and has a radius of € as shown in Figure 3.1.

Figure 3.1 Sequence {Zn} Converging to L
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Example 1: Indicate if the given sequences are convergent. If convergent evaluate the limit.

a) {Zn}={(2+1)7%
b) {Zn} ={(0.50)"}

a) {2+ ={@+i),@2+i)3 (2+i)3 (2+i)4... }is divergent
b) {(0.5i)"} ={0.5i, -0.25, -0.125i, 0.0625,...} is convergent with the limit L =0

Since the sequence {Zn} = {xn}+ i{yn}, we can state the convergence of a sequencetoL =L1 +i
L., by considering the convergence of the real and imaginary parts of the sequence to L; and L,
respectively. This is presented in the following theorem.

Theorem 3.1 Convergence of Sequence {Zn} = {Xa}+ i{ynttoL =L +iL,

A sequence {Zn} = {xn}+ i{yn} converges to a complex number L = L; +i L, if and only if the real
part of the sequence {x»} converges to L, and the imaginary part of the sequence {y.} converges
to La.

Proof:
We assume the sequence converges and has alimitL=L; +iL.

IimanL:L1+iL2 : |Zn—L|<£

n — oo

lim x, = L1 and limyn =L, = as n— oo
n — oo n — oo

[ xn—L1| <€ and [yn—La| <€

Hence as n— oo, the X, and y, will fall in the intervals (L1 — €,L1 + €) and (L2 — €,L> + €)
respectively. This is shown in Figure 3.2.

Alm

Lo +¢

Lo -¢

»
»

Li-€ Ly Li+¢ Re

Figure 3.2 Sequence {Zn=xn+ iyn} Convergingto L = L1 +i L2

Now we consider the inverse of this theorem. If

lim X, = L1 and limyn =L, =
n — oo n — oo
for some n large enough | Z, — L | < €, where {Z,} = {Xn}+ i{yn}.
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Example 2: Indicate if the given sequences are convergent. If convergent evaluate the limit.
{Zn} = {in/[n +i(n + 1)]}

. in n—i(n+1) _ n(n+1)+in? _  n?+n i n?
"Tn+i(n+l) n—i(n+1) n24+Mm+1)2 2n2+2n+1 2n2+2n+1

Using L’Hopital’s rule, we have,

lim x, = 0.5 and limy,=0.5 = limZ,=05+10.5

n— oo n— oo n — oo

Complex Series

A complex series of complex variable z is define by

Wi(2) + Wa(Z)+...+wh(2)+.... (3.4)

The partial sums of this series are defined by

S1=wi(2)
So = wi(2) + wo(2)

....................... (3.5)
Sn = wWai(2) + Wa(z)+...+Wn(2)

Consider,
S=2n=1Wn (3.6)

A series is convergent if {Sn} converges to S. If a series does not converge, it is called a
divergent series. If Y7, |wy, | converges, then the Y.;°_; w,, is said to be absolutely convergent. If
Yn—1 W, converges but it does not converge absolutely, it is called conditionally convergent.

Theorem 3.2
if Y1 Wy, COnverges, it is necessary that lim w, = 0. If lim w, # 0, the series diverges.
n — oo n — oo

The proof of this theorem is similar to real series.

If |Snh - S| < € for all n > N, we say S, converges uniformly to S. Let us define R, as

Rn = Wn+1(2) + Wns2(2)+ Wnea(2)+..... =S = S, (3.7)
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Then we can say the series converges to S if for any €> 0 we can find N such that for alln > N

IRn| = |S - Snf <€

Theorem 3.3
A necessary and sufficient condition for the series S = };_; w,, = Y1 (u, + iv,) to converge to
S =u+ivisthat Y-, u,converges to u and ),;-; v,converges to v.

This can be shown once the complex series S is partitioned to real part and imaginary part.

Theorem 3.4
The series Y;—; w, converges absolutely if

e A (3.8)

Wn

lim

Nn— oo

and diverges if

Wn+1

lim

=r >1, (3.9)

Wn
Nn— oo

The proof of this theorem is similar to real series and is based on Comparison Test and
Geometric series. The complex form of geometric series is discussed in Section 3.2.

The Ratio Test and the Root Test were utilized in real series. Here we consider the complex
forms of these two important tests. The proof of these two tests are similar to real series and are
left as an exercise.

Ratio Test
Given the infinite complex series Y-, w, = W1 + Wz + ws+..., with

lim |22 = then (3.10)

Wn
n- oo

a) Yo, wy, converges absolutely if L <1
b) »n_,;w, divergesifL>1
¢) No conclusion can be made if L =1
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Root Test

Given the infinite complex series Y.n—; w, = W1 + W2 + ws+..., with

lim Y/ |wy|= L, then (3.11)

Nn— oo

a) Ya—1w, converges absolutely if L < 1
b) Yo, w, divergesifL>1
¢) No conclusion can be made if L =1

3.2 - Geometric and Power Series

Geometric Series

A complex geometric series is defined as

Yo oaw™=a+aw+aw? + awlt....=a(l+w+w?+wi+ ... (3.12)
Using equation (3.5), the nth partial sum of this is given by

Sh=a+aw + aw? + aw’+.... + aw" (3.13)
Multiplying equation (3.13) by w results in

WS, = aw + aw? + aw® +.... + aw™?! (3.14)

Let us now consider S, - wSy,

Sh- WSy =a-aw"!
Sn(1-w) =a(l-wmt)

1— Wn+1
Sp = aﬁ (3.15)

As n— oo, we can conclude

Z;‘{;oaw”=a+aw+aw2+aw3+....=m if lw] <1

and (3.16)
Yogaw™ =a+aw +aw? + aw?+.... diverges  if lw] =1
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Example 3: Evaluate the sum Y5_,(az~1)" and indicate the condition for convergence

—_— 1 Z -
Sio(az ) = = azl<1  or  zl>1al

Based on our discussion of sets and domains in Chapter 2, the condition for convergence in this
example for w = az! is |[az!| < 1, which includes all the exterior points to a circle with center at z
= 0 and radius |a|.

Power Series

A complex power series is defined as

Yoo An(W —wo)™ = ao + ar(w — Wo) + az(w — wo)? + ... (3.17)

Coefficients an, are complex constant and w; is also a complex constant in general and is called
the center of the power series. In general power series has what is known as a region of
convergence defined as interior point of the circle |w — wo| = R. The circle is known as circle of
convergence with center at wo and the radius is R. The radius R is referred to as radius of
convergence.

It is obvious that for w = wp, equation (3.17) converges to ao. The power series of equation
(3.17) converges everywhere inside the circle of convergence defined by

|[w—wo| <R (3.18)
and diverges outside the circle of convergence defined by

lw —wo| > R (3.19)

Radius of convergence R can be as small or as large as possible. The regions of convergence
and divergence are show in Figure 3.3.

Im A Region of Divergence

Wo

Region of
onvergenc . Re

A

Figure 3.3 Regions of Convergence and Divergence
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Evaluating Radius of Convergence

Using the ratio test of equation (3.10), we have

Wnt1| _
—| =L as n— oo,
Wn
Anpr (W=wo)" 1 an+1(W—Wo) a
| = | == =[] [w —wo| =L as  noo.
an(w—wo)" an an
. . . 1 an
Convergence requires L < 1. This implies |w — wy| < =5 or [w — wg| < |a |
|W| n+1
Hence we write the radius of convergence as
. a O
R = lim |—= or —=lim || (3.20)
an+1 R an
Nn— oo Nn— oo
We can now consider two extreme cases.
. a .
R=0if |Z—“| — 00asnN— o = Power series converges only at wo
n
. a .

R=ooif |Z—“| — 0asn- o = Power series converges for all values of w

n

As an alternate approach the root test of equation (3.11) can be used to evaluate radius of

convergence.

V0a,(w —wy)?| =L as n— oo

1

Convergence requires L < 1. This implies |w — wy|= 5 —
n

Hence we write the radius of convergence as
R=Iim3

Vianl

Nn— oo

Example 4: Indicate the center and the radius of convergence for the given power series.

o (z—2+i3)™ o (=2)™(z-i5)"
a‘) ZTL:O (3+i4)n b) ZTL:O (n+1)!
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a)

b)

(z 2+i3)™
Ln=o (3+i4)n

The centerisatz =2 - i3. Using equation (3.20)

1.9 | _ 1 B
R= I(1-n+1 | - | (3+i4)n/(3+14)n+1 | |3 + l4| =5 as

Hence radius of convergence R = 5.

We can Use equation (3.21)

1 1
R= = =|3+i4| =5 as

Ti/|an| n\/| 1 |
(3+i4)n
o (2)"(z-i5)"
Xn=o (n+1)!
The center is at z = i5. Using equation (3.20)
R= = 2 Cm ) D = o0
'an+1 (n+1)! (n+2)'
Hence the series converges for all values of z.

as

3.3 —Taylor and Maclaurin Series

Taylor Series

Let us begin with power series

f(Z) = Z;?:O an(z — Zo)n =aop+ al(z - Zo) + az(Z - Zo)2 + a3(z - Zo)3 + ...

then,

f'(z) = a1 + 2a2(z — z0) + 3a3(z — z0)? +
f''(z) = 2a2 + 6a3(z — zo) + 12a4(z — 20)% + ...

¢

’(Z) =b6az + 243.4(2 - Zo) + ...

Wenote, f(zo)) =a0 f(zo)=ar f (z0)=2a2 f (z0)=6as

f(z) = f(z0) + [f (20)] (z — 20) + [ (20)/2!] (z — 20)? +

Equation (3.22) is known as Taylor series of a complex function f(z). Using Cauchy’s Integral

Nn— oo

..+ [fV(zo)/In!] (z — z0)" +

fW(zo) = nla, =

72

(3.22)

Formula of equation (2.28) and Cauchy’s Integral Formula for derivatives of equation (2.33), we

have
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a0=f(z0) = — L2 dz

2T Z—Zy
C
, 1 f(z
a=f(z0) =57 (z- (Z))Z d
C
an = f O(z)in! = — gﬁ%dz (3.23)
C

Theorem 3.5 Taylor's Theorem
Let f(z) be an analytic function everywhere in a domain. Let path C be a circle in this domain
with center at zo and radius r. Then f(z) can be represented as

() = T (7 — 7y (3.24)

Proof:

Using Cauchy Integral Formula, we can write

(@)= s $yamdz

Z-Z,
C

We now change some of the variables in Cauchy Integral Formula to have f(z) on the left hand
side of the equation without altering the actual formula.

56f W) (3.25)

Denominator of the integrand in equation (3.25) can be modified as,

Z-Z,

W-Z=(W'ZO)'(Z'ZO)=(W_ZO)[l_W—ZO] =
1 _ 1 . — 1 Zl—Zo (3.26)
Wozo (wezoli- ] W) -

Using equation (3.15) of geometric series we have

_ZTL+1
140+P+ P+ +7" = 12 =
1 5 3 <n+1
—_ ORI T S
1-¢ 1+¢+¢“+ ¢C+--+C +1_Z (3.27)
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Let us apply equation (3.27) to equation (3.26).

1 1 _ 1 Z—Zo Z ZO (Z—Zo )n
= —— = 1+ + 4 +
w-z) [1- 5/—2200] (W—20) [ W—Zo ) W-2z, ]
YA
1 (W ZOO)Tl+1
(w-z0) [1 —fV_ZZ"O]
11 1 1 Z-Z, ZZO 2 ) (Z—ZO>"
w-2)  (W-zp) [1- 22207~ (w~-2z) [1+W—Z + G ) et =) 1t
W-Zg
1 | (Z-2zy)"t?
Substituting equation (3.28) in equation (3.25), we have
_ f(W) f(W) 4+ 2% Z-Zo~N2 o .. 77 \"
f(z) = 2mi Sﬁ = om Sﬁw Z0 W—Z0 + (W—ZO) L (W—Zo) 1+
(Z-Zo)"
f(W) ) (W_Zo)n+1}dw (3.29)
In equation (3.29), we define Ry(z) as
1 | (Z-zy)"*?!
n(Z) - %ﬁf( ) ( ) W 7 )Tl+1 d (330)
C
(Z-Zo)" 1
Rn(z) = —_cﬁf( )(W 2 Wz dw (3.31)
C
Am
r w
Zp
z
0
Figure 3.4
Referring to equation (3.30) and Figure 3.4, we have
=

|z —zo| < [w — 2|
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Z-Zy

n+1
e ™ < 1.

With |f(w)| < 1 and length of curve C as 2T, we can use ML inequality.

Ri(2)| =l 5= § f (W) (=)
C

(Z=24)"*1
W-zg)n+1

1 1 A
dw| < —M =
| VA |W—Z||W—ZO

|+, 2mr

Z—Zy
=
Cauchy’s Integral formula for derivatives (Theorem 2.7), we obtain the Taylor series expansion
of equation (3.24).

As n—oo, the | |**1 > 0 and as a result Rn(z) approaches zero. Setting Rn(z) = 0 and using

Maclaurin Series

Maclaurin series is a Taylor series with center at zo = 0.

(n ® ©) 3
f(2) = Beo 2z = f(0) + 1507 + L0 g2 4 L0534 (3.32)

Example 5: Evaluate Maclaurin series for the given complex functions.

a)f(z) = i b) f(z) = e? c)f(z)=cos z d) f(z) =sin z
e) f(z) = cosh z f) f(z) = sinh z
a) f(z) = ﬁ = (1-2)"1
f@=01-27 f@=20-27 Me=E@0-2"
f(0) =1, "(0)=1!,f""(0)=2!, f(0) = 3I,... =
fz)=1+z+22+22+ ... =) z" Region of Convergence: |z| < 1
b) f(z) = e?
f'@z)=e? t(z)=e? f7(z) = e?
f(0)=1,f"(0)=1,f""(0)=1,f""(0)=1,... =

z  zz z3 v ZTM
f@=1+5+ S +5+ =00

c) f(z)=cosz
f'(z)=—sinZ f(z)=—-cosZ {7 (z)=sinZ """ (z) =cosZ
f0)=1,f(0)=0,f"(0)=-1,f""(0)=0,f"""(0)=1,... =

Z2 Z4 _ . ZZTl
(@)= 1-5+ 5 4= 5 (1)
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d) f(z)=sinz
f(zy=cosZ f'(z)=—sinZ " (z)=—cosZ f"""(z) = sinZ
f(0)=0,f (0)=1,f "(0)=0,f " (0)=-1,f"""(0) =0,... =

ZZTL+1
2n+1)!

z z3  z® .
@=5-F et = Lnao(=D"

e) f(z) =coshz
f'(z)=sinhZ f7(z)=coshZ f7'(z)=sinhZ f""’(z) = coshZ
f0)=1,f(0)=0,f""(0)=1,f""(0)=0,f""(0)=1,... =

_ VA A v
f(Z)—1+E+Z+"‘—Zn=Om

f) f(z) =sinhz
f'(z)=coshZ f7(z)=sinhZ 7 (z)=coshZ f""(z) =sinh Z....
f0)=0,f(0)=1,f°(0)=0,f""(0)=1,f""(0)=0,... =

_ VA Z3 ZS _ . Zzn+1
f(z) = 1! T 3! T 5! T = Z”=°(2n+1)!

3.4 - Laurent Series and Residue

Laurent Series

There are many applications where power series expansion of f(z) may have a center at which
f(z) be singular. If functions f(z) ceases to be analytic at a point zo, then zo is referred to as a
point of singularity. In such cases Taylor Series expansion does not apply. Instead a different
series known as Laurent series is utilized.

f(z) = Z?lo=—00 an(z — ZO)n = Zr_li—oo an(z — Zo)n + 2%0=0 an(z — ZO)n =
a_p a_

a-3 1 — — 24 ...
(Z—Z0)3 + (Z—Zo)2 + 7—7, + Ao + al(Z Zo) + a; (Z Zo) +

It is noted that Laurent series is an extension of Taylor series which includes negative powers of
(z - 20).

Theorem 3.6 Laurent’s Theorem
Let f(z) be an analytic function everywhere in a closed domain D as shown in Figure 3.5. The
function f(z) can be represented by

f(2) = Xm0 an(z = 20)" = Xnt-wo an(z — 20)" + Xizoan(z — 29)" =

a_3 a_z a_l - —_— 2 cee
Tt a Yz Y2z T % T a1(z — z) + az(z — zp)* + (3.33)
where
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_ 1 g _Jf@
an= —¢ AT (3.34)
C

C is any closed curve which is completely in D and in counterclockwise direction.

Figure 3.5 Domain D and Point of Singularity zo
Proof:

Let us consider two concentric circles C; and Cs with center at zo and radii r1 and r» as shown in
Figure 3.6. We also consider cuts between C; and Cz as we did for the case of doubly
connected domain (Figure 2.24). Based on Cauchy’s Integral formula, we have

_ 1 fw) 1w
f(z) = 2mi 9S w-2z dw + 2mi Sﬁ w-z dw
C: Cs

()

Figure 3.6 Laurent Series-Applying Cauchy’s Integral Formula

With curve C; the same as C; but in opposite direction (counterclockwise), we have

w w w
f(z) = w— ¢ aw zmgif( I8 dw + — gSf( daw  (3.35)

C, C1

Zm

Following similar procedure as for the case of Taylor's Theorem and using geometric series of
equation (3.27), for the first integral we write
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11 1 1 Z-Zy Z-Zo\* L (Z=Zy \"
(w-2) - (w=zp) [1- %] (w-2zp) [1 + W—Z, + (W—ZO) ot (W—ZO) 1+
_ n+1
1y (2% (3.36)

(W—Z) (W=Zy)n+1
and for the second integral

1 1 1 1 w-z WZ w—Zy \"
= = [1+—= 0)+ +< 0)]+

(z-w) — (z-20) [1-F=52]  (z=70) 77, Z=%o

1 (W_Zo)n+1
(Z—W) (Z—Zg)n+1

(3.37)

Substituting equations (3.36) and (3.37) in equation (3.35) results in

f(z) = — éf(W) [ +Z—Zo (Z Zy )2 Tt (Z Zo) 1+ F(w )(le) (Z_Zo)n+1}dw

2T W-2Z, (W—2Zy)n+1
C:
f(W) W—Z0 W-Zy .o W-2Z, 1 | (W=zy)"*1
2111 ﬁ Z—Zy + ( ) Tt ( ) ] + f(W)(Z_W) (Z-Zp)n+1 }dW
C:
(3.38)
In f(z) above, we define Rn1(z) and Rn2(z) as
Ru(2) = 7§ f (W) () L2 gy (3.39)
nt w-z’ (W—-zy)n+1 :
C:
(Z-zy)™ 1
Rni(2) = —gﬁf( )(W D) Wz dw (3.40)
C:
1 1 (W=zy)"*?
R2(2) = = $ fF(W) (=) (Z_Z;’)n“ dw (3.41)
C.
_ 1 (W—Z )77.+1
an(Z) = Wéf(W) (Z_—‘;/V)dw (3.42)

C,

Referring to equation (3.39) and Figure 3.5 with z located between concentric circles and w on
curve C1, we have

|z —zp| < |w — 2| =

With |f(w)] < M and length of curve C; as 211r1, we can use ML inequality.

Z— Zo |n+1 <1.
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Z-z)"t 1 1 ,7-Z
Rua(2) —|—5{5f( )(W 2 - zo)n“d | < oM il 1M 21
Ci

Z- Zo |n+1

As n—oo, the | — 0 and as a result Rn1(z) approaches zero.

Referring to equation (3.41) and Figure 3.5 with z located between concentric circles and w on
curve C,, we have

w—z4] < |z — 2| =

W—-Zy \n+1
|—Z_ZO | <1
With [f(w)] < M and length of curve C; as 2T1r,, we can use ML inequality.

1 (Z_Zo)n+1

1 1
Ru@) =1 § F ) ) 20 dw] < 2w
C,

1 IW—ZO
|Z-wW|' Z—Zy

|n+1. 27.”,.2

w- ZO |n+1

As n—oo, the | 5= — 0 and as a result Rn2(z) approaches zero.

Hence from equation (3.38) we have

f(W) Z—ZO Z— ZO 2 n
i(z) = 2mi 9SW zO 1+ w-2, ( ) +o-t ( —Zo) ] dw
C
f(W) W_ZO W-Zy\2 -Zo\"
Zm ¢Z Zo Z—Zo + ( ) + -t ( —Z, ) ] dw (3.43)
C

This proves the Laurent’s theorem. Furthermore since f(z) is analytic in domain D everywhere
between the concentric circles C; and C,, these curves can be replaced by a closed
counterclockwise curve C as shown in Figure 3.5.

It is important to note that equation (3.34) is hardly used to evaluate the coefficient of Laurent
series. We usually acquire Laurent series by employing other series for which we are familiar
with their power series expansion. Furthermore a given function f(z) can be represented by
different Laurent series depending on how the region of convergence is defined for that
particular f(z). This is illustrated in the following examples.

Example 6: Evaluate Laurent series for the given complex functions.

a)f(z) = Ztcosz b) f(z) = Ze?/? 0) f(z) = _TZ+26
- 72 - T 72427-8
a) f Z+cosZ
(==
11 1, z?
f(z) = —(Z+ 1——+ + w)=st oot ot 1z| >0
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2
b) f(z) = Ze?/? =Z 1+(1L|)+ o |=Z4+ 24+ =+

>
2! 3! 2!7 3'22 + |Z| 0

Q) f(2) = —2228 lying partial fracti
(2) = 771278 applying partial fractions

I S

@ =75~ 71

We can consider variety of regions of convergence for which Laurent series can be

represented.

i) 2<|z|<4
4 4 4 2 2\2  r2)\3 4 8 16
zz-z:z—'{1+§)*6)+(ﬁ +”]—z+ﬁ+;+“'
-5 _ -5 Z AYENA 5 5z 522
7 A D Ff(z*'ﬁ)‘(ﬂ +”]——z+;—z:+“

2
()=t ot o422 2 2
VA VA VA 4 16 64

i) |z] <2
4 4 AN z2
72 _2(1_5) —2[1+ +(E) +(E) + ]——Z—Z——+
-5 .
—— = same as (i)
Z+4
f)=—2—z-Zp.. S48 52, _ 13 uz szt

2 4 16 64 4 16 64
iii) |z| > 4

4 .
— = same as (i)
zZ-2

s Q O - ] F e

4 8 16 5,20 80
f(z):z+;+;+..._2+;_;+... - — = —— 4.

1 .
Example 7: Evaluate Laurent series for f(z) = TN the annulus 0 < |z + 1| < 2.

S 1 chu) NCALE VR
(&= 5= mam = oy L+ (5) + G+

Residue

We discussed Laurent series expansion in the previous section.
f(2) = Y- an(z — 29)" = Zﬁi—oo an(z —2zo)" + Yp—oan(z — z9)" =

a_; a_,
(Z-7Zp)3 * (Z-2p)?

+ ap + a,(z —zy) + ay(z — zy)? +

The coefficient of Laurent series is given as
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-1 @)
an=-—9¢ -z 4z We also note
C
-
a1=-—¢ f(z)dz (3.44)
C

The coefficient a.; is defined as the residue of f(z) at the point of singularity zo. We also note

residue of f(z) is simply the coefficient of ~ 1Z in Laurent series. The importance of residue
—40

should be clear from equation (3.44) and will be fully utilized.

3.5 - Poles and Zeros

Points of Singularity and Poles of f(z)

We saw in Section 3.4 that when a function f(z) ceases to be analytic at a point zo, then zo is
referred to as a point of singularity and we say f(z) is singular at zo. If f(z) has a singular point at
Zo, but there are no other singular points of f(z) in some neighborhood of zo, then z, is known as
an isolated singular point. Essential singularity is when Laurent series contains infinite negative
powers of z — zo. When Laurent series contains a finite number of negative powers of z — zp as
shown below, then z = z, is defined as the pole of f(z).

a_

_ a_m a_3 a_ 1 _ — 24 ...
f(z) = zzon Tt ezt a2y Tz T @ a,(z — zp) + ax(z — zp)* + (3.45)

If a.m # 0 in equation (3.45), the pole at z, is said to be of order m or repeated m times. A simple
pole or a pole of order 1 is when all the coefficients of negative powers of (z — zo) in a Laurent
series are zero, except a .1 as shown in equation (3.46).

f(z) = Z“_-Zlo + ag + ay(z — z) + ay(z — 75)% + - (3.46)

Zeros of f(z)

The function f(z) is said to have a zero at zo, if f(zo) = 0. Similar to poles, zeros can be simple or
of order 1 or repeated m times or of order m. A function f(z) has a zero of order m at z= z, if

f(z)=0, fOz)=0, §@z)=0,.. f"Dz)=0, but fM(zg) 0

The poles and zeros have many different applications in science and engineering. Some such
examples include Control Systems, Robotics, Filter Design, etc.
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Example 8: Evaluate all the poles and the zeros of H(z) and indicate the order of each.

__ (@+n@E-1)? _z-1
3)H(@) = Z2(Z2+6Z+25)3(Z+ 5) b)H() =77
2 N2
a) HE) = (Z%+ 4)(Z-1)

Z2(Z2+6Z+25)3(Z+5)
Zeros: +i2 (order 1 or simple), 1 (order 2)
Poles: 0 (order 2),—3 + i4 (order 3), =5 (order 1 or simple)
b) H(z) = 7=
Zeros: 1 (order 1 or simple)
Poles: t+i2nm (order 1 or simple)

3.6 - Evaluation of Residue

In Section 3.4 we saw Laurent series as

f(2) = Eiemco an(z = 20)" = Enl-co @n(z — 20)" + Titmo @n(z — 29)" =

a_sz a_p a—q _ — 2 cee
(Z—ZO)3 + (Z—Z0)2 + 77, + (2N + aq (Z Zo) + a, (Z Zo) +

and defined residue of f(z) at zo as

_ 1

a1=—— ¢ f(2)dz
C

1

We also noted residue of f(z) to be the coefficient of P
—40

82

. To evaluate residue of f(z), we must

consider two cases. In Case 1, we consider f(z) to have a simple pole at zo. In Case 2, we
consider f(z) to have a repeated pole of order m at zo. In either case the objective is to evaluate

a-1.

Case 1 — Residue of f(z) with a Simple Pole
Using Laurent series, we have

f(2) ==+ ay+ a,(z —2zy) + ay(z — 29)% + - (3.47)

Z-Z,
Multiplying both sides of equation (3.47) by (z — zo) results in

(z—20)f(2) = a_y +ag(z—20) + a1(z —2p)* + ay(z — 29) + -
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After substituting z = zo on both sides, we have

Res f(2)|z=2, = Jim (Z = Zo)f (2) (3.48)

This process is not so much different from partial fractions. We now consider an alternate
method of evaluation residue of f(z) at zo.

An Alternate Approach:

Consider f(z) represented as f(Z) = %. Consider expanding D(z) in Taylor series at zo.

NZ) _ N(Z)
D@  D(Zy)+(Z- Zo)D' (Zo)+(5;) (Z=20)2D"" (Zg) +--

f(2) =

Since f(z) has a simple pole at z = zo, this implies D(zo) = 0. Applying equation (3.48), we write

N(Z)
(Z— Zo)D (Zo)+(%)(Z~Z0)*D  (Zo)++
. N(2)
= lim — T =
2520 D (Zo)+(5)(Z—Z0)D (Zg)++

Res f(Z)|Z=Zo = Zli_)I?O(Z —Zy)

Res f(2)l 7=z, = g(é‘”) (3.49)
0

Equations (3.48) or (3.49) can be used to evaluate the residue of f(z) at zo. The preference of
using one or the other has to do with how the denominator is represented. If the denominator is
already in factored form, perhaps equation (3.48) is easier to use. However if denominator is not
written in factored form, but all the simple poles are known, perhaps equation (3.49) should be
utilized. For example if D(z) = z* - 1 with roots as -1, 1, -i, and i either of the equations can be
used in finding the residues. However if D(z) = e - 1 (with roots as +i2nm), using equation
(3.49) should be considered.

Case 2 — Residue of f(z) with a Repeated Pole of Order m
Using Laurent series, we have

— _am a-(m-1 a-; a1 _ — 732 4+ ...
f(Z) - (Z=Z)™ + (Z—Zo)(m_l) + + (Z—Zo)2 + 77, + Ao + al(Z Zo) + a; (Z Zo) +
(3.50)
Multiplying both sides of equation (3.50) by (z — zo)™ results in
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(z=20)"f(2) = ALy +a_gno1)(Z2—20) + -+ a_(z—2)" *+ a_y(z —2zp)™ ' +
ao(Z - Zo)m + al(Z - Zo)m+1 + az(Z - Zo)m+2 + .-

If we substitute z = z, at this stage, we obtain a.m. To evaluate a.; we take the derivative of both
sides with respect to z, (m-1) times and then let z = zo on both sides. All the terms prior to a1
vanish and all the terms after a., contain (z - zo) to a power 1 or higher and as a result are
eliminated when z = z is substituted. Hence we have

O (2= 20 fezy = (m—Dla_y = (m— D! Res f(Dlsoz, or
Res f(Dlz=z, = Gy Jim Gt [ = )" () (3.51)

Example 9: Evaluate the residues at all the poles of f(z).

(Z2+4) 2+ )?
Q)f(z) = Z(ZZ+1) D2 = e
2 2 2
wigeExD _ @ @)

Z(Z2+1)  Z(Z-D)(Z+0)  (Z3+42)
Poles: 0 (order 1), —i (order 1),i (order 1)
Using equation (3.48)

(Z%+4) _

Res f(2)|z=0 = llm Zf(z) = llm (22+1)

_ (z +4) _ 3
Res f(2)|z=; = Im(Z ~ Df(2) = im {8 = 7

_ (Z2+4) _ 3

Res f(2)|z=—i = hm (Z + l)f(z) = 11 m = 2
Using equation (3.49)
N(z) _ (Z%+4)
D'(Z)  (32%2+1)

_ N(0O)
Res f(Z)|Z=0 - D'(0) -

_ N® _ 3
Res f(Z)|Z=i - D' (i) - 2

_ NGDH _ 3

Res f(2)lz=-i = ps= =2

2 2

Z+1 Z+1
Z(Z°—4Z+4)  Z(Z-2)
Poles: 0 (order 1), 2 (order 2)
Using equation (3.48)
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(Z+1
Res f(2)lz=0 = lim Zf(2) = lim - 2;2 =1

Using equation (3.51)

: —ﬂ@—af@nﬂzﬂﬂ“”]

Res f(2)|z=2 = (2-1)! z—>2 dz

. 22(Z+DH)—-(Z+1
= lim] 2( )]=z
- VA

2
Example 10: Evaluate residue of f(z) = % atz=0.

Using equation (3.49)
N(z) _ Z?+2Z+10
p'(z) eZ

N(O
Res f(2)|z=0 = i = 10

3.7 —Residue Theorem

Theorem 3.7 Residue Theorem

Let C be a simple closed path in counterclockwise direction entirely in a simply closed domain
D. If f(z) is analytic everywhere on and inside C except at a finite number of points of
singularities at z1, z»,....,zm all located inside C, then

45 f(2)dZ = 2mi Y%, Res f(2)|z (3.52)

Figure 3.7 Closed Path Containing Singularity Points z1, z»,....,Zm
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Proof:

Let us enclose each point of singularity Z; with a circle C;” as shown in Figure 3.8. The radius of
each circle is selected small enough such that all the m circles are inside curve C and are
completely separated. These m circles (C1*, C2*, ...., Cy*) are in clockwise direction as shown.
Let us now consider a cut from curve C to each of these m circles in both directions.

Figure 3.8 Closed Path C Containing Singularity Points z1, z5,....,Zm

The function f(z) is analytic everywhere in the multiply connected region which bounded by C,
Am, Cn*, Bm, ...., Az, Co*, B2, A1, C1* B:1. Applying Cauchy’s Integral theorem and considering
the line integrals due to the cuts cancel each out, we have

$f(2)dz+ $f(2)dz+ -+ f(2)dz+ §f(z)dz=0 =
C Cm* Co* Ci*
$f(2)dz = —$f(2)dz — - — $ f(2)dz — § f(2)dz =
C Cn* Co* C.*
$f(2)dz=$f(z)dz+ -+ $f(z)dz+ ¢ f(z)dz (3.53)
C Cnm C Ci
In equation (3.53), Cn, ..., C2, and C; are the same as Cn*, ...., C2*, and C1* respectively but in

counterclockwise direction. Using Laurent series and results obtained in Section 3.5, we write

¢ f(z)dz = 2miRes f(2)|z = zy + -+ 2WiRes f(2)|z = z, + 2miRes f(2)|z = z
C

¢ f(2)dZ = 2mi Y o Res f(2)|z = z
C
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Example 11: Evaluate the following integrals.

Z2+4Z+5 . _ .
a) gﬁ(z V1o C:lz-1=15 Counterclockwise
z+2 . .
b) 3ﬁz2(z_5) dz C:|lz-il=15 Counterclockwise
C
10 .
c) ﬁz(st) dz C:|lz-1]=15 Counterclockwise
C
d) gﬁC(;Z dz C:|lz|=5 Clockwise
C

)Sﬁ Z?%+47Z+5
(z 3)2(Z2+16)

poles atz =3, 3, —i4, i4 are all outside C

z+2
b) $——— s dz
C
pole of order 2 at z =0 is inside C and simple pole at z = 5 is outside C

$—22_dz = 2mi Resf(z)|z = 0

Z2(Z-5)
2mi —— lim <[22 ] = 2mi (52) = 2°

(2-1)! z-0dz " 7?(Z-5) 25 25
c) 352(2130_8) dz z(z3—8)=0 = simplepolesat: z = 0,2,2e2™/3 2¢i4m/3
C
simple poles at z = 0, 2 are inside C and simple poles at z = 2¢'2%/3 and 2¢™™/3 are
outside C
452(23 5 dz = 2mi{[Resf(2)|z = 0 +[Resf(2)|z = 2}
C

i5m

. 5 5
]— 27TL(—1+E) = ——

=2mi [ lim + lim
7504Z3-8 72 473-8

d) §<57dz
C
pole of order 3 at z =0 is inside C.

d2
lim

ﬁczszdz = —2mi[Resf(z)|z = 0] = —2mi 7 (725 = —2ni (_ %) =m

3 (- 1)' Z-0dz? 73
C
1 1
one should note, CZ—SSZ (1——+ + ) = (Resf(2)|z = 0) = —n =3
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3.8 — Applications of Residue Theorem to Real Integrals

In this section, we consider a few applications of Residue Theorem involving real integrals.

| - Integral of a rational function of cos 8 and sin 6 from 0 to 27
Consider the following integral

JZ" R(cos 8, sin 0)d6 (3.54)

The integrand is a rational function of cos 8 and sin 8 and the lower and upper limits of
integration are from 0 to 2m respectively. To apply Residue Theorem, we define z as

z=¢® (3.55)
We note that as 8 is varied from 0 to 2, the variable z as defined by equation (3.55) represents

one complete revolution of a closed circle of radius 1 with center at the origin starting at z = 1.
Furthermore cos 6, sin 6, and db6 in equation (3.54) can be written as

1 i —i 1 —
cosB=_(e +e ) = SZ+z7h
. _ 1/ —igy _ 1 -
S|n9—z(?‘9 —e ) = =@ -z (3.56)
d6 =dz/ie!® = dz/iz

Substituting equation (3.56) in equation (3.54) results in

¢ f(2)dz C: |Z| = 1 in counterclockwise direction
C

Example 12: Evaluate the following integrals.

0 10-6cosf

2mr dé 1 1 1 1 1 1
Jo 10-6cos@ Sﬁ1o—3(z+z—1)Edz T 45322—1oz+3 dz = =3 z2-()z+1 dz

C C
10 .

z% — (?) z+1=0 = simple poles at: z = 1/3, 3

2T ao 1 , 1 =21 . 1 T
I Tomscoss = —i 2miResf @)z = 7] = —~[lim ] = 3

3 3
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Il — Improper integral of a rational function f(x) with degree of denominator at least 2 more than
the degree of numerator. Furthermore denominator of f(x) contains no real roots.
Consider the following integral

J2 f)dx (3.57)

The integrand is a rational function x and the lower and upper limits of integration are from —co
to oo respectively. To apply Residue Theorem, consider the following integral with closed path C
consisting of real axis from -r to +r and upper semicircle with radius r (curve C;) as shown in
Figure 3.8. We consider r— o and as a result path C encloses the entire upper half plane.

$f(z)dz=[ f(2)dz + rll_)n; f_rrf(z)dz
C C: (3.58)

= 2mi Y, Res f(z)|@poles in upper half plane

A Im

Ci

[ n

Figure 3.8 Closed Path C

Referring to the integral on semicircle portion of equation (3.58), we have
M
[f(2) < =

Since degree of denominator is at least 2 more than the degree of numerator and M; is a
constant. We also have

L = length of semicircle = rr

Using ML inequality, we have

[ f(@)dz| < ZF.7r

Ci
As r— oo, this integral approaches zero. This implies
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lim f_rrf(z)dz = [7 f(x)dx = 2mi ¥, Res f(2)|@poles in upper half plane (3.59)

Example 13: Evaluate the following integrals.
o) d
J- ~ = f(2) =

00 (x2+42x+42)(x2+4)?

1
(Z242Z+2)(Z2%+4)2

Poles in the upper half plane: -1 + i (simple), i2 (order 2)
_ _ _ 1 _ 1
Res f(Z)|Z=—1+i - hm (Z + 1 l)f(Z) Z—> 1+l (Z+1+l)(Z2+4)2 - (32+i24)

Res f(D)lgeiz = Lz -2’ f @] = Jim L[

Si2dz b (724 2242)(Z+i2)
— lim [(zz+2)(z+lz)+2(z +2z+2)] _ 20-it6

(2-1)! Z—»LZdZ

i 2 = —
702 (Z242242)" (Z+i2)3 (64)(-16+i12)

co dx _ . 20—i16 23w
I = 2mi , — | ==
—0 (x2+42x+2)(x2+4)2 (32+i24)  (64)(—16+i12) 800

Il — Improper integral of functions f(x) cos wx and f(x) sin wx, where f(x) is a rational function
with degree of denominator at least 2 more than the degree of humerator. Furthermore
denominator of f(x) contains no real roots.

Consider the following integrals

f_cio f(x) coswx dx
(3.60)
ffooo f(x) sinwx dx

To simplify the problem, let us consider the following integral that contains both integrals of
equation (3.60) as noted below.

f_oooof(x) elw* dx = ffooof(x) coswx dx + iffooof(x) sinwx dx (3.61)
One may note that equation (3.61) represents Fourier Transform. We follow the same exact
procedure as the previous case except replacing f(z) by f(z) e!“?. Furthermore |e!“?| <1 and

using ML inequality, we have

| f(e@?dz | < 2 (1).7r
C:

As r— oo, this integral approaches zero and we have

lim [7 f(2)e™*dz = [ f(x)e'“*dx
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= 2mi Y, Res f(z)e'“?|@poles in upper half plane (3.62)
Using Euler’s equation and equating both sides of equation (3.62) results in

fjooof(x) coswx dx = =21 Y, Im[Res f(2)e'“?|@poles in upper half plane]
(3.63)
ffooof(x) sinwx dx = 2mY Re[Res f(z)e'“?|@poles in upper half plane]

Example 14: Evaluate the following integrals.

0 xsinxdx iz _ Ze'?
f—oo(x2+1)(x2+4) = f(z)e” = (Z2+1)(22+4)

Poles in the upper half plane: i (simple), i2 (simple )

ZelZ _ ie“l -1

iz = T o iz — L = = e_
Res f(Z)e |Z=l IZIE}(Z l)f(Z) e ;1_1’)1’11 (Z+0)(Z%2+4) i2(3) 6

iz, _ . iz _ 1 Zelz _i2ze? _ e?
Res f(Z)e |Z=12 - IZIE)I}(Z lZ)f(Z) e” = él_r)nl (Z2+1)(Z+i2) - (-3)i4 - 6

foo xsinx dx

— iwz : T, -1_ ,-2
o 241 (2 +8) 21 ), Re[Res f(z)e'®?|@poles in upper half plane] 5 (e e %)

%) xcosx dx
From example 14, we note f_oo_(xz+1)(xz+4) =
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CHAPTER 4

Linear Algebra
Matrix Theory

Overview

Section 4.1 begins with definition of matrices and basic operations. Determinant of a square
matrix is discussed in Section 4.2. System of linear equations is covered in section 4.3 and
solutions are obtained using Gaussian elimination method. Linear independence and
dependence and rank of a matrix is presented in Section 4.4. In section 4.5, inverse of a matrix
is discussed. Section 4.6 presents solving linear system of equations using inverse of a matrix
and Cramer’s rule. Section 4.7 defines orthogonal matrices.
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4.1 - Matrices and Basic Operations

We begin with the definition of matrices and extend to other definitions related to matrices. The
fundamental operations of matrices are also discussed in this section.

Matrices

A matrix is a rectangular array of elements, numbers, or functions defined as

a1 42 - aqn
_lazyy Q22 - a,

A= : . . = (aij)mn 4.1)
Am1 Am2 - Qg

Matrix A is an mxn matrix (m rows and n columns). This indicates the size of the matrix. The
elements of the matrix are designated by a;;, where i is the row number and j is the column
number. In other words q;; is the element of the matrix which is in the i-th row and j-th column of
the matrix.

is a 2x2 matrix

is a 3x2 matrix

C=|sinx 4 12
L 0 x® cosx

is a 3x3 matrix

[ 2 X —1]

Square Matrix
If m = n, the matrix is referred to as an mxm square matrix or a matrix of order m.

a;; %2 A1m
a
e R G (4.2)
am1  Am2 Amm
The main diagonal of a square matrix is the one that contains elements ai1, az, ... , amm. FOr
example
3 2 -1 1.0 0 115 23 g é
Ai=|4 1 8 A=10 1 O Az ="
4 2 10 0 0 1 9o 47 1 1
11 -1 -3 3

A:1 and A; are square matrices of order 3 and As is a square matrix of order 4.
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If m =1, the matrix is referred to as a 1xn or simply a row vector. If n = 1, the matrix is referred

to as a mx1 or simply a column vector.

Row Vector: [a11 aip; ° Qan]
a11
Column Vector:
Example of a row vector: [1 0 -2]
161
| 9|
Example of a column vector: |—1|
3
| 10]

Basic Matrix Operations

Equality
Two mxn matrices A = (a;j)mn and B = (b;;)mn, are equal if and only if

(aij)mn = (bij)mn

Example 1: Given A = B, evaluate a, b, ¢

a+3 4 10+ ¢ _[5 4 -5
A= [ b—2 9 ] B_[O 12 ]
A=B =
a+3=15 a=12
b-2=12 b=14
10+c=-5 c=-15

Addition
Given A = (a;j)mn @and B = (b;j)mn, then

C=A+B (ij)mn = (@ij + bij)mn

Example 2:
a) Evaluate A + B

b) Evaluate A + A
c) Evaluate A + C

Ali Amini, Ph. D. Professor of Electrical & Computer Engineering
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1 3 [—4 2.3 1 2
A=|-2 3 B=|8 1 c=| g
0 9 5 34
[—3  5.3]
a) A+tB=1|6 4
[ 5 12.4]
[ 2 6
b) A+tA=|-4 6
[ 0 18
c) A+C Cannot be added. A is 3x2 and C is 2x2
Subtraction
Given A = (a;j)mn and B = (b;j)mn, then
C=A-B (€ij)mn = (@ij = bij)mn

Example 3: Evaluate A - B

-3 3 7 -1 0 1 -10 -5
4 3 8 B=12 6 20 -2
5 1

8 10 3 -1

-3 2 17 4
A-B=| 2 -4 -17 10

-13 -2 -2 -5

Multiplication of a Matrix by a Scalar
Given A = (a;j)mn and a scalar k, then

ka11 kalz kaln
ka kQzz - ka
KA = 521 o 2 = (kai)mn
kan, kamy ... kapn
Example 4: Evaluate -2A
_1 3 -4
A=l 55 Tl
_ o1 3 —A4j_[-2 -6 8
=20y 5 TlElD 0 Ll
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Multiplication of Matrices
Let A be an mxn matrix and B be a nxp matrix, then C = AB can be evaluated and C is a mxp
matrix and is defined as

C=AB withi=1,2,...,m and j=1,2,...,p
Cij = Xk=1Qikbkj = Qirbyj + aizbaj + -+ + ainby; (4.9)

The number of columns of matrix A(p) must be the same as the number of rows of matrix B(p)
to multiply A by B. Furthermore it should be clear to evaluate c;;, the i-th row of matrix A is
multiplied by the corresponding elements in the j-th column of matrix B as shown below

[01)]
cj=lan @z ™ ain]ib?j | = Qirbyj + apbyj + o+ Ainby; (4.10)
by
We can conclude that matrix multiplication is not commutative. Also two square matrices are

multiplied, they have to be of the same order.

Let A be an mxn matrix and B be a nxp matrix

all a12 aln [bll b12 blp]
a Az - a b b w b
A= 521 : : ?n = (aij)mn B= ?1 :22 . ?p = (bij)np
Am1 Am2 - Amn [bnl an ban
then AB can be written as
AB = [Ab1 Ab .... Abp] (4.11)
where b1, by, ...., bp are column vectors of B matrix as shown below.
b11 b1z [blp]
b
by = b?l b, = b?z ..... bp = | fPi (4.12)
bnl an lban
Example 5: Evaluate AB
1 3
1 3 -4
a) A=| | 8= [—z 3]
2 5 6 0 9
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_ [(1)(1) +B)E2)+(HO0) (LB +B)B)+ (—4)(9)] _ [—5 —24
( 12

2)(1) + (=5)(=2) +(6)(0) (2)(3) +(=5)(3) + (6)(9) 45
1
b) A=]2 B=[2 -4 3]
5
1 2 -4 3
AB=2][2 —4 3]=[4 -8 6]
5 10 —-20 15
1 3
1 3
c) A= Bz[—z 3
% 3] e=|2 2

AB cannot be performed. A is a 2x2 and B is a 3x2. Number of columns of A is not the
same as the number of rows of B.

Transpose of a Matrix
Let A be an mxn matrix as shown in equation (4.1). Transpose of A is denoted by AT and is
defined as

aiq az1 Am1
AT = a12 a22 am2 (4 13)
aln aZn amn

As can be observed the first column of A is the first row of AT, second column of A is the
second row of AT and so on. Hence the rows and columns are exchanged between A and A'.
From this definition it should be clear that

(AN = A (4.14)

Example 6: Evaluate AT

97

_[10 -5 =7
) A= [12 —9 16
10 12
AT=|-5 -9
-7 16
10
b) A=]-2
5
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AT=[10 -2 5]

2 -4 3
c) A=14 -8 6]
10 -20 15
2 4 10
AT=|-4 -8 —20]
3 6 15

Conjugate of a Matrix
Let A be an mxn matrix. The conjugate of A is denoted by A and is defined as

A= (aij)mn
A= (aij)mn (4-15)
This indicates the elements of A and A are complex conjugate of each other. Furthermore if

A = A, then A is a real matrix.

Example 7: Evaluate 4

_5—i i3 —-7-i2
A‘[12 2+i3 —1+i]
— _[54+i —i3 —7+4i2
A‘[12 2—i3 —-1-—i

Tranjugate of a Matrix
Let A be an mxn matrix. The Tranjugate of A is defined as(A)"and is defined as

A_: (aij)mn
A" = @)nm (4.16)

We note that (A)” = AT.

Example 8: Evaluate (4)7

_[5—i i3 -7 —i2
A_[12 2+i3 —1+i]
_ _ 541 12
A)T=AT=( -3 2-i3
—7+i2 —-1-i
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Properties of Matrix Addition
Let A, B, and C be mxn matrices and O designate a zero mxn matrix.

A+B=B+A Commutative
(A+B)+C=A+(B+0C) Associative
A+0=A Additive Identity
A+(-A)=0 Additive Inverse
(A+B)"=AT+BT Transpose of Sum

Properties of Matrix and Scalar Multiplication

Let k; and k; be a scalars. Let A, B, and C be of the proper size so each operation can be
performed. For example for addition matrices must be of the same exact size and for
multiplication the columns of the first matrix must be equal to the rows of the second matrix.

(k1 + kA = kiA+ koA Distributive

ki(A + B) = kiA+ kiB Distributive

(kik2)A = ki(k2A) = ko(k1A)

1A=A

ki(AB) = (k1:A)B = A(k:B)

AB # BA Commutative

A(BC) = (AB)C Associative

A(B +C)=AB + AC Distributive
(A+B)C=AC+BC Distributive
(AB)"=BTAT Transpose of Product

(klA)T = klAT

It is already indicated that AB # BA. One can make up an example that commutative law of
multiplication applies. However as an example if A is 3x4 and B is 4x2, AB can be evaluated,
but BA cannot even be calculated. Another rule of algebra that does not apply to linear algebra
is AB = 0 does not suggest that either A = 0 or B = 0. In fact neither A nor B need to be a zero
for the product to be a zero matrix.

Definition of Some Important Matrices

Zero or Null Matrix

A zero or a null matrix is a matrix whose elements are all zero. This matrix is denoted by 0.Here
are some examples

0=[0 0 o]
[0 0 O
0=(o o0 0]
0 0 O
[0 0
0=]0 0
0 0
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Diagonal Matrix
A square matrix whose elements above or below the main diagonal are all zero. Here are some
examples

o 22

300
0 0 O

0 0 4

Scalar Matrix
A diagonal matrix whose diagonal elements are the same scalar a. This matrix is denoted by S.
Here are some examples

_Ja O

S_[O a
a 0 O

S=|0 a 0
0 0 a

The pre-multiplication or post-multiplication of a matrix A by a scalar matrix when the matrix
sizes allow it is the same as multiplying matrix A by a constant. For example

_fa 011 5 2 a 5a 2a
SA = [0 a] [3 ] [Ba 8a 9a] aA
1 3 a 0 O 3a 5a
AS=1|6 7 0 a O 7a 2al|=aA
-1 -2 0 0 a —2a 9a
If Aand S are square matrices of the same order, then
SA=AS=aA (4.17)

Identity or Unit Matrix
A diagonal matrix whose diagonal elements are all 1. This matrix is denoted by I. Here are
some examples

=[o 1

1 0 0 O
| = 01 0 O
10 0 1 0
0 0 0 1
Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
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Similar conclusions can be made as for the case of scalar matrix with a = 1. Furthermore if A
and | are square matrices of the same order, then

IA=AlI=A (4.18)
Symmetric Matrix

Matrix A is symmetric if transpose of the matrix is the same as the matrix (AT = A or a;; = ay;).
Clearly this requires the matrix to be a square matrix. Here are some examples

A= Tl
0 -3 4
A=[-3 0 0]
4 0 0

Skew-Symmetric Matrix

Matrix A is skew-symmetric if the transpose of the matrix is the same as the negative of matrix
(AT =-Aora;; = —aj). Clearly this requires the matrix to be a square matrix and the elements
on the main diagonal to be zero. Here are some examples

0 2 -8 5
-2 0 4 -4

A=l g —4 0 o
5 4 0 0
0 3 —4
A=[=3 0 o0
4 0 0

Hermitian Matrix

Matrix A is hermitian if transpose of the matrix is the same as the conjugate of matrix (AT = A or
aj; = a;;). Clearly this requires the matrix to be a square matrix and the elements on the main

diagonal to be real. Here are some examples

02 —3+4i2
A‘[—3—i2 10

2 i3 244
A=| -3 11 o0

2—i4 0 17

Skew-Hermitian Matrix
Matrix A is skew-hermitian if transpose of the matrix is the same as the negative of the

conjugate of matrix (AT = —A or a; = —a;;). Clearly this requires the matrix to be a square

matrix and the elements on the main diagonal to be pure imaginary or zero. Here are some
examples
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_ i2 3+i2

A_[—3+i2 0]
i2 54+i i5
A=|-5+i i11 =2

i5 2 —il7

Upper Triangular Matrix
Square matrix A is an upper triangular matrix if all its elements below the main diagonal are
zero (a;; = 0 for i > j). Here are some examples

2 5 —4
A=lo 11 o0

0 0 17

10 2 -8 5
1o o o0 -14
A=lo 0 6 o

00 0 4

Lower Triangular Matrix
Square matrix A is a lower triangular matrix if all its elements above the main diagonal are zero

(a;j = 0 fori<j). Here are some examples

S

-1 0 0
2 9 0
6

-3 8

A=

Submatrices of a Matrix
Submatrix of a matrix is any matrix obtained by omitting some rows or columns of the matrix. An
example of all submatrices of a 3x2 matrix A is shown below.

10 8
A=|-2 5
4 9
Submatrices:
10 8
3x2 -2 5]
4 9
[10 8
3x1 =21, |5
L 4 9
(10 8] (10 8] [—2 5
2x2 IR P S P I
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201 52 3 T 161 161 1G]
1x2 [10 8],[-2 5], [4 9]
ixt [10], 8], (21, [5), 41, 9]

4.2 - Determinants

Given an nxn square matrix A

aqq aiz Ain
a az2 - a

A= T T (4.19)
anl anz ann

the determinant of A is represented by det A or |A| and is a single number.

aiq 5V) A1n

a
detA=|Al= [Pt "2 v Gan (4.20)

n1 Gn2 - Qpp

Although the vertical lines in equation (4.2) are used to denote absolute value as well, this does
not imply that det A is positive. Determinant of an nxn square matrix A is written as

det A=|A|= Y¥7.a;; Gy i=1,0r2,...,0rn (4.21)
or

detA=|A|= XYL a;Cj; j=1,0r2,...,orn (4.22)
The term C;; is known as the cofactor of a;jand is equal to

M;; is called the minor of a;; and is the determinant of remaining square submatrix of A after

deleting the i-th row and the j-th column of A. Hence equations (4.21) and (4.22) can be written
as
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det A=|A|= ¥}, (D" a;; M;; i=1,0r2,...,orn (4.24)

or

detA=|Al= L (- a; My j=1,0r2, ...,orn (4.25)

Equations (4.21) and (4.24) are referred to as evaluating det A by row expansion and equations
(4.22) and (4.25) are referred to as evaluating det A by column expansion. To better understand
these equations, let i =1 in equations (4.21) and (4.24).

det A = a11C11 + a12 C12+ cee + alncln (426)
= ap My —a Mo+ - + agn (=DM,

As can be observed ay, a4, ..., a1, are elements of the first row of A and M,;, M;,, ..., My, are
the corresponding minors of these elements respectively. Similarly, let j = 2 in equations (4.22)
and (4.25).

det A = a12C12 + a22C22+ b + anzcln (427)
= =@y Myp+az; Moy + - + ana (=1)* " My,

As can be observed a;,, a,,, ..., a,, are elements of the second column of A and M, ,,
M,,, ..., M, are the corresponding minors of these elements respectively. Clearly in computation
of determinants one should expand about a row or column with most number of zeros.

We now consider determinants of some square matrices.
Determinant of 1x1 Matrix

A =[aq,]
det A=|A]=ay;

Determinant of 2x2 Matrix

— [all alZ]
az1 A2z
using equatiorzl(4.246fl) andi=1
11 012
detA=|A| = Ay; Gyyl = (=D™tay My1 + (=DM 2a,M5= a1105,—0a12051

using equation (4.24) and i = 2

i1 Qg2
detA=|A]= I (=1 a1 Myy +(—1)?*2a55Ma5= —az1a15+ 02,014

using equation (4.25) and j =1

a1 Qg2
detA=|A| = Ay; Gpyl = (=D™lay My +(=1)*" a1 Mp1= 01105, —az1 a1,
using equation (4.25) and j = 2

_ _ |11 Q12| _ _
det A=|A|= Ay yyl = (=DM 2a1,Mip+(=1)** a5, Map= —a12051+a22a11

As can be observed equations (4.24) and (4.25) provide the same results regardless of what
values of i (1 or 2) or j (1 or 2) is selected.
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Determinant of 3x3 Matrix
aj; Qg a13]

A=|az1 Az az3
asz; Q3 0ass

using equation (4.24) and i = 1

a1 Q12 Qi3
det A = |A| = a21 a22 aZS‘ = (_1)1+1a11M11 + (_1)1+2a12M12 + (_1)1+3a13M13
az1 Az dszz
—a |a22 a23| —a |a21 a23| |a21 a22|
las, asz; 12laz; asz Blaz; as;

= a41(az2a33 — A3303;) — a13(A31033 — Ap3a31) + a13(az1a3; — Az2A31)

One can use i =2 or 3in equation (4.24) or j =1, or 2, or 3 in equation (4.25) and the results
would be the same. As observed a 3x3 determinant breaks down into three 2x2 determinants.
Similarly a 4x4 determinant breaks down into four 3x3 determinants and so on.

Example 9: Evaluate det A

_[5 4
a) A= e _2]
detAzg _‘é|:(5)(-2)-(4)(5)=-3o

2 -1 3
b) A=| 4 s 1]

HEE

- 5 1 4 1 4 5

detA=|4 5 1=(2)|O 7|—(—1)|_2 7|+3|_2 O|=(2)(35)+(28+2)+3(10)

2 0 7

=130

From equations (4.24) and (4.25) we can make some simple observations.

a) The determinant of a diagonal matrix is the product of the main diagonal elements.
b) The determinant of an identity matrix is 1.
c) The determinant of a triangular matrix is the product of the main diagonal elements.

2 0 0 3000 10 -2 50

0 5 0/=30 1.0 0[-4 0 -5 0|=-150

0 0 3 0 0 10 0 0 3
00 0 1

For (a) and (b), we can simply consider evaluating the determinant by expansion about any row
or column. For (c), we can consider evaluating the determinant by expansion about the first
column for an upper triangle and expansion about the first for a lower triangle.
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Properties of Determinants

1) Determinant of square matrix A is equal to determinant of AT ( |A[|=]|AT| ).

2) If all elements of a row or a column of a square matrix A is zero, then det A=0

3) If all elements of one row or column of a square matrix A are multiplied by k, then the
value of the determinant is multiplied by k.

4) If all elements of a square matrix A are multiplied by k, then the value of the determinant
is multiplied by k".

5) If elements of two rows or columns of a square matrix A are proportional or the same,
the value of det A = 0.

6) If any two rows or columns of a square matrix A are interchanged, the value of
determinant of the new matrix is negative of determinant of original matrix A.

7) If any row of a determinant is multiplied by a constant and added to the corresponding
elements of any other row, the value of a determinant is not altered. Similarly if any
column of a determinant is multiplied by a constant and added to the corresponding
elements of any other column, the value of a determinant is not altered.

8) If A and B are nxn square matrices, then det (AB)= (det A)(det B).

We now consider some examples applied to each of these properties.

Example 10:
2 -1 4]
a) A=[ 3 2 1| detA=2(-2)—(-1)(-3+2)+44) =11
-2 0 -1l
2 3 2]
AT=[-1 2 0 det AT=2(-2) - (3)(1)-2(-1-8) =11
4 1 -1l
2 10 -2
b) A=l0 0 0 Using equation (4.24) with i = 2 (expansion about the 2" row)
4 1 -1
detA=0
(2 -1 4
c) A= 3 2 1] det A = 11 from part (a)
-2 0 -1
[ 10 -5 20
B=] 3 2 1| First row of A is multiplied by 5 =
| —2 0 -1

det B = 10(=2) — ( =5)(-3 + 2) + 20(4) = 55

_[5 —4 _ _ _[25 =20
d) A—[3 -, det A =2 B_5A_[15 _10]
det B = — 250 + 300 = 50 = 2(5)?
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e) A=

2 -1 3
4 =2 6] rows 1 and 2 are proportional
-2 4 -1

detA=2(2-24)+1(-4+12)+3(16-4)=-44+8+36=0

[ 2 -1 4]
) A= 3 2 1 det A = 11 from part (a). Interchanging 1%t and 3" column.
-2 0 -1l
4 -1 2
B=[1 2 3 expanding about the 3™ row
-1 0 -2l

detB =-1(-3—-4)+(-2)(8 +1)=7-18 =-11

[ 2 -1 4
g A=[ 3 2 1] det A = 11 from part (a).
| —2 0 -1
Replacing the 3™ row by multiplying the 1 row by 2 and adding it to the 3" row.
[2 -1 4
B=|3 2 1] detB=2(14+2)—(-1)(21-2)+4(-6-4)=11
2 -2 7
_[2 -5 _[4 -2
h A=[%5 JandB=[; 7]
detA=18-15=3 detB=-8+6=-2 (det A)(detB)=-6
_[2 -=5114 -21_1-7 6 _ _
AB_[_3 9] [3 - _[15 _12] det (AB) = 84-90 = — 6

4.3 - Systems of Linear Equations

A linear set of equations with unknown xi, X2, ... , Xo» and known constant coefficients al-j(i =1, 2,
...,mandj=1,2,...,n)and known constants b; (i=1, 2, ..., m) is described by

ai1X1 + A12Xy + -+ AnXp = b1
ady1X1 + ArpX; + -+ AonXn = b2 (428)
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Ifall b; (i=1, 2, ..., m)are zero, the linear system of equations is called homogeneous. If there
is at least one b; # 0, the linear system of equations is referred to as nonhomogeneous. Clearly
a homogeneous linear system of equations with n variables xi, Xo, ... , Xn is satisfied if x; = 0 for
alli=1, 2, ..., n. This solution is referred to as the trivial solution of linear system of
homogeneous equations.

Solution of equation (4.28) consists of X1, X2, ... , Xa that satisfy every single equation of equation
(4.28). If there is no solution, then the linear system is called inconsistent. If there is at least one
set of X1, X2, ..., Xn that satisfies equation (4.28), then the linear system is said to be consistent.
It is possible that a consistent linear system can have infinite solutions.

Let us consider some simple example of a linear system of equations with a unique solution,
infinite solution, and no solution

a) X1+ 2% =2
—4x1 + 2%, =-12 =1

Xx1=2andxp=-2 unique solution satisfying both equations

b) X1 —4%x, =5
— 2X1+ 8%, = -10 =

X1 =4X+ 5 select any value for evaluate x;, then evaluate x;
infinite solutions satisfying both equations

C) X1 +2x2=4
5% + 10x, =-12 = no solutions exist

Defining matrices A, X, and B as

a;; %2 A1n Xq by

a az, a X b
A = | %21 . 2n x =|*2 B =|P2

Am1 Am2 - Qg Xn bm

then equation (4.28) can be written in matrix form as
Ax =B (4.29)

We also define the augmented matrix of the system which consists of matrix A and matrix B
placed in the last column to the right of A as

aiq aiz Ain bl
azr Q22 - Qyn | by (4.30)
Qnm1 Am2 - A bm
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This augmented matrix simply represents equation (4.28) with a;; as the coefficients of x; and
b; as the known constants. Since the augmented matrix of equation (4.30) represents the linear
system of equations and based on properties of equality, the following row operations can be
performed

1) Any row can be multiplied or divided by a nonzero constant.

2) Location of any row can be interchanged with any other row.

3) Any row can be replaced by multiplying any other row by a constant and adding it to that
row.

Gaussian Elimination Method

Gaussian elimination method can be used to solve equation (4.28). The procedure is to use the
augmented matrix of equation (4.30) and through row operations indicated above, write the
augmented matrix in what is referred to as row echelon form. The main objective is by using row
operations, transform the augmented matrix into a matrix with zeros below or above its diagonal
elements. This is to transform the augmented matrix to a matrix resembling an upper or a lower
triangular matrices. For the sake of understanding, let us assume that using row operations we
have managed to transform an augmented matrix for a linear system of equations with three
unknown variables x;, x,, and x5 into the following form

1 3 =-21]-9
[0 1 3|5 ] [modified A | modified B] (4.31)
0 0 112

This modified augmented matrix is known as row echelon form. Staring with the last row, we
write

X3 =2 X3 =2
Xo+3X3=5 =1 X2+3(2):5 Xo = =1
X1+ 3Xo —2X3 = -9 X1 + 3(—1) - 2(2) =-9 X1 = -2

Once the row echelon form is obtained, this last step is referred to a back substitution.
Depending on if there is unique solution, infinite solutions, or no solution the row echelon form
may appear different. Let us assume we are given m equations with m unknown.

a) All zero rows are below any nonzero rows

b) The first nonzero entry in any row is 1. This entry of 1 should appear with m — 1 zeros in
the columns to the left in the same row.

c) Inthe next row, the leading entry of 1 appears to the right of the 1 in the row above it.

In the modified augmented matrix of equation (4.31), it is for convenient in computations to have
the diagonal elements of modified A as 1. Certainly any honzero constants in these positions
serve the same purpose and the final solutions don’t change.
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Example 11: Using Gaussian elimination method solve for xi, X2, and Xa.
X1+ Xo+X3=2

2X1 — X2+ X3 =-1

BX1+ X2 + 6X3 =8

The augmented matrix is

1 1 1 2

2 -1 11-1

5 1 6 8
replace row 3 by multiplying row 1 by -5 and adding to row 3: B3)--51)+0B) =
replace row 2 by multiplying row 1 by -2 and adding to row 2: 2)--2)+®) =
[1 1 1 2 .

0 -3 —-1](-5 B> -5@+0B) =
0 —4 1 (-2

1 1 1 2

0 -3 -1 -5 ] (2)_>_§(2) and (3)—>§(3) =
0 0o 7/3 | 14/3

1 1 1 2

0o 1 1/3 5/3] This is in row echelon form. Performing back substitution =
0 0 1 2

X1+ Xo+X3=2
X2 +(1/3)x3 = 5/3
X3 = 2

X3 =2

xo = —(2/3) +5/3=1
x=—2-1+2=-1

The problem in example 11 has a unique solution. We now consider two examples, one with
infinite solutions and one with no solution.

Example 12: Using Gaussian elimination method solve for xi, X2, and Xs.

X1+ Xo+Xz3=2
2X1 —Xo + X3 = =1
4X1 + Xo +3X3=3

The augmented matrix is
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1 1 1 2
[2 -1 1 |-1

4 1 3 3
replace row 3 by multiplying row 1 by -4 and adding to row 3: B)--41)+@?3) =
replace row 2 by multiplying row 1 by -2 and adding to row 2: 2)-»-2D)+2) =

1 1 1] 27
0 -3 -1 |-5 B)--12)+3) =
0 -3 -1 [-5]

U
—_
—_
N

0 -3 -1 |-5 @) - -3 =
0 o0 0 0
[1 1 1 2
0o 1 1/3 5/3] This is in row echelon form. Performing back substitution =
0 0 0 0

X1+ X2+ X3=2
X2 +(1/3)x3 = 5/3

The problem in example 12 has infinite solutions. In the above two equations, any arbitrary
value for x; can be selected and x. and xs can then be evaluated.

Example 13: Using Gaussian elimination method solve for xi, X2, and Xs.

X1+ Xo+X3=2
2X1 —Xo+ X3 =-1
41 + X2+ 3x3=5

The augmented matrix is

1 1 1 2
2 -1 1 |1
4 1 3 5
replace row 3 by multiplying row 1 by -4 and adding to row 3: B)--41+3 =
replace row 2 by multiplying row 1 by -2 and adding to row 2: 2)--2)+2 =
1 1 1 2
[0 -3 -1 |-5 B)--12+B) =
0 -3 -1 1=-3
Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016

California State University, Northridge



112

1 1 1 2

[0 -3 -1 [-5 The last two rows of the modified augmented matrix =
0 o0 0 2

- 3X2 —X3=-5

—3X2—X3=-=-3

The problem in example 13 has no solution. This is clear from the above two equations or can
be observed from the last row of the modified augmented matrix indicating

OX1 + Ox2 + Oxz =2 or 0=2

Example 14: Using Gaussian elimination method solve the following homogenous equations for
X1, X2, and Xa.

3X1—2X2 +5x3=0
X1+ 2X—%x3=0

The augmented matrix is

3 =2 510

1 2> —1]o0 D) e (2 =
1 2 —-11]0

S @--3)+@) >
1 2 —-11]0 1

0 -8 slo 2) - —5(2) =
1 2 —-11]0

0 1 -1 O] =
X1+ 2X—x3=0

X2 — X3 = 0 =1

X2 =Xz and X1 =—Xo

It can be observed that even though problem of example 14 is homogeneous, it has other
solutions besides the trivial solution discussed earlier (X1 = 0, X2 = 0, x3 = 0). In this example x>
and xs are equal and x1 = — X2. This provides infinite solutions.
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4.4 - Linear Independence and Dependence and
Rank of a Matrix

Linear Independence and Dependence

Let us assume we are given m row vectors (1xn) or m column vectors (nx1) as shown below

Vl = [1711 vlz vln]
V2 = [le vZZ s UZn]
............................... (4.32)
Vm = [vml Uma2 vmn]
or
V11 V12 U1m
v v v
Vi = 21 vy = 22 ................... Vm=| 2™ (4.33)
Un1 Un2 Unm
Vectors vy, Va, ..., Vmare linearly dependent if and only if for given scalars ki, ko, ... , kn not all
zero, the following equation is satisfied.
kivi + kovot ...+ KnVm=0 (434)

Similarly vectors vi, Vo, ..., Vm are said to be linearly independent if and only if the only way for
equation (4.34) to be satisfied is to have k1= kz= ... =kn=0.

As an example the following row vectors v, vi, V3 are linearly dependent.

vi=[-2 1 4 -8]
V2=[ 1 0 2 —3]
vs=[-1 2 14 -25]

The linear combination of these three vectors kivi + kovao+ Kavs is a 1x4 zero vector for ky = 2,
kz = 3, k3 =-1.

2vi+3vo—v3=2[-2 1 4 -8]+3[1 0 2 -=-3]-[-1 2 14 -25]
=[0 0 0 0]

Below is an example of three column vectors that are linearly independent.

1 2 3 0
Vi 2[5], V2 2[—2 , V3 2[1] kivy + kovo+ kavs # |0
4 0 3 0

In other words, the only way the linear combination of these three vectors results in a column
vector of O isif ky = 0, ko =0, and ks= 0.
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As can be observed from the examples, it is hot obvious to detect if a given set of row vectors or
column vectors are linearly independent or dependent. However after rank of a matrix is
defined, more methodical approaches are used for this purpose.

Rank of a Matrix

Rank of an mxn matrix A is denoted by rank A. The rank of A is the maximum number of
linearly independent row vectors of A. It can also be stated that the rank of A is the maximum
number of linearly independent column vectors of A. This indicates that rank of A is the same as
rank of AT. Poof of rank A = rank AT is left as an exercise. We proceed to evaluate rank of a
matrix using two different method: 1) Row Reduction and 2) Determinant.

Evaluating Rank A by Row Reduction

Using row reduction and after transforming a given matrix to row echelon form, the rank of
matrix can be determined by examining the number of honzero rows. As an example consider
matrix A whose rows consists of vi, vz, and vz examined in an earlier example where we found
out the three row vectors were linearly dependent.

—2 1 4 -8
A=| 1 0 2 —3] De@ =

-1 2 14 =25

1 0 2 -3

-2 1 4 —8] @)-2D0+2)&B) - MD+B) =

-1 2 14 =25

1 0 2 -3

01 8 —14] B)->-22)+3) =

0 2 16 -28

1 0 2 -3

0 1 8 —14]

0 0 0 O

The rank of matrix A is 2 which is equal to the number of nonzero rows after A is transformed to
row echelon form.

We now consider AT.

—2 1 -1
r_| 1 O 2
A= 4 9 14 (1) e (2 =
-8 -3 =25
1 0 2
T 5 Ul @-20+@8&@ - -4+ B &M@ -8+ () D
-8 -3 =25
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(3)-»-22)+ ) &®H ~3(2)+ (4 =

wNE—R O
O AW

2
3
0

[N )

SCoor Coor

0 0

The rank of matrix AT is 2 which is equal to the number of nonzero rows after AT is transformed
to row echelon form. As expected rank of A is the same as rank of AT.

Evaluating Rank of A Using Determinant of A

Let A be an mxn matrix. The rank of A is k, if and only if there exists at least one kxk submatrix
of A whose determinant is not zero, while every square submatrix of A with the order greater
than k has a determinant equal to zero. This implies that rank of an mxm square matrix A is m, if
det A is not zero. In the previous two examples, it was noted that

-2 1 4 —8 1 0 2 -3
rank A=rank| 1 0 2 -3 ]=rank[0 1 8 —14]=2
-1 2 14 =25 0 0 O 0
Rank of a matrix is the same as the rank of row echelon form of that matrix. It is true that row
operation changes the determinant of submatrices of a matrix to a zero value. Hence when an
entire row in a row echelon form becomes zero such as in the example shown, the rank of the

original Matrix is one less than the highest order. If two rows row in a row echelon form become
zero, the rank of the original Matrix is two less than the highest order and so on.

Example 15: Evaluate rank A.

1 -1 2

A=|3 1 1
1 3 =3
detA=1(-3-3)-(-1)(-9-1)+209-1)=—6-10+16=0 = rank A = 3

. | 1 —-17_11 -1
Consider the 2x2 submatrix [3 1] of A and note det [3 1] = |3 1| # 0. Hence
rank A =2
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45 —Inverse of a Matrix

Given an nxn matrix A, another nxn matrix B, and an nxn identity matrix | such that
AB =BA = | (4.35)
then matrix B is defined as the inverse of matrix A and is denoted by A=1. Hence we write
AAl= A-IA = | (4.36)

Matrix A is said to be nonsingular if its inverse exist and singular if matrix A does not have an
inverse. The term — 1 in A~ should not be mistaken for power or exponent. It is simply a
notation. The inverse of an mxm matrix exists, if and only if the rank of the matrix in m or det A
# 0. This is based on our discussion in the previous section of rank of A and using determinant
of a matrix to evaluate it. We now present two methods for evaluating A=

Evaluating A~! Using Row Operations-Reductions

This method is based on Section 4.3 and is very much similar to Gaussian elimination method.
The objective is to evaluate B such that AB = I. Since the unknown is B, we set up an mx2m
augmented matrix consisting of the known matrix A and the known identity matrix | as shown
below.

[AT]

Using row operations and reductions as described in Section 4.3, we transform the augmented
matrix to

[1C]

The Matrix C is the same as the unknown matrix B which is A-%. Let us consider an example.

Example 16: Evaluate A

2 -1 2
A=l 3 2 1
-2 0 -1
2 -1 211 0 0
3 2 110 1 0 D e 3) =
-2 0 -110 0 1
-2 0 -1]10 0 1 L
3 2 1|0 10 1) ->--1 =
2 -1 211 0 O
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-2/3 -1/3 -5/3
[4/3 2/3 7/3]

This answer can be easily verified by confirming AA™ =1or ATA =1,

Evaluating A-! Using Determinant and Adjoint of A

Before evaluating the inverse of a matrix, we define adjoint of a matrix as

Ci1 Ciz o Cip Ci1 Ca Cn1
Cnl an Cnn Cln C2n Cnn

117

2)--3(D)+@2)&B)->-21)+13) =

@-;2+3 =

@-5;2)&B@) -3 =

1 0 1/2]0 0 -1/2
3 2 110 1 o0 ]

2 -1 2110 o

1 0 1/2]0 0 -1/2

0 2 -1/2|0 1 3/2]

0 -1 1110 1

1 0 12|10 0 —1/2

0 2 —-1/2|10 1 3/2]

0 0 3/411 1/2 7/4

1 0 12| 0 0 —1/2 . .

0 1 -1/4| 0 1/2 3/4] 2) - +@D&M) >+ =
oo 1 14/3 2/3 7/3

1 0 0]|-2/3 -1/3 =5/3

0 10| 1/3 2/3 4/3]

o0 o 1| 4/3 2/3 7/3

(4.37)

Cofactor Cjj of the element ajj was defined in Section 4.2. The method evaluating At is

presented in the following theorem.

Theorem 4.1
Let A be an nxn nonsingular matrix as shown

a;; A2 - agy
a Az2 - @
L
An1 Anz -+ Qg
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Then A-lis

Cof AT Adj A
prc COTAL _ Ad) (4.38)
|A] |A]

Proof:

The proof of this theorem is based on using the procedure for row expansion of equation (4.21)
in Section 4.2 in evaluating determinant as well as recognizing that sum of product of elements
of any row of A and the corresponding cofactors of any other row of A is zero. In other words we
have

a11C11 + @12C12 + ... + @1nC1n = |A]
a21Co + @a2Cos + ... + @2nCon = |A|
............................................ (4.39)
an1Cn1 + @n2Cr2 + ... + @nnCn = |A|

auC,-l + aiQCjz + ...+ amC,-n =0 i ij i=1,2, ...,n&j =12,..,n (4.40)

As indicated, equation (4.39) is simply determinant of A using row expansion. Clearly any of the
n-rows can be used. Equation (4.40) is true because in evaluating Cji, Cp,...,Cj, the elements of
the i-th row of A (ai, aip,...,ain) are utilized again. Since ai, aip,...,anare also the coefficients in
equation (4.40), this is simply the same as finding the determinant of a matrix with two identical
rows. The determinant of a matrix with two identical row is zero. Using equations (4.39) and
(4.40), we can write

all alz aln Cll C21 Cnl |A| 0 0
a1 azz - Aon C12 C22 Cn — 0 |A| 0 (4 41)
anl anz ann Cln CZn Cnn 0 O |A|

It is observed that A is post multiplied by adoint of A or [Cof A]" in equation (4.41). Hence we
have

AAdj A =A] I =
AdjA]
A [_lAl ] =1 (4.42)

Equation (4.42) implies

[Cof A]T _ AdjA

-1 = =
4] A
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Example 17: Evaluate A™.

2 -1 2
3 2 1
-2

0 -1

A=

|A] = —2(-1—4) —1(4 + 3) = 3

2 1 3 1 3 217
[ 0 —1| _|—2 —1| |—2 0] 9 1 4T
Ade:[COfA]Tzi_rol —ﬂ |—22 —21| _|—22 _éi:[_l 2 2‘
1 2 2 2 2 -1 -5 4 7
| |2 1| _|3 1| |3 ZJ
-2 -1 -5
AdiA=| 1 2 4]
4 2 7
2 -1 - -2/3 —-1/3 -5/3
PN ) A"”:(lls)[ f % Z’H 153 2;3 4;3]
I I s 2 70 L4z 23 753

Once again the answer can be easily verified by confirming AA=* =1 or A=A = 1.

In many applications one is required to evaluate inverse of a 2x2 matrix. The method of
determinant and adjoint is now applied for this particular case.

AL = [Cof A]T _ AdjA _L[ azz —a21]T
|A| |A] [A] L—A12 a1
1 A, —Qgp
A-L= ] 4.43
(a11a22—a12a21) L= 021 ai ( )

In summary, the inverse of a 2x2 matrix is obtained by changing the position of diagonal
elements, changing the sign of non-diagonal elements, and dividing each element by the

determinant of the matrix.

Example 18: Evaluate A~

_[3 -4
a=[p 23
|A|]=—6+4=-2
I -2 41 _ 1 -2
at=[] 3= [1/2 _3/2
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Some Properties of Inverse of a Matrix
a) Inverse of a nonsingular diagonal matrix

aqq 0o .. 0
A= 0 a:22 0
0 0 Ann
1/a11 0 0
A-L 0 1/az; 0
0 0 1/ann

b) Inverse of an inverse
AHt=A
¢) Inverse of a product
(AB)™ =B A"
This property can be extended to n matrices.

(A44, .. A)"t = A1 .. A4

120

(4.44)

(4.45)

(4.46)

(4.47)

4.6 - Solving Linear System of Equations Using Inverse of a

Matrix and Cramer’s Rule

A linear set of n equations with n unknown xi, Xz, ... , X» and known constant coefficients a;;(i =
1,2,..,nandj=1,2,...,n)and known constants b; (i=1, 2, ..., n) is described by

aj1X1 + aA12Xy + -+ A nXp = b1
alel + a22x2 + -+ aann = bz

Equation (4.48) can be written as

AX =B

Ali Amini, Ph. D. Professor of Electrical & Computer Engineering
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where
a;; %12 - Ay X1 by
a Az - a X
I e T i - Y (4.50)
ap1 4n2 = Qpp Xn bn

Pre-multiplying both sides of equation (4.49), we have

X=A"1B (4.51)
Theorem 4.2
Given AX = B as in equation (4.49) and if det A = |A| # 0, the unknown variables X1, X, ..., Xn iS
given by
|Aq] |Az| |4z |
X1=——, Xo=——, ..., Xn=—— 4.52
VTR VT Al (4.52)
where
b, Q12 in | a;; by Ain
A1= b2 %22 a?n , A2= 21 b2 A2n ) eeaaeaseaesaaaas
bn Qn2 Apn an1 bn Ann
agq (5% bl
a
A, = | %21 2 b:z (4.53)
[ dp1 An2 - bn_
Proof:

The proof of this theorem is based on using equation (4.51) and utilizing the procedure outlined
in the previous section in evaluating inverse of a matrix.

xl C11 C21 pen
1 ClZ CZZ .
. . 4.54
[ ‘ |A| : : ( )
1n

Setting the two sides of equation (4.54) equal and remembering column expansion for

evaluating determinants of A1, A2, ..., An we have
X1 = — [b1C11 + byCyq + -+ bpCy] = Al
4] 4]
1 _ 42|
xz - m [b1C12 + b2C22 + e + annz] - m (455)
Xn = i [blcln + bZCZn +- annn] = M
4] 4]
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Example 19: Solve the system of equations shown using
a) Inverse — equation (4.51)
b) Cramer’s rule — equation (4.52)

X1+ X2+ X3=0

2X1-X3=5
X1-2X2 + 2X3 = -9
E Adj A
a) |2 —1 xz— X=AlB==—""B =
1 —2 4]
X171 1 1 1_ 0 ) -2 -5 _4T 0 ) 2 —4 -1 0
X2 (=12 0 -1 5:_—11—4 1 3 5=_—11—5 1 3 5
x3] [1 -2 21 [-9 -1 3 =2l1-9 —4 3 —2ll-9
X1 1
X2 |= 2]
X3! 1-3
b) |A| = -11
0 1 1
41| _ 1 ~
== ) 50 = (=5)[1(10 - 9) - 1(-10)] = 1
1 0 1
A
xo= 22| (_—11) 2 5 -1 =(_—111)[1(10—9)+1(—18—5)]=2
4 1 -9 2
1 1 0
|43
x=—r=(-)l2 0 5|=(=)1010)-1(-18-5)]=-
4] 1 -2 -9

Using Theorem 4.2, it can be observed if equation (4.48) is homogeneous and det A + 0, the
solution is simply x1 =0, x2 =0, ..., xn= 0. Furthermore, if equation (4.48) is homogeneous and
det A = 0, we have nontrivial solutions.
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4.7 - Orthogonal Matrices

Having defined inverse of a matrix, we can now define orthogonal matrices. Matrix A is
orthogonal if inverse of A is equal to transpose of A

AT= A (4.56)

An example of an orthogonal matrix is

106 —0.8
A= 0.8 0.6]

where
r_[ 06 08 L1 06 0.8]_[ 0.6 0.8
A= os 0.6] and A= aeroes [—0.8 0.6] —08 06

The determinant of A is 1. This is not coincidental. The determinant of an orthogonal matrix is 1
or —1. To show this, we write

IAAZ =]1]=1
Since AT= A
|AAT| =1
Referring to the properties of determinant; |[AB| =|A|.|B| and |A| = |AT| we write

|AAT = |ALIAT = (JAD?* = 1 = IAl=+1

Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
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CHAPTER 5

Linear Algebra
Eigenvalue-Eigenvector
State Variable Equations

Overview

Section 5.1 starts with the discussion of eigenvalues and eigenvectors. Similarity transformation
and diagonalization is addressed in Section 5.2. Section 5.3 explains bilinear and quadratic
from. As application to linear algebra, Section 5.3 introduces state variable equations and
different realization block diagrams. Solution of state variable equations in time-domain and in s-
domain are covered in Sections 5.5 and 5.6 respectively. The idea and details of linear
transformation and diagonalization applied to state variable equations is presented in Section
5.7.
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5.1 - Eigenvalues and Eigenvectors

In many engineering and practical applications we deal with problems modeled by the following
system of linear equations.

A1X1 + 1% + o+ Ay = Axg
a21x1 + azzxz + oo + aann = /1x2 (51)
Ap1X1 + ApaXy + o+ apnx, = Ax,

Equation (5.1) can be written as

(a11 - /1)x1 + a12x2 + -+ alnxn = 0

Ay1x1 + (A —Dxy + -+ agpx, = 0 (5.2)
and in matrix form equations (5.1) and (5.2) can be written as

(A-=ADX=0 or AX = AX (5.3)

where | is an nxn identity matrix and

a;; A2 - Ay Xq
a azz2 - a X

A=|2H X=|[7 (5.4)
p1 Anz - Qpp Xn

Based on what was presented in Sections 4.3 and 4.6, the nontrivial solution of the
homogeneous linear system of equations exists if

a11 — A alZ . aln
det(A—Al)=|A-Al=| 2 aZ{_A: o G fog (5.5)
an1 Qn2 Ann — A

Important Definitions and Concepts

In the equations presented above, A (a scalar) is referred to as eigenvalue or characteristic
value of matrix A and the corresponding vector X is known as eigenvector or characteristic
vector. Equation (5.5) results in a polynomial of degree n in terms of A. This polynomial is known
as characteristic equation or characteristic polynomial. Hence equation (5.5) results in n
eigenvalues. Clearly these eigenvalues can be real or complex, distinct or repeated. Note if X is
an eigenvector of A corresponding to an eigenvalue of A, then kX (k # 0) represents the same
eigenvector. Also for a real matrix A, if equation (5.5) results in a complex eigenvalue, there will
be a complex conjugate of the same eigenvalue. Furthermore if eigenvector X corresponds to a
complex eigenvalue, then X (complex conjugate of X) correspond to the complex conjugate of
the eigenvalue. This can be easily shown by considering the complex conjugate of both sides of
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AX = AX which is the same as equation (5.3) and remembering the complex conjugate of a
product is the product of complex conjugate.

For repeated eigenvalue of matrix A, we define algebraic multiplicity and geometric multiplicity
as follows. Algebraic multiplicity of eigenvalue A is multiplicity of A. Geometric multiplicity of
repeated eigenvalue A is the number of linearly independent eigenvectors corresponding to A.

Using equation (5.5), it can be shown the eigenvalues of a diagonal or triangular matrix are the
diagonal elements (see example 4 on page 129).

From the properties of determinant discussed in Chapter 4 (det A = det AT), we can
write the eigenvalues of a matrix A is the same as the eigenvalues of transpose of A.

Using equation (5.3), we have
AX = AX
Pre-multiplying both side by A1
ATAX = AATIX =
A7IX = (1/N)X (5.6)

Equation (5.6) implies that the eigenvalues of the inverse of a nonsingular matrix A is the
inverse of the eigenvalues of A. However the corresponding eigenvectors are the same.

Example 1: Evaluate the eigenvalues and eigenvectors of A

21
A‘L 4
IA—AI[=0
2-2 1 |_ , B B
|3 4_ALA = 122-6145=0 = A=15
(A—ADX=0

[251 41,1”2]:[8] =

(2-MNx1+x=0
33X + (4—)\)X2:O

A =1
X1+ X2=0
3X1+3x2=0
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x=[ ]

A, =5
-3X1+X%X2=0
3X1—X%X2=0
X =]

Example 2: Eva

luate the eigenvalues and eigenvectors of A

_[-2 -1
A= 5 —4]
IA-AI[=0
—2-1 -1 |_ ) 3
™" =0 = Z+er+13=0 =
(A-ADX=0
—-2-1 -1 X11_10
[ 5 _4_,1”x2]'[0]=>
(—2—)\)X1—X2=0
5X1+(—4—)\)X2=0
A =—3+i2
(1 — iZ)Xl— X2 =0
5%+ (-1—-i2)x2=0
_ 1
Xl‘[1—i2]
Ay =—3—i2

(1 + iZ)Xl —-X%X=0
Sx1+ (—1+i2)x2=0

e |

1-&1'2]

A=—3+i2
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As discussed above, the eigenvalues and eigenvectors are complex conjugate of one

another.

Example 3: Evaluate the eigenvalues and eigenvectors of A

-5 —-10

A=] 2 3
1 2

Ali Amini, Ph. D.
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IA—AIl=0

-5-1 -10 9
2 3—1 -1
1 2 -1-21

=0 =

(-5-D[@B-D(-1-1D) +2]+10[-2-221+1]+9[4—-3+1] =0 =

AB+312-4=0 = A=1,-2,-2

(A—ADX=0

-5—-1 =10 9 X1 0
ey B ]HH N
1 2  —1-2Mlxsl 1o

(-5 =A)Xx1—10x2 + 9x3=0
2X1 + (3 —)\)Xz—X3: 0
X1 + 2Xo + (—1 — )\)X3= 0

A =1
—6x1 — 10X+ 9%3=0
2X1+ 2X2—X3=0
X1+ 2Xo —2x3=0

Letx: =1 =
—10x2 + 9x3=6
2Xo — X3=— 2
2X2 — 2X3= -1 using any two equations =
1
X1 = —3/2]
-1
Apy=A3==-2

—3X1—10x2 + 9x3=0
2X1 + 5%, —x3=0
X1+ 2%+ X3=0

Letx; =1 =
— 10X + 9x3=3
55Xy — Xz3=— 2
2X2 + Xz= -1 using any two equations =
1
X2 = _3/7]
-1/7
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In example 3, the algebraic multiplicity is 2 for A = — 2. However the geometric multiplicity which
is the number of linearly independent eigenvector for A = — 2 is 1.

Example 4: Evaluate the eigenvalues and eigenvectors of A

-1 0 0
A=l 0 -2 0
0 0 -3
IA—AIl=0
-1-4 0 0
0 -2-2 0 |=0 = (-1-D(2-D(-3-DH=0 =
0 0 -3-1
A=-1,-2,-3
(A—ADX=0
-1-2 0 0 X1 0
0 —2—-2 0 X2 =10 =
0 0 —3—-A1x3 0
(—1 — )\)Xl +0x2+0x3=0
OX1+(—2—-A)x2+0x3=0
Ox1 + Oxo + (—3 - )\)Xa =0
A =—1
Ox1 +0x2 +0x3=0
OX1—X2+0x3=0
Ox1 + Ox2—2x3=0
1
X1 = 0]
0
A, =—2
X1 +0x+0x3=0
OX1+ 0x2+0x3=0
Ox1 + Oxo—x3=0
0
Xo = 1]
0
As =—3
2X1 +0x2 +0x3=0
OxX1 +X2+0x3=0
Ox1 + Ox2+0x3=0
0
X3 = 0]
1
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5.2 - Similarity Transformation and Diagonalization

Given an nxn nonsingular matrix T and an nxn matrix A, we define an nxn matrix Ar to be
similar to A such that

Ar = TIAT (5.7)
Transformation from A to Aris referred to as the similarity transformation. The notation T is

used here to designate transformation matrix.

Theorem 5.1
Eigenvalues of the similar matrix At are the same as those of A and the corresponding
eigenvector of Ar is Xr = T-1X, where X is the eigenvector of matrix A.

Proof:

We begin with equation (5.3)
AX = ANX

Pre-multiplying both sides by T-! results in
TEAX =ATIX

Placing an nxn identity matrix between A and X on the left and then writing | as T.T-!

TIAIX = A T1X
TIAT.TIX = AT X =
ATXT = )\XT

Example 5: Evaluate As for the given A and T.
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A= =[; 73l
=5 3 4

Ar = TIAT = (1/5) [_i ﬂ [_i :2] [1 _g] = [_g __1;

IA-All=0 [_1;’1 _5_3/1] =  2+61+48=0 = A=-2,-4
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IAr—Al|=0 [_451 1

—2-1

] = A+4H@A+2)=0 =

131

A=-2,-4

Using Theorem 5.1, eigenvectors X of Ar can be evaluated and it can be verified that

Xt = T*X for the corresponding eigenvalues.

Theorem 5.2 Diagonalization

If an nxn matrix A has n distinct eigenvalues and n linearly independent eigenvectors and the
columns of the transformation matrix in the equation Ar = T*AT are made up of the
eigenvectors of matrix A, then the resulting At is a diagonal matrix whose diagonal elements

are the eigenvalues of A.

Proof:

Let A1, A2, ..., Ay be the eigenvalue of A and X1, Xz, ..., Xn be the corresponding eigenvectors of

A. Using equation (5.3), we have

AX1 = )\1X1
AXz = )\2X2
AXn = AXn

These equations can be written as

A0 . 0
0 4 0
ADX I Xe | X T2 DX Xe Lo [ Xl 1S 7207
0 0 .. 44
We define T as
T=[Xe| Xz ... | Xn]|]
Hence equation (5.8) can be written as
A4 0 .. 0
aT=T.|0 A2 O
0 0 .. 4y
Pre-multiplying both sides of (5.10) by T gives
A4 0 .. 0
TIAT = 0 AZ 0
0 0 .. 4y
Ali Amini, Ph. D. Professor of Electrical & Computer Engineering
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It is important to understand the difference between Theorem (5.1) and (5.2). In applying
Theorem (5.1) any nonsingular transformation matrix T can be utilized and At will have same
exact eigenvalues as A. Theorem (5.2) takes this one step further and indicates if columns of
transformation matrix T consists of the n independent eigenvectors of A, then Ar will be a
diagonal matrix whose diagonal elements consist of the n distinct eigenvalues of A. We already
know the diagonal elements of a diagonal matrix are the eigenvalues of that matrix.

5.3 —Bilinear and Quadratic Forms

In this section the bilinear and quadratic forms are defined. These forms are encountered in
some engineering applications such as optimal control and stochastic processing as applied to
optimization and multivariable parameters. In many engineering and practical applications we
deal with problems modeled by the following system of linear equations.

Bilinear Form

Bilinear form in terms of 2n variables X1, Xz, ..., Xn and y1, Y2, ..., Yn is described by the equation
B= Z?zl 2;-121 aijX; yj (512)

Expanding equation (5.12) gives

B = aixay: + apXayz + ... + ainXiyn
+a21Xoy1 + axXay2 + ... + aznXoyn

+aniXny1 + Qn2Xny2 + ... + AnnXnYyn (5.13)

Equation (5.13) in matrix form can be written as

ap; A1z - ] [N
a a wooa
B=[x X - x] |"20 P2 G| (5.14)
an1 Apo . Annl Wn
Or simply written as
B = XTAY (5.15)
Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
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Example 6: Write the given bilinear equation in matrix form of equation (5.15).

B = 2X1y1 + 6X1ys — 2X2y1 + 7X2y2 + 10X2y3 — 8X3y1 + 4XsYs

2 0 671
B=[x1 X2 X3][-2 7 10]||Y2
-8 0 411Y3

Quadratic Form
Quadratic form in terms of n variables X1, X2, ..., Xa iS a special case of bilinear form described
above with Y = X.

Q=2 X1 ayjx; x; (5.16)

Q = auXiX1 + a2XaXe + ... + @X1Xn
+ ax1XoX1 + @xXoX2 + ...+ @2nX2Xn

+ @niXnX1 + @n2XnX2 * ... + @npXnXn (5.17)
Grouping terms results in

Q = a1 xf + (agz + az1)x1%, + - + (15 + Ap1)x1 %
+ Ap2%5 + (a3 + a32)x2%3 + - + (Agn + Anz) X%y
+ o+ ay,x? (5.18)

Q = XTAX (5.19)
From equation (5.18) it should be clear there are infinite possibilities to determine A given a
guadratic equation. The only elements of this matrix which cannot change are the diagonal

elements (a1, az, ..., ann). INn Many applications matrix A is simply written as a triangular matrix
or a symmetrical matrix. To illustrate this point, let us consider an example.

Example 7: Write the given quadratic equation in matrix form of equation (5.19)

Q = 3x? + 6x,x, — 14x1x3 + 11x2 — 2x,%3 + 5x7
Here are a few ways representing this quadratic in matrix form.
3 6 —1411*
Q=[*x1 x2 x3]|0 11 =2]||*2
0 0 511x3

or
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3 0 01
Q=[x1 x xs][ 6 11 0] [le
—14 -2 5]lx3

or
3 3 71
Q=[x1 x2 x3]| 3 11 -—1|]|*
-7 =1 5llxs

As observed for the first two representations matrix A is triangular. In the last case matrix A is
symmetrical. From equation (5.18) it should be clear that coefficients of xZ, xZ, ... x2 are the
diagonal elements. And coefficient of x;x; (i # j) are sum of the elements in the ith row jth
column and jth row ith column of A. As an example coefficient of x,x, is ai2 + a2 which provides
infinite possibilities. Hence for triangular representation of A, one of these coefficients is
assumed zero (either the first or the second element). For symmetrical representation of A, half
of coefficient of x;x; (i # j) is placed in a;; position and half is placed in aj; position.

5.4 - State Variable Equations

As an application of linear algebra, state variable for continuous time domain system is
discussed in this section. As systems become more complex and the use of computers
becomes vital in solving these complex systems with multiple inputs and multiple outputs,
modeling and solving systems using state variables becomes essential.

The most general form of state variable equation is represented by

x(6) = f(x(0),u(®),t) (5.20)
y(©) = g(x(t), u(t), t) (5.21)

x(t) is an nx1 state vector consisting of elements xi(t), Xo(t), ... , Xa(t), and x (t) = % is the

corresponding derivative of the state vector. f(x(t), u(t),t) is an nx1 vector function and u(t) is

an mx1 input vector consisting of elements ui(t), uz(t), ... , um(t). y(t) is a px1 vector consisting of
elements yi(t), y2(t), ..., yp(t) and g(x(t), u(t),t) is an mx1 vector function. In our discussion we
consider the general form of linear time-invariant system of state variable equation described by

x(t) = Ax(t) + Bu(t) (5.22)
y(t) = Cx(t) + Du(t) (5.23)
Where
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[x1(2) %1 (t)
State Vector: x(t) = xz:(t) x(t) = xz:(t)
[xn (1) Xn (1)
uy (1)
Input Vector: u(t) = uzz(t)
U (1)
y1(t)
Output Vector: y =" zi(t)
Yp(t)
a;; Q12 A1n [b11 b1z bim
A= %21 a22 Q2n B = bg1 bz bam
n1  Gn2 Ann -b;z1 bna bnm
€11 12 A1n [dy1 diz dim
C= €21 C:22 Con D= d:21 d:22 dam
o G2 dyy dpz e

For the sake of simplicity and without loss of generality we assume single input u(t) in our
discussion. There are many methods and possible procedures that can be used to write state
variable system of equations for a linear time-invariant system in the form of equations (5.22)
and (5.23). The most popular of these are controllable canonical form, observable canonical
form, diagonal from, and Jordan canonical form. Diagonal form is for the case when matrix A
has distinct eigenvalues. Diagonalization will also be presented in Section 5.7 when we discuss
linear transformation. Jordan canonical form is when matrix A has repeated eigenvalues.
Jordan canonical form of state variable modeling is not discussed in this chapter and is left as
an exercise. Hence we begin with state variable modeling using controllable canonical form,
observable canonical form, and diagonal form. To do so we first begin by basic components
utilized in system realizations and simulations.

Summing Point

X1 + X1 + Xo

X2
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Comparator

X1 + X1 — X2

X2

Amplifier/Attenuator

Integrator

X(t) o Jdt y Jx()dt

X)) | Us | X(s)is

Integrators are used in place of differentiators for realizations and simulations, since they are
less susceptible to noise, especially at higher frequencies.

Controllable Canonical Form
Consider a linear constant coefficient nonhomogeneous n-th order system with input u(t) and
output y(t) described by differential equation

dn dn—l Tl—
dtn+a" 1 e a1—+a0y—bndtn+bn 1 s St b1—+b0u
(5.24)
The corresponding system transfer function H(s) = Y(s)/U(s) is
_ Y(S) _ bps"+bn—1S" 1+ 4+ bys+ by

H(s) = U(s)  st4ap_1s" 14+ ais+ ag (5.25)
We now define X(s) as

X(s) = [s"+an il 1+ “+ags+ ao] U(s) (5.26)
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Hence Y(s) can be written as

Y(s) =[bps™ + bp_18™ 1+ -+ byis + bylX(s)

Using equation (5.26), we have

S"X(s) = — aoX(s) — a1SX(8) — ... — an1S"IX(s) + U(s)

The block diagram of Equation (5.28) is shown in Figure 5.1.

s"X s™IX

1/s >

1/s

s"2X

S

1/s

sX

137

(5.27)

(5.28)

A

ai

1/s

A 4

ao

<_

v

Figure 5.1 Block Diagram Realization of Equations (5.26) and (5.28)

Using equation (5.27), the simulation diagram of the entire system as defined by equations

(5.24) and (5.25) can shown as

bn >
A
bn-]_ >
! by +\¢ +
bo Y(s)
s"X S™1X s"2X sX Tx
U(s)—»C\ »1/s »1/s . —>»{1/s »1/s (>
+ T\
an-1 |
] an-2
< ai <€
Figure 5.2 Block Diagram Realization of Equations (5.24) and (5.25)
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Using the realization diagram of Figure 5.2, we define

X1(s) = X(s)
sXi(S) = Xo(s) = sX(s)
sX2(s) = X3(s) = s2X(s)

................... (5.29)
SXn-1(S) = Xn(S) = S"IX(S)
SXn(S) = — aoX1(S) — aiXz(s) — ... — an-1Xn(S) + U(S)
and based on the above equation and the realization diagram we write
Y(S) = boX1(S) + b1Xa(s) + ... + bnaXn(S) + bnsSXn(S) (5.30)
We now substitute sXn(s) from (5.29)
Y(S) = boX1(S) + biXa(s) + ... + bnaXn(S) + ba[— @oX1(S) — a1X2(S) — ... — an-1Xn(S) + U(S)]

Y(S) = (bo — aobn)X1(S) + (b1 — @1bn)X2(s) + .... + (bn-1 — @n-1bn)Xn(S) + baU(S)

(5.31)
Outputs of integrators from the right side are defined as Xi, Xz, ..., X, with inputs sXi, sX, ...,
sXn respectively. Converting equations (5.29) and (5.31) from s-domain to time domain gives

x1(t) = x2(¢)
X, (8) = x3(8)
........... (5.32)

Xn-1(t) = x,(t)
Xn (1) = —agx;(t)—ax,(t) — = ap_1x,(t) + u(t)

y(t) = (bO — Qg bn)xl(t) + (bl - bn)xz (t) +oet (bn—l —Qap-1 bn)xn(t) + bnu(t)

These equations can be written in matrix form as

4071 [ ¢ -0 xl(t)
% (t) o 0o 1 . ‘.) x (t)
2 | : P : : 2 u(t) (5.33)
0 o o0 ..
x1(t)
y(t) =[bp—agb, by—ayb, .. by1—an_qby] ng(t) + bu(t) (5.34)
Xxn (1)
It is important to note the output of integrators are the state variables xi, Xz, ..., Xn. In Mmost

cases the degree of the numerator of the system transfer function is less than the degree of the
denominator. This means in such cases b, = 0. This simplifies the state variable equations.
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Example 8: Obtain the state variable representation of the given system in controllable
canonical form.

Y(s) _ 2s3+5s2410
U(s) s3+6s52+11s+6

H(s) =

Either the system transfer function or the corresponding system differential equation can
be used for this purpose. The system differential equation is

d3u

a3y d?y dy _
62+ 112 46y =222

d?u
rE 7i2 +5 Tz + 10u

By inspection ap =6, a1 =11, a, =6, b3 =2, b, =5, by =0, bp = 10. Using equation (5.33)
and (5.34) we have

X1 0 1 07[*1 0

[][0 0 ] o] +[o|ue

i) -6 —11 —6llxs 1
X1

y(®) = [10-(6)(2) 0—(1A1)(2) 5-(6)(2)]|*2|+ 2u(t)
X3

X1
X3
X3

y(t)=[-2 -22 -7] + 2u(t)

Example 9: Obtain the state variable representation of the given system in controllable
canonical form and draw the realization block diagram.

__Y(s) _ s+10
H(S) T U(s)  s%+6s+25

The system differential equation is

a’y

dy _d_u
dt2+6dt+25y—dt+10u

By inspection ap = 25, a1 = 6, b, = 0, by =1, bg = 10. Using equation (5.33) and (5.34) we
have

X]_10 111* 0
=15 Zdllal+ [l
X1
y(®) = [10 1] [xz] + 0u(t)
The realization block diagram is shown in Figure 5.3 below.
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A 4

1/s »l 1/s
y Y X2 X1

10 Y(s)

A 4

-
=
n
N—r
\ 4

25 l—Y

A

Figure 5.3 Block Diagram Realization of Example 9

It is important to point out that the realization block diagram can be presented in s-
domain or time-domain. Figure 5.4 shows the realization diagram of example 9 in time-
domain.

A 4

[dt [dt

Xo(t) Xa(t)

10 y(®

A 4

A 4

\ 4

u(t) ""C\
A

(o))
A

25

A

A

Figure 5.4 Block Diagram Realization of Example 9

Observable Canonical Form
Using the system transfer function of equation (5.25)

Y(s bps"+bp_1s"" 14+ bys+ b
H(S) — (s) _ bp n-1 1 0

U(s) T M4y s+t ags+ag

we can write
[s™ + ap_1s™ 1+ + ays + ag]Y(s) =[bys™ + bpy_1s" 1+ -+ bis + byU(s)

S"Y(s) = [bps"U(S)] + [bp_1U(s) — an_1Y(s)]s™ 1 + -+ [byU(s) — a;Y(s)]s +
[boU(s) — aoY(s)]

Dividing both sides by s" results in
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Y(s) = [bpU()] + [bn-1U(S) — an-1Y ()Is™H + -+ [b1U(s) — a, Y ()]s " +

[boU(s) — apY(s)]s™

(5.35)

Using n integrators, summing points, and amplifiers, the block diagram of equation (5.35) is

shown in Figure 5.5.

bn-l

Y

b,

u(s) 5| bo —»Q—»Hs —>Q—>1/s L, _.O_> 1/s
+ + + +

Y

\ 4

bn

1/s

an-1

Y(S)

an-2

ai [«

ao [<¢

Figure 5.5 Block Diagram Realization of Equation (5.35)

Using the realization diagram of Figure 5.5, we define the outputs of integrators starting from the
left as X1, Xo, ..., Xn. The input of the integrators are sXi(s), SX2(S), ... , sSXn(S) respectively.

Hence we have

sX1(S) = boU(s) — aoY(s)
sX2(s) = Xa(s) + brU(s) — a1Y(s)

SXn-1(S) = Xn-2(S) + bn2U(S) — an2Y(S)
SXn(S) = Xn-1(S) + braU(S) — an1Y(S)

Y(s) = Xa(s) + bnU(s)

Substituting equation (5.37) in equation (5.36) results
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sX1(S) = boU(S) — ag[Xn(S) + baU(S)] = — aoXn(s) + [bo— achbn]U(s)

sXo(s) = Xa(S) + b1U(S) — ai[Xn(S) + baU(S)] = X1(S) — a1 Xn(S) + [b1— aibn]U(S)

SXn1(S) = Xno(S) + b2U(S) — an2[Xn(S) + baU(S)] = Xn2(S) — @n2Xn(S) + [br2— an2br]U(s)
SXn(S) = Xn-1(S) + bnaU(S) — an-1[Xn(S) + bnU(S)] = Xn-1(S) — @n-1Xn(S) + [bn-1— an-1bn]U(S)

(5.38)
Converting equations (5.38) and (5.37) from s-domain to time domain gives
X1 () = —agx,(t) + [by — agbn]u(t)
x5 (t) = x1(¢) — arx,(¢) + [by — asbypJu(t)
Xn—1(t) = Xp_2(8) — @n_2%, () + [by_z — an_obyJu(t) (5.39)
J.Cn(t) = xn—l(t) - an—lxn(t) + [bn—l - an—lbn]u(t)
y(t) =Xn (t) + byu(t)
These equations can be written in matrix form as
[ 1(1) ] [0 0 0 % ][ % (1) ] [ Do—aobn ]
% (1) 10 0 @ [ | bi—aib, |
I =|: 5 [+ |+] : [u(t) (5.40)
li,_1 (0] 0 0 0 —anoz||[xn-1(®)] |bnoz — @n_zbn|
| 2,0 | 0 0 1 a5 | b, 1—an b, |
[ x1(t) ]
x2(t)
y@® =[0 o0 11 I+ bpu(t) (5.41)
|xn 1(t)
| x,(t) |
It is important to note the output of integrators are the state variables xi, Xz, ... , Xn. In Most

cases the degree of the numerator of the system transfer function is less than the degree of the
denominator. This means in such cases b, = 0. This simplifies the state variable equations.

Example 10: Obtain the state variable representation of the given system in observable
canonical form.

H(s) =

Y(s) _ 2s53+5s2410
U(s) s3+6s52+11s+6

Either the system transfer function or the corresponding system differential equation can
be used for this purpose. The system differential equation is

By | Py oy du | o d’u
6+ 11 +6y—2 T+ 5 + 10u
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By inspection ap = 6, a; =11, a, =6, b3 =2, b, =5, by =0, be = 10. Using equation (5.39) and

(5.40) we have

X1 0 0 —-67[* 10 - (6)(2) 0 0 —-61["
[}'Q]:[l 0 —11] X+ 0—-(11)(2) u(t)=[1 0 —11] X2
il lo 1 —6llxs 5—(6)(2) 01 —61lxs
X1
y@®) =10 0 1][x2|+ 2u(t)
X3

_|_

]u(t}

Example 11: Obtain the state variable representation of the given system in observable

canonical form and draw the realization block diagram.

Y(s) _  s+10
U(s) s2+6s+25

H(s) =
The system differential equation is

@y, Ay | e _du
dt2+6dt+25y_dt+10u

By inspection ap = 25, a1 = 6, b, = 0, by = 1, bg = 10. Using equation (5.33) and (5.34) we

have
i R [ AR O

y® =0 11[]+ou®

The realization block diagram is shown in Figure 5.6 below

™ 1
+ +
U(s) > 10 1/s 1/s
X1 X2
6 [e——
25 [¢
Figure 5.6 Block Diagram Realization of Example 11
Ali Amini, Ph. D. Professor of Electrical & Computer Engineering
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Once again the realization block diagram can be presented in s-domain or time-domain. Figure
5.7 shows the realization diagram of example 11 in time-domain.

A\ 4
[EY

v

10 [dt [dt —>y(t)
Xa(t) Xa(t)

u(t)

A

25

Figure 5.7 Block Diagram Realization of Example 11

Diagonal Form
Using the system transfer function of equation (5.25)

Y(s bps"+bp_1S"" 144+ bys+ b
H(S) — ( ) _ n n—1 1 0

U(s)  sM™+anp_1s" 14+ a s+ ao

In this case we assume the roots of the denominator -pi, -p2, ... , -pn (poles of the system) are
distinct. If b, # 0, we need to perform the division first

H(s)= 22 = p + £ (5.42)

ues) sM+an_1s" 14+ ags+ ag
In equation (5.42), R(s) is the remainder polynomial. After performing partial fractions we obtain

G, G oy G

s+P1  s+P; s+Pp

Y
H(s) = %= b, +

(5.43)
Clearly if b, = 0, no division is required and only partial fractions must be performed. Using
equation (5.43) we have

Cy Cz

Cn
Y(s) = b,U(s) + ) U(s) + ir U(s)+ -+ i U(s) (5.44)
We define state variables Xy, Xz, ..., X, as
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1 1 1
Xi(s) = EU(S), X(s) = EU(S), vy Xn(8) = EU(S) (5.45)
Hence from equation (5.44) we write

Y(s) = bU(s) + C1X1(s) + C.X5(s) + -+ C, X (5) (5.46)

Before presenting the complete block diagram realization of equation (5.43), let us consider
realization of

X, (s) = ﬁU(s) = sX,(s) = —=P,X,(s) + U(s) (5.47)

The block diagram realization of equation (5.47) is shown in Figure (5.8) below

U(s) 1/s > X3

]

P1

Figure 5.8 Block Diagram Realization of Equation (5.47)

Using n integrators, summing points, and amplifiers, and Figure (5.8), the complete realization
block diagram of equation (5.44) is shown in Figure 5.9.

bn

v

1/s C:1

- %
P1
+ X5
1/s » C> + +
+ v
Uis) ———» Y(S)
P2
: : +
+ Xn
—-?—» s » Cn
Pn
Figure 5.9 Block Diagram Realization of Equation (5.43)
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Using the equations obtained and the realization diagram of Figure 5.9 we have

sX1(s) = =P X1(s) + U(s)
5X,(s) = =P X;(s) + U(s)

..................................... (5.48)
sXp(s) = =B Xn(s) + U(s)
Y(s) = bU(s) + C1X,(s) + C.X5(s) + -+ + C, X, (5) (5.49)
Converting equations (5.47) and (5.48) from s-domain to time domain gives
x1(t) = —Pyx () + u(t)
X,() = —Ppx,(t) + u(t)
............................... (5.50)
J.Cn(t) = _ann(t) + u(t)
y(t) = Clxl(t) + CZXZ(t) +t Cnxn(t) + bnu(t)
These equations can be written in matrix form as
4®O1 - 0 0 1[®] p1
xz:(t) |0 : -P, 0 Xz:(t) + [1‘ u(t) (5.51)
X (1) 0 0 - =Pllx,(® 1
x1(t)
y(t)=[C, Cp ... Cp] xzs(t) + byu(t) (5.52)
xn (1)
As before the output of integrators are the state variables x1, Xz, ... , Xn» and in most cases the

degree of the numerator of the system transfer function is less than the degree of the
denominator. This means in such cases b, = 0.

Example 12: Obtain the state variable representation of the given system in diagonal form.

H(s) = Y(s) _ 5s%+28s5+35
T U(s)  s2+5s+6

After dividing and doing partial fractions we have

ONSN S

U(s) o s+2 s+3

using equations (5.51) and (5.52) we have

146
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FOI =12 SJ[Eo]+[]
y(©) =[-1 4] L’zgg] + 5u(t)

The realization block diagram is shown in Figure 5.10 below.

u(t)

147

> 5
+ X1
u(s) —» 1/s -1 +
) N\
2 Y(s)
+
+ X2
_.%)_.1,5 P
3
Figure 5.10 Block Diagram Realization of Example 12
Figure 5.11 shows the realization diagram of example 12 in time-domain.
» 5
+ Xa(t)
ut) —» [dt > -1 +
h RN
2 y(®)
+
+ Xa(t)
%?_ e
3
Figure 5.11 Block Diagram Realization of Example 12
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The realization block diagram is not unique. There are many realizations and each correspond
to different set of state variable representation. However the system characteristics H(s)
remains the same and provides the same output for the given input.

As an exercise we may consider having been given a realization diagram consisting of
integrators, amplifies, attenuators, and summing points such as the one shown in Figure 5.12
and be required to write the state variable equations. To do so, we define the outputs of the
integrators as state variables x; (t), x,(t), ... , x,(t). Then the corresponding inputs of the
integrators are x;(t), x,(t), ..., x,(t). Next using the summing points we write the necessary
equations for x, (t), x,(t), ..., %, (t),y(t) in terms of x;(t), x,(¢t), ... ,x,(t) and inputs.

Example 13: Obtain the state variable representation of the block diagram realization of Figure
5.12.

+ Xa(t) +
[dt > 7 y(t)
— c .
—p > 6 —>
u(t) 4 le
8 _ \/ g
+ Xz(t) _
[dt > 10 ya(t)
3
Figure 5.12 Block Diagram Realization of Example 13
The

output of the two integrators are defined as xi(t) and x»(t) as shown. The summing points are
used to write the necessary equations for x, (t), x,(t), y,(t), y,(t) as follows

x1(8) = =5x1(8) + u(t)
X5 (t) = —4x,(t) — 3x,(t) + 8u(t)
y1(®) = 7x1(t) + 6x,(¢t)
Y2(t) = x1(£) — 10x,(¢)

and in matrix form

(] _-5 0 [xl(t) 1
[xz(t) =12, 3 MO [g]u®
3’1(t)] _ [7 6 ] [x1(t)
y2(t) 1 =101 1x,(8)
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5.5 - Solution of State Variable Equations — Time Domain

In the previous section the time invariant state variable equations

x(t) = Ax(t) + Bu(t) (5.53)
y(t) = Cx(t) + Du(t) (5.54)

were presented using variety of forms. It was also emphasized the forms introduced and the
corresponding realization diagrams are not unique. In this section the solution of state variable
equations using time-domain is considered.

Homogeneous Solution
Homogeneous matrix differential equation of equation (5.53) is

x(t) = Ax(t) (5.55)
Similar to scalar version of equation (5.55), the solution is assumed to be of the form

X(t) = Co + Cit + Cot? + Cat® + ... + it + ... (5.56)
Substituting equation (5.56) in equation (5.55) results in

C1+ 2Cot+ 3cat? + ... + ket T+ ... = A[Co + Cit + Cot? + ... + itk + ..]
Equating coefficients of the like terms and recognizing x(0) = ¢, from equation (5.56) gives

c1 = Aco = Ax(0)

c2 = (L/2)Ac: = (1/2)A%(0)
cs = (1/3)Acz = (1/3x2)A%(0) (5.57)

Ck - (1/k|) Akx(o) .............
Substituting equation (5.57) in equation (5.56)
X(t) = x(0) + Ax(0)t + (1/2)A%x(0)t2 + (1/3x2) A3 (0)t3 + ... + (1/k!) Akx(O)t< + ...
X(t) = [ 1+ At + (1/21)A%2 + (L/3N)A3S + ... + (1/k!) Akt< + ...] x(0) (5.58)
We define

ez | + At + (1/2)A2 + (1/3)AE + ... + (1/k!) Atk + .

Akek
(0)e)
= Y h=0 — (5.59)

The nxn matrix €' is known as state transition matrix and in many applications is denoted by
¢(t). Hence the homogeneous solution of equation (5.55) is
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x(t) = M x(0) = p(H)x(0) (5.60)
From equation (5.59), we note
A0 = o0 — | (5.61)

and
deAt
= A AT 120 AR L 1K) AR
= Al + At + (1/20)A22 + (L/3N)A3 + ... + (1/k!) A< + . ]
= [l + At + (L/2)A22 + (1/3DA + ... + (1/k!) Atk + .] A
=Aeft=eMa (5.62)

—At

Let us consider the product of eande using equation (5.59)

eAla=AL _ At AL
=[1 + At + (U/21)A%2 + (L/3NA3B + ... + (1/k!) Atk + .. ]x
[I - At + (1/20)A%2 - (1/3)A33 + ... + (-1)XL/K!) Akt + .. ]
= | + [At — At] + [(1/2)A%2 + (1/21)A%2 - A%?] +
[(1/3DNA33 - (1/3NA3ME + (1/2D)A3M3 - (1/2D)A3M%] + ...
=
This indicates e”! and e ! are inverse of each other.

[eAt ]—1 = oAt (5.63)
[eA]1=e At

Now we examine the product of e”land eB! using equation (5.59)

eMeBl= [ + At + (1/21)A%2 + (L/BNASE + .. + (1/k!) Akt + .. ]x
[I + Bt + (1/2)B42 + (1/31)B33 + ... + (1/k!) Bt + ...]
=1+ [A+BJt+[(1/2")A? + AB + (1/2))B?]t> +
[(1/3)A + (1/21)A%Bt3 + (1/21)AB22 + (1/3!)B3t3] + ... (5.64)

eAFTBU =[] 4 (A +B)t+ (1/21)(A + B)22 + (L/31)(A + B)*t ... + (1/k!) (A + B)t< + .. ]
= |+ [A + Bt + [(1/2!))A% + (1/2)AB + (1/2)BA + (1/21)B?] t2 +
[(1/3)A% + (1/31)A%B + (1/3)ABA + (1/31)AB2 + (1/31)BA? + (1/3!)BAB +
(1/3)B2A + (1/3)B3 ] £ + ...

(5.65)
Comparing equations (5.64) and (5.65) implies that
oA +B)t _ (At Bt (5.66)
Only if AB = BA
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Nonhomogeneous Solution
Nonhomogeneous matrix differential equation of equation (5.53) is

x(t) = Ax(t) + Bu(t)

Pre-multiplying both sides of this equation by e At gives

e x(t) = e M ax(t) + e At Bu(e)
e A% () — e At ax(t) = e A Bu(r)
% [e~4tx ()] = e At Bu(t)

Integrating both sides from O to t
e 4tx(t)|b = [, e A" Bu(r)dr

Substituting upper and lower limit on the left hand side and using equation (5.61) results in
e Atx(t) — x(0) = fot e ATBu(1)dr

Pre-multiplying both sides by [e7A] = e/t gives
x(t) = e x(0) + fot eAt=D Bu(1r)dr (5.67)

Once x(t) is evaluated using equation (5.67), y(t) can be obtained by substituting x(t) in equation
(5.54).

y(t) = Ce4tx(0) + Cfot eAt=0 By (7)dt 4+ Du(t) (5.68)
To find impulse response, we let x(0) = 0 and u(t) = 8(t) and hence y(t) = h(t).
t -
h(t) = C [, e**"DB5(7)dr + D5(t)
h(t) = Ce'B + D&(t) t>0 (5.69)

The solution of state variable equations as described by equations (5.53) and (5.54) has been
obtained. The system impulse response has been evaluated. Some useful properties of state

transition matrix (STM) ¢(t) = e have been introduced. Before considering some examples,
STM must be evaluated. Here we consider two such methods, one in time-domain and one in s-
domain. The s-domain procedure is discussed in Section 5.6. There are several methods that
can be used in time domain. Even though possible, it is not advisable to use equation (5.59) to
evaluate STM. The Cayley-Hamilton method is introduced in this section to determine STM.
Cayley-Hamilton theorem simply states that every nxn matrix satisfies its own characteristic
equation. Here the procedure is introduced and examples are given. The proof is left as an
exercise.
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Determining State Transition Matrix ¢(t) = e*' Using Cayley-Hamilton Theorem
In Section 5.1, we saw that eigenvalues of an nxn matrix A are given by

ay — A a12 ain
det(A—Al)=|A-Al=| %2 azzz—/lz--- %n | =g
An1 QAn2 Ann -1

This results in a polynomial of degree n and is referred to as characteristic polynomial or
characteristic equation.

Mt a, A1+ ap A" 2+ -+ ad+ag=0 (5.70)

Using Cayley-Hamilton theorem, it can be shown that any function of a matrix f(A) can be
written as

f(A) = Bol + B1A+ -+ Bn_ 1 A" = Y15 B A" (5.71)
Furthermore

fQ) = Bo+ Brd+ e+ By A7 = TRZ5 B (5.72)
The objective is to evaluate the n unknown Sy, 81, ... , Bn_1 USiNg equation (5.72) and then
substituting in equation (5.71) to obtain f(A). Here the f(A) that is of interest is f(A) = ¢(t) = e”.
To evaluate By, 51, ... , Bn—1, N-independent equations are required. Hence one must separate

the procedure into two cases. Case 1 is when all n eigenvalues are distinct and case 2 is when
some or all eigenvalues are repeated.

Case 1 — A Has n Distinct Eigenvalues
A has n distinct eigenvalues 4,, 1,, ... , 1,,. Substituting these eigenvalues in equation (5.72)
results in

FA) =By + Py + -+ By AT
F(Ay) = Bo + Pidy + 4 Bpog Ayt 573

FA) = Bo+ Bidy + 4 Bpog Ay "

Equation (5.73) needs to be solved for By, 81, ... , Bn—1 and then B's are to be substituted in
equation (5.71) to evaluate f(A) = e*.

Case 2 — A Has Some Repeated Eigenvalues

A has n eigenvalues. Let A have n; distinct eigenvalues. Let eigenvalue 4; be repeated n;
times. Hence n = n1 + n, — 1. For example if eigenvalues of Aare A = —2,-2,-2,-3,-5,-7
thenn=6,n1=4,and n,=3for A = —2. The n-independent required equations are obtained
as follows. For the n; eigenvalues we write

Ali Amini, Ph. D. Professor of Electrical & Computer Engineering May 2016
California State University, Northridge



153

() = Bo + Pady + -+ Poog ly™
f(A2) = Bo + iy + -+ + By A} (5.74)

f(An1) = Bo + BiAns + -+ Br-1n™

And for eigenvalue A; which is repeated n; times we use

d™mf (A am -
L o= o (Bo + Brd + o+ B I, m=1,2,...,n.-1 (5.75)

Equations (5.74) and (5.75) provide the n independent equations required to solve for B, 51,
... ,Pn—1. Then B’'s are to be substituted in equation (5.71) to evaluate f(A) = e*'. It is important
to note that the repeated eigenvalue 4; is used one time in equation (5.74) and the remaining
n, — 1 times in equation (5.75).

Now let us consider some examples.

Example 14: Evaluate state transition matrix e*! for the given matrix A.

A= I

IA—=AI[=0

|—1—l -1
3 -5-1

|=0 2+61+8=0 A= -2,—4
edt = BoI + B, A Using equation (5.73)
e’ = By + B1A

e 2t = Bo — 2P1
e =By — 4Py

Solving for , and S; gives

Br= ()2 —e™)

,80 — 26_2t _ e—4t

et = ﬁoI + ,3114 = (Ze_Zt — e_4t) [é (1)] + (%)(6—21: _ e—4t) [—31 —1]

-5
1 -2t —4t 1. -2t —4t
a 5(36 —e ) —E(e —e )
e =13 1
E(e—Zt _ e—4-t) E(_e—Zt + 36—4t)
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Example 15: Evaluate state transition matrix e for the given matrix A.

_[-2 -1
A=[75 2]
IA-A1|=0
—-2-1 -1 |_ 2 _ _ .
I B A2+61+13=0 A=-3+i2
et = BoI + B;A Using equation (5.73)
et = By + 1A

eI = g, + (=3 +i2)p
e(3 7t = gy + (=3 - i2)p,

Solving for g, and B; gives

B, = (i) e 3t(ei2t — g=i2t) = G) e~3t sin 2t

i4

=3+t _ (=3 4 12) () e3tsin2¢
Bo 2
= e 3%(cos 2t + isin 2t) + %e‘“ sin2t —ie 3 sin2t

_ 3 _ap .
=e 3tc052t+5e 3tgin 2t

eAt = B, I + A = (e 3t cos 2t +%e‘3t sin 2t) [1 0] + (l) (e™*sin2t) [_52 _1]

0 1 2 -4
o (e 3t cos 2t+%e‘3t sin 2t) —%e‘“sin 2t)
el =
5 _3t . _ 1 3
e 3tsin2t (e~ cos2t —~e 3 sin2t)

Example 16: Evaluate state transition matrix e”' for the given matrix A.

a=[7
[A-=AI1=0
o St =0 +81+16=0 A=—4,-4
edt = BI1+ B, A Using equations (5.74) and (5.75)
e’ = By + B4
e ™ =B, — 4P,
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de?t d
T |1=-a = a (Bo + B a=-2

te™* =p; = fo = e M + 4te

At _ — —4t —4t 1 0 —4t -3 -1
et = Bl + B A = (e~* + 4te )[O 1]+(te )[1 _5]

oAt (e™* + te™*) (—te ™) ]
(te—4t) (e—4t _ te—4t)

Example 17: Assume A is a 5x5 matrix with eigenvalues 1 = —1,—-1, -1, -2, —3. Write only the
necessary equations to solve for By, B, B2, B3, Bs. Valuate state transition matrix e*! for the given
matrix A.

et = Bol + B1A + A% + ;A3 + B,A* Using equations (5.74) and (5.75)
e = By + B1d + B2 A% + B3 A® + B2t
e t=By—Br+Br—Bs+Ps

e 2t = By — 2B, + 4B, — 85 + 16p,
e 3t =By =3B + 9B, — 275 + 81B,

dmelt

dm
— l1=—1 = o (Bo + Prd + BoA? + B32° + Bud®)|3=—1 m=1,2

teM ey = (By + 2B2A + 3P3A* + 4P, 23121
te™t =By — 2B, + 3B — 4P,

t2eM| oy = (2B + 6B+ 12B44%| 5=,
tze_t = Zﬂz - 6ﬂ3 + 1234

Hence the five equations required to solve for By, B1, B2, B3, B4 are

et =By —Pi+PB—Bs+ P

e = By — 2B, + 4B, — 8B + 168,
e 3 = By — 3By + 9B, — 27P3 + 81B,
te™ =B — 2B, +3B; — 4P

t?e t = 20, — 6835+ 12p,

once By, B1, B2, P3, B4 are evaluated, e4t can be obtained using

eAt = B()I + ,8114 + ,82A2 + ‘83A3 + ‘84_144
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Example 18: A system is described by the following state variable equations.

s o 53 K 3 TR
yi)=1[2 -1] [2] u(t) = unit step function

a) Evaluate state transition matrix e*!
b) Evaluate x(t) and y(t)
¢) Evaluate impulse response h(t)

a) eAt

IA—AIl=0

1-2 2 |_ YO — 1) = _

| . 2_/1|_o 1-D2=-2)=0 A= 1,2

et = Byl + 1A

= Bo + 14

et =P+ By
2= By + 2,
1= —et +e?t

Bo = 2et — o2t

1 2

At _ _ t 201 O ot 2t
et =Byl + A= (2e" —e )[O 1]+( et +e )[O 5

at _ et —2e'+ ZeZt]

e 0 eZt

b) x(t) and y(t)

x(t) = eAtx(0) + f At Bu(r)dr

[X1] _ [et —2et +2e2t 0 e(t D 2D 4 202(-D] 11
x0T o ] Iy 02(t=1) [ ](1) de
(X1 _ [—2ef + 2e?t] . t[-3e¢® + 420D
[ x,] T | e?t ] +f0 Zez(t—r) dr
%) _ [~2et +2e%] _—Betfote‘fdr + 4e?t fote‘“dr]
[X2] 2t 2t (t -2
22 L e 2e% [ e7?"dr
[xl] _ [-2et +2e%] [—3ef(1—e™t) + 2e?t(1 — e2t)
bt e2t ] e2t(1 — e~2t)
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[xl] _ [—Zet + ZeZt] " —3el + 2e%t + 1] _ [—Set +4e%t +1

X2 et et —1 2e%t —1

y(t) = Cx(t) + Du(t)
y®) =[2 -1] [Z] + 0u(t) = 2(—5ef + 4e?t + 1) — (2e?* — 1)

y(t) = —10et + 6e2t + 3

c) h(t)
h(t) = Ce“tB + D&(t)

_ et —26t+2€2t] 17 _ —3et+4e2t]
ro=[2 -1|% Rl IR I

h(t) = —6e' + 6e%t

One can note the output consists of e, e? and a constant. This is expected considering

the eigenvalue are 2 = 1 and 2 and the input is a unit step. Similarly the terms e', e?tin
the impulse response h(t) are expected as well.

5.6 - Solution of State Variable Equations — S-Domain

In the previous section the solution of state variable equations in time-domain were obtained. In
this section the solution of state variable equations in s-domain is evaluated. We begin with the
equations

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Taking Laplace Transform of both equations and using the properties of linearity and derivative
we have

sX(s) — x(0) = AX(s) + BU(s) (5.76)
Y(s) = CX(s) + DU(s) (5.77)

From equation (5.76) we write
(sl = A)X(s) = x(0) + BU(s) (5.78)

Pre-multiplying both sides of equation (5.78) by (sl — A)™! results in
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X(s) = (sl — Ay Lx(0) + (sl — Ay L BU(s) (5.79)
and

Y(s) = CX(s) + DU(s) = C(sl — A)"1 x(0) + C(sl — A)"L BU(s) + DU(s) (5.80)
Finally the system transfer function can be obtained by letting x(0) = 0 in equation (5.80).

Y(s) = C(sl — A)"L BU(s) + DU(s) = [C(sl — A)"L B + D] U(s) (5.81)
Hence

H(s) = C(sl - Ay1B + D (5.82)

Comparing the equations obtained in this section with those in the previous section, the
following observations can be made.

Llp®)] = Lle?] = (sI—A)7" (5.83)
or

¢(t) = et = L7 [(sI — A)7] (5.84)

H(s) = L [h(t)] (5.85)

Equation (5.84) can be used to evaluate ¢(t) = e4t if so desired. However for an nxn matrix A,
n? partial fractions will be required to convert state transition matrix from s-domain to time-
domain. The advantage of using equation (5.79) over equation (5.67) in evaluating state
variables is avoiding integration. However n partial fraction will be necessary to convert X(s) to
x(t) should equation (5.79) be used and state variables in time domain be desired.

Example 19: A system is described by the following state variable equations.

B0 AR e[S
y@) = [2 -1] [2] u(t) = unit step function

a) Evaluate X(s) and x(t) = L7X(s)]
b) Evaluate Y(s) and y(t) = L7Y[Y(s)]
c) Evaluate H(s) and h(t) = L7{H(s)]
d) Evaluate state transition matrix et using L™1[(sI — A)™1]

a) X(s) and x(t) = L7Y[X(s)]
X(s) = (sl = A1 x(0) + (sl = Ay 1 BU(s)
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R A I Y A I

(X1()]___ 1 [5—2 2 ”0]+ 1 s—2 2 Hl]
X,()] T -ns-2L 0 s—1ll1] T s-nes-2L 00 s—1112
(X1()]___ 1 [ 2 ] 1 [s+2]: 1 3s+2 ]
X,()] ~ 62 ls — 1] Tss—ne-2l2s — 2] T ss—ne-2)ls? 45 -2
35+2 3542

(X1(8)] _ [sG-D6-2)| _ [sG-1s-2)
[ X5 (5)] - s2+s-2 - s+2

| s(s—1)(s—-2) s(s—-2)

[1 5 4
[Xl(s) it
X2(s) 1,2

| s s—2

[xl(t) _[1—5et +4e?
x2(t) -1+ 2e?t

b) Y(s) and y(t) = L7[Y(s)]

Y(s) = C(sl — A)™1 x(0) + C(sl — A1 BU(s) + DU(s)

_ 1 s—2 2 0 1 s—2
Yis)=[2 -1l s-1Di-2)L 0 s — 1] [1] +l2 -1l s(s—l)(s—Z)[ 0
—s+5 6 —s2455+6
Y(s) = (s-1)(s-2) = s(s-1)(s-2)  s(s—1)(s—2)

3 10 6
Yo =5-at5

y(t) = 3 —10et + 6e?¢

c) H(s) and h(t) = L7H(s)]

H(s) = C(sl-A)*B +D

_ 1 s—2 2 1
H(s) = [2 1] s-D(is-2)L 0 s — 1] [2]
6
H(s) = -1)(5-2)
-6 6
HE) =5 6

h(t) = —6et + 6e?t
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d) State transition matrix et using L™ [(s] — A)™}]

s=2 2
_ -1 1 s—2 2 71 _|G-D-2) (s-1(s-2)
o) = 1= = [ 7 24l = 0 s-1
(s=D(s-2)
1 2
(s)=(sI-A)"* = (5;)1) (=02
(s-2)
1 2 2

1|60 6D ey
1

(s-2)

P =eM=L"t(I-A)7 =

t -2 t 2 2t
b =en=|c ~2e F 2t

It can be observed the results obtained in example 19 using s-domain method are the
same as those obtained in example 18 using time-domain.

5.7 —Linear Transformation and Diagonalization

In Section 5.2 it was demonstrated that given an nxn nonsingular matrix T and an nxn matrix A
the eigenvalues of the similar matrix Ar = TAT is the same as A and the corresponding
eigenvectors of Ar is Xt = T1X, where X is the eigenvector of matrix A. Furthermore if an nxn
matrix A has n distinct eigenvalues and n linearly independent eigenvectors and the columns of
the transformation matrix in the equation Ar = T*AT are made up of the eigenvectors of matrix
A, then the resulting Ar is a diagonal matrix whose diagonal elements are the eigenvalues of A.
Once again we begin with

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

We let T be a nonsingular nxn matix and define state z(t) as
x(t) =T z(t) (5.86)
or

2(t) = Tx(t) (5.87)

Substituting equation (5.86) in state variable equations shown above results in
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Tz(t) = ATz(t) + Bu(t) (5.88)
y(t) = CTz(t) + Du(t) (5.89)

Pre-multiplying both sides of equation (5.88) with T-! gives
z(t) = T 'ATz(t) + T 1Bu(t) (5.90)

We now define

Ar=TAT

Br=TB (5.91)
Cr=CT

DT =D

Using transformations defined in equation (5.91), state variable equations become

z(t) = Arz(t) + Byu(t) (5.92)
y(t) = Crz(t) + Dyu(t) (5.93)

and from equation (5.87)
z(0) = T-x(0) (5.94)

The equations already obtained to solve for state transition matrix, state variables, outputs, and
impulse responses do not change. Same equations in time-domain and s-domain apply.
However Ar, Br, Cr, and Dr must now be used. Clearly the state variables x(t) is different from
state variables z(t) unless T = I. Sate variables are in general different depending on what
modeling form is utilized. However for a given input the system outputs and impulse responses
remain the same regardless of modeling or transformation matrix T utilized. This is shown in the
following theorem.

Theorem 5.3
Given a linear time invariant state variable equations

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

The system characteristics are not changed after transforming the it to

z(t) = Arz(t) + Bru(t)
y(t) = Crz(t) + Dru(t)

where
Ar=TIAT
Br=T71B
Cr=CT
DT =D
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and T is a nonsingular nxn matix.

Proof:

The proof is complete once it is shown that hr(t) = h(t). Using equation (5.69), we have

hr(t) = CreA™ By + D;8(t) t=>0 (5.95)
After the transformation, state transition matrix is

et = Bol + B A+ + B 1 Ar" 1 (5.96)
using equations (5.91) and (5.96)

hr(t) = CT[Bol + By Ar + -+ + B Ar" ']T™ B + D&(¢) (5.97)
Substituting At from equation (5.91) gives

hy(t) = CT[Bol + B1Ar + -+ + Bn_1Ar" ']T'B + D&(t)

hy(t) = CT[Bol + B1(T71AT) + -+ + B, (T TAT)" |IT"1B + D&(t) (5.98)
Pre-multiplying T from the left hand side and T~ from the right hand side results in

hy(t) = C[BoTIT™ + B, T(TAT)T + - + B, T(T"TAT)" 1T"1|B + D&(¢)

hy(t) = C[Bol + BLIAI + -+ B,_T(T"*AT)(T~AT) ...(T"*AT)T"1|B + D&(¢)

hy(t) = C[Bol + 1A+ -+ B_1(DA(DA) ...(DA(D]B + D4(t)

hr(t) = C[Bol + 1A+ -+ Bp_1A" 1|B + D&(t) = Ce*B + D&(t) = h(t)

(5.99)

As shown in Theorem (5.3), system response in unaltered after linear transformation using
matrix T. In general such a transformation allows one to convert from one form of modeling to
another. For example to convert from controllable canonical form to observable canonical from
or vice versa. However one of the most useful transformation is diagonalization where matrix A
is converted to a diagonal form. As indicated earlier, such a form is obtained when the columns

of the transformation matrix T are made up of the eigenvectors of matrix A. This is
demonstrated in the following example.
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Example 20: A system is described by the following state variable equations.

=1 ZalBl+[fue [l
y(®)=[1 2] [Z] u(t) = unit step function

a) Evaluate H(s)

b) Evaluate Y(s)

¢) Transform the system to a diagonal form
d) Evaluate H+(s)

e) Evaluate Y+(s)

a)H(s)=C(sl-A)1B+D

H(s)=[1 2] [S_+31 s+5] [1]

_ 1 [s+5
H(s)=1[1 2] (s+2)(s+4)[ s+ 1] [ 1]
-s+10
H(s) = (s+2)(s+4)

b) Y(s) = C(sl — A)1x(0) + C(sl — A)1 BU(s) + DU(s)

_ 1 s+5 1 s + 5

Y(s) =11 2]_(S+2)(s+4)[ 3 s+ 1] [ ] [1 2] s(s+2)(s+4) s+1
Y(s) = 35412 -s+10 _ 3sZ+11s+10

$)= (s+2)(s+4) = s(s+2)(s+4)  s(s+2)(s+4)
¢) Transformation Matrix
[A=AI=0
|_1_’1 |—0 =  2+61+8=0 =

—5-1
(A=ADX=0
-1-1 -1 0
I | R
(—1 - )\)Xl — X2 = 0
31+ (-5-A)x2=0
A =2
X1 —X2 = 0
3X1— 3X2 =0
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Ho(s) = [3 7];[s+4 0 ][_2]
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X =[]
A, =4
3X1—X%X2=0
3X1—X%X2=0
X =[]
=l

Ar=TIAT = (3) [_i _ﬂ [_31 :é E :1 = [_(2) —2]
Br=T'B =(§) [_i _1] [—ﬂ - [—i]

cr=CT =[1 2][} 1]=[3 7]

=10 =) [ 7 Tll]= ol
d) Hr(s) = Cr(sl - A7)™ Br + Dr

me=6 105 2

(s+2)(s+4) 1

0 s+ 2

—-s+10

) = e

e) YT(S) = CT(S| — AT)_l Z(O) + CT(Sl - AT)_1 BTU(S) + DTU(S)

n6 =B Nogesl o0 ordll*B Tememl o sealldl

H©=8 Tememl o seadld B Tememl o sl

3s+12 -s+10 _ 3s2411s+10
(s+2)(s+4) = s(s+2)(s+4)  s(s+2)(s+4)

Yr(s) =

As can be observed, H(s) and Y(s) are the same before and after the transformation.
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CHAPTER 6

Partial Differential Equations

Overview

Section 6.1 starts with the discussion of partial differential equations (PDE) as compared to
ordinary differential equations (ODE) and some fundamental definitions such as order of PDE,
linear and nonlinear PDE, initial and boundary conditions, homogeneous and nonhomogeneous
PDE, and hyperbolic, parabolic, and elliptic forms. and eigenvectors. Soling PDE using ODE is
presented in Section 6.2. Section 6.3 discusses the solution of one-dimensional wave equation
and D’Alembert’s solution. The solution of one-dimensional diffusion or heat equation is
discussed in Section 6.4 and the solution of two-dimensional Laplace’s equation is presented in
Section 6.5.
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6.1 - Introduction

Ordinary differential equations (ODES) are used in many application to model systems for single
input-single output as well as for multiple input-multiple output. Such modeling works when
there is one independent variable such at time (t) is involved. However in many other
applications there is more than one independent variable defines the system. As a result this
category of problems cannot be modeled by ordinary differential equations and in such cases
partial differential equations (PDESs) are utilized. Wave propagation, solid state theory, solid
mechanics, and electromagnetic theory are just a few to mention that are governed by patrtial
differential equations. Partial differential equations involve one or more partial derivatives of
order one or higher of an unknown function depending on two or more independent variables.
The unknown function can be voltage, temperature, displacement, etc. and the independent
variable can be time t as well as displacements x, y, and z. In general the more independent
variables the more complex the PDE becomes.

We begin with some definitions involving partial differential equations.

Definitions

Order of Partial Differential Equation
The order of highest partial derivative present in the partial differential equation. Here are some
examples with u as the unknown function and X, y, z, and t as independent variables.

ou  9%u
u(x, t) ag Fyew —2 0 second order
O’u ou ou _ -X gj i
u(x,y) 9202y +2 52, T 10 3y 10e™* sin 2y third order
u(x,y) (3—1;)3 + Z_; =0 first order

Initial Conditions and Boundary Conditions

In the case of ordinary differential equation with unknown function as y and independent
variable as t, the solution involved coefficient to be determined using what was referred to as
initial conditions such as y(0), y'(0), etc. The number of such initial conditions required were the
same as the order of the given differential equation. In partial differential equation with unknown

. " . . d
function as u (t, x, y) initial condition are known functions such as u(0, x, y), a—l; (0,x,y), etc. and

boundary conditions are known functions such as u(t, 0, y), u(t, x, 2), g—; (t,x,0), Z—; (t,5,y),

etc. Here are some given initial and boundary conditions.

u(o, x, y) =x2+y2+10

)

5 (0.xy) =xy

u(t, 0,y)=10sint+y + 2
ou — 2 4o

3y (t,x,0) =t* + sin4x
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Linear and Nonlinear Partial Differential Equations

In system analysis, it was observed that a linear system must satisfy the homogeneity and
additive property. In other words a system is linear if it satisfy property of superposition. Based
on the same concept, a partial differential equation is linear if the unknown function and all its
partial derivatives present in the equation are of first degree, otherwise the partial differential
equation is nonlinear. Below are examples of some linear and nonlinear partial differential
equations.

u(x,t) _+1Oaat+ﬁ+2_+3_:4 Linear
3u  23u | ddu . d%u _

u(x,y) % Y oraz Vo3 T omay —+ 3 — =4sinxcosy  Linear

u(x,y) (ax)3 + a_u +u=0 Nonlinear

u(x,t) axat) + = 10u? Nonlinear

Homogeneous and Nonhomogeneous Partial Differential Equations

A homogeneous partial differential equation is one which contains no functions other than the
unknown function and its partial derivatives with respect to the independent variables. A
nonhomogeneous partial differential equation is one which contains known function or functions
along with the unknown function and its partial derivatives with respect to the independent
variables. Below are some examples of homogeneous and honhomogeneous partial differential
equations.

92 o%u | 9%u

u(x,t) w255, t5=2=0 Homogeneous
2 2
u(x,y) ZTZ + ZTZ = 4u? Homogeneous
a2 ] ]
u(x,t) a—; + 10 ﬁ + — + 2 % +3 a_t =4 Nonhomogeneous
23u a3u a3u ou .
u(x,y) Pl 92357 + 3 + 3 7 = 4sinx cosy + 2x Nonhomogeneous

In this chapter the solutions of the following important partial differential equations will be
presented.

d%u 2 0%u . . .
u(x,t) 357 = ﬁ One Dimensional Wave Equation

9?2 . . :
u(x,y,t) 6_t1; = (ax2 Two Dimensional Wave Equation

a a%u . . e ,
u(x,t) 6—1: =c? ez One Dimensional Diffusion Equation

0%u = 9%u . . .
u(x,y) Py + pehe 0 Two Dimensional Laplace Equation
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Hyperbolic, Parabolic, and Elliptic Forms
Consider a linear, constant coefficient, second order partial differential equation.

o%u 0%u o%u ou ou
A1@+Azm+A3@+A4a+A55+A6u+A7 =0
If A3 —4A,A5>0 partial differential equation is Hyperbolic
If A3 —4A,A3 =0 partial differential equation is Parabolic
If A3 —4A,A5<0 partial differential equation is Elliptic

It can be observed that the wave partial differential equation is Hyperbolic, diffusion partial
differential equation is parabolic, and Laplace partial differential equation is elliptic.

Similar to ordinary differential equation, it can be stated that if ui, uo, ... , un are the solutions of
a linear homogeneous patrtial differential equation, then

U =CiUs + CaUz + ... + Cpln (6.1)

is also the solution. In equation (6.1), c1, C, ..., Cy are constant coefficients. The proof is rather
simple and it is based on the propertied of linearity (homogeneity and additivity).

To verify a solution of a partial differential equation, the solution must satisfy the partial

differential equation as well as given boundary or initial conditions.

Example 1: Verify u(x,y) = 10 sin 5x cosh 5y is a solution of Laplace’s partial differential
equation.

9%u | 9%u

ox2 Ty = 0

2 — 50cos5xcoshS 2 _250sin5xcoshS
5, — o0cos5xcoshSy 727 = sin5xcosh5y
ou , , 0°u ,

3 = 50sin5xsinh5y 37 = 250sin5xcosh5y

0%u . 9%u . ]
— t Py = —250sin5xcosh5y + 250sin5xcosh5y = 0

0x2
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There are some linear partial differential equations that can be solved using the methods of
solving ordinary differential equations. In general these partial differential equations contain
partial derivatives with respect to one of the independent variables or through some substitution
the transformed new partial differential equation could result as such. The following examples

demonstrate some of these cases.

Example 2: Solve the following partial differential equations for u(x,y).

ou _
ay -
ou
ox
0%u

C) dxdy -
9%u ou
d) ﬁ + 65 +25u=0

a)

b)

0%u

e) o —16u

f giyj— 9u = 18e3Y
a) uy=0 integrating with respectto y
b) ux=0 integrating with respect to x
C) Uy=0 integrating with respect to x

integrating with respect to y

d) uy +6uy+25u=0 A +61+25=0
u(x,y) = fi(x)e=¥cos 4y + f(x)e"¥sin 4y

Uxx +16u=0
22+16=0
u(x,y) = fi(y)cos 4x + fo(y)sin 4x

6) uXx = —16U

f) uy—9u=18e¥
Homogeneous solution: uy —9u =0
A2-9=0
u(x,y) = fi(x)e® + fo(x)e™

Nonhomogeneous solution:
u(x,y)= fa(x)ye®
[fa(x)6e® + f3(x)9ye®] — f3(x)9ye® = 18e%
f3(x)6e® = 18e*

fa(x) = 3

Ali Amini, Ph. D.
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u(x,y) = 3ye¥

Complete or total solution: u(x,y) = fi(x)e¥ + fo(x)e= + 3ye®

6.3 — Wave Equation

In this section we consider the solution of one dimensional wave equation. Vibration in different
structural elements and strings are just a couple of examples. We assume a string vibrates only
in vertical direction and its motion is a function of horizontal one dimensional displacement x
and time t. Hence tension in the horizontal direction is constant and motion is in vertical
direction. The partial differential equation of wave equation is derived by applying Newton'’s law
(> F = ma), where F is the algebraic sum of forces in the vertical direction and acceleration is
the vertical acceleration. Here u(x,t) designates the vertical displacement of the string.

9%’u 5 0%u
u(x,t) 2= C 52 (6.2)
Where
c2=1 d a= 2% 6.3
=5 a = 302 (6.3)

In equation (6.3), p is mass per unit length. The derivation of the wave equation is achieved by
following the procedure outlined above and is left as an exercise.

We assume the string is of length L with the following boundary and initial conditions.

Boundary Conditions: u©,t)=0 ulL,t)=0 (6.4)

Initial Conditions: u(x,0) = fi(x) ‘;—Z(x, 0) = f(x) (6.5)

Xx=0 X=L X

Figure 6.1 Vibrating String of Length L with Displacement u(x,t)
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The string is fixed at both ends as described by equation (6.4) and equation (6.5) indicates the
initial displacement and initial velocity of the string as f1(x) and f»(x) respectively. Clearly f1(0)
and fi1(L) must be both zero.

Solution of wave partial differential equation with boundary and initial conditions described
above is obtained using separation of variables as shown below.

u(x,t) = F1(x)F2(t) (6.6)

Substituting equation (6.6) in equation (6.2) results in

d?F(t) 5 d%F(x)
=c
dt? dx?

Fy(x) F,(¢t) (6.7)

Dividing both sides of equation (6.6) by c2F1(x)F2(t) we have

1 [szz(t)]_ 1 [szl(x)]
2R ()" dez 1 F(x) ' dx?

(6.8)

The left hand side of equation (6.8) is mainly a function of t and the right hand side of equation
(6.8) is a function of x. Therefore the only way a function of t is equal to a function of x is if they

are both equal to a constant. This constant is designated as K.

1 [szz(t)]_ 1 [szl(x)
2R ()" dt2 1 F(x) " dx?

1=K (6.9)

Equation (6.9) results in two homogeneous differential equations as follows.

d?F;(x) _

d;Z —KF,(x)=0 (6.10)
d?F,(t)
d—:z —Kc?F,(t) =0 (6.11)

Consider the boundary conditions u(0,t) =0 and u(L,t) = 0. Since u(x,t) = F1(X)F2(t), we have

u(0,t) = F1(0)F(t) =0
u(L,t) = Fy(L)F2(t) =0

Hence

F1(0)= 0 (6.12)
FiL)=0 (6.13)

We begin with solving differential equation (6.10). The constant K can be zero, positive, or
negative. Hence we consider all the three cases.
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Casel: K=0
From equation (6.10), we have

2
TP =0 = F1(x) = Cax + Ca

Applying equation (6.12) and (6.13)

Ci(0)+C2=0
Ciyl)+C2=0 = C1=C,=0 = F1i(X) = 0

u(x,t) = Fa(x)F2(t) =0
This is a trivial solution.

Casell: K > 0,K = A2
From equation (6.10), we have

2
LA 2R () =0 = Fi(x) = Cae™ + Coe ™M
Applying equation (6.12) and (6.13)

Ci+C2=0
CieM + CreM =0 = Ci=C,=0 = Fi(x)=0

u(x,t) = Fi(x)F2(t) =0

This is also a trivial solution.

CasellL K < 0,K = —A?
From equation (6.10), we have

d?Fy (x)
dx?

+ A2F;(x) =0 = F1(x) = C1cos Ax + C,SinAx

Applying equation (6.12) and (6.13)

Ci=0

CosinAL=0 = C2 # 0, otherwise F1(x) = 0 and u(x,t) = F1i(x)F2(t) = 0
Hence

sinAL=0 AL = nm A== =

F(x) = Czsin("L—")x n=1,2, .. (6.14)
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Using equation (6.11), we have

d?F,(t)
dtzz + A2¢?F,(t) =0
d?F,(t
20 1 (2R () =0 (6.15)

Solution of this differential equation is given by
F,(t) = A, cos( )t+B sm( )t (6.16)
With u(x,t) = F1(X)F2(t) and using equations (6.14) and (6.16) we have
Un(x,t) = 6251n( )x[A cos( ) t+ B, sm( )t]
Without loss of generality we can assume C, = 1 and using equation (6.1) write the solutlon for
u(x,t) as

u(x,t) = X5-4[A4, cos (Cm)t+B sm( D ) ]sin(%)x (6.17)

Equation (6.17) is the solution of the wave equation with boundary conditions as specified by
equation (6.4). Now the initial conditions of equation (6.5) can be applied to determine A, and
Bhn.

u(x,0) = f1(x)
Yy Ansin () x = £ (%)

Using Fourier sine expansion we have
f f1(x) sin ( ) xdx (6.18)
Applying initial velocity

2 @0) = f(x)
B[, ()5 () ¢+ 8, (2) os () lsin () o = o)
Si1 By (5F) sin () x = ()

Using Fourier sine expansion we have

B, (Cm) f f,(x) sin ( ) xdx
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Cnﬂf £, (%) sm( )xdx (6.19)

In summary, equation (6.17) is the solution of the wave equation with the boundary and initial
conditions as specified by equations (6.4) and (6.5). Equations (6.18) and (6.19) are used
determine the unknown coefficients A, and Bs.

If the initial velocity Z_Z(x' 0) = f2(x) = 0, B, = 0 and the solution reduces to

uix,t) =Y, A, cos( )tsm(—)x (6.20)

Example 3: Solve the wave equation for a string with length L = 1, ¢ =1, and given boundary and
initial conditions.

u(o0,t) =0, u(1,t) =0

u(x,0) = {x 0<x<0.5 Z_Z(x’ 0)=0

1—x 05<x<1

B, = 0,since 2= (x,0) = f,(x) = 0
u(x,t) = Y1 Ay cos(nmt) sin(nmx)
= —f f1(x) sin ( ) xdx 2[f00'5 x sinnm xdx + fol.s(l — x )sinnm xdx]

5. : :
Ap = 2[f00 x sinnm xdx + fol.s sin nm xdx — fol_sxsm nim xdx]

1
Ap = 2[——cosnnx + 5 )2 sin nmx |3 —n—cosn7tx|(1)5
- :
1 1
+ = cosnmx — — sinnmx
nm (nm)? |0'5]

nr 1 1 nrm
A, = 2[— — Cos(—) + sm(7) ——cosnm + — cos(7)

I

)2
+— COSNTT — —— COS (
nm 2nm 2

1
(nm)?

4 . nr
A, = ) sm(7)
u(x,t) = Yo o ) sm(—) cos(nmt) sin(nmx)

4 . 1 . 1 .
u(x,t) = = (cos mt sin mx — = cos 3rt sin 3mx + —cos 5t sin 57x + --+)
2 9 25
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Example 4: Solve the wave equation for a string with length L = wr, ¢ =1, and given boundary
and initial conditions.

u(o,t) =0, u(m,t) =0

u(x,0) =5sinx + 3sin3x — 10sin 4x % (x,0)=0

B, = 0,since Z—?(x, 0)=f,(x) =0

u(x,t) = Ymq Ay cos(nt) sin(nx)

Before evaluating An using equation (6.18), consider u(x,0)

u(x,0) = A; sinx + A, sin 2x + Az sin 3x + A, sin4x + Ag sin 5x + -
Comparing with the given initial condition results in

A1=5 A3;=3,A,=-10,and A, =0forn#1, 3,4

u(x,t) =5 cos t sin x + 3 cos 3t sin 3x — 10 cos 4t sin 4x

Example 5: Solve the wave equation for a string with length L = 7, ¢ =1, and given boundary
and initial conditions.

u(o,t) =0, u(m,t) =0

0<x<0.57m

ou _ _
—x 05r<x<m E(x,O)—x(n x)

u(x,0) = {:TC

u(x,t) = X5-4[4, cosnt + B, sinnt] sin nx

A, = %fOL f1(x) sin (nL—n) xdx = % [foo'snx sinnx dx + f(fs”(n — x)sinnx dx]

Ap = E[foo'snx sinnx dx + nf;nsinnx dx — fon

x sinnx dx|
T 51

2 X 1 . 0.5 T
A, = =[—=cosnx + =sinnx |g°™ —=cos nx|¥
n n[ n 2 lo . 0.5

X 1 . T
+-cosnx — —sinnx 1557

2 b4 nmn 1 . nm b4 b4 nm
A, = - [— P cos(7) + ﬁsm(7) ——cosnm + - cos(7)
s T nm 1 . nm
+-cosnr — — cos(T) t— sm(?)]
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4 .
A, = ﬁsm(nZ—n)
= Cnnf fz(X)sm( )xdx——f x(m — x) sinnx dx

2 s . T[ .
B, = — [[, mxsinnxdx — [ x*sinnx dx]

2 2 2-n
Bn=;[——cosnx+—smnx|0]—E[ cosnx+—smnx|0]
2m 2 2-n?n? 2 2 4-2n2m? 4
an—ﬁcosnn—g[ cosnn—ﬁ]z[—ﬁcosnn— cosnn+ﬁ]
u(x,t) = X5-4[4, cosnt + B, sinnt] sin nx
2.2

u(x,t) = Z?’f:ﬂ[# sin(nz—n)] cosnt + [— 721—7; cosnm — cosnm + ﬁ]sin nt}sin nx

D’Alembert’s Solution
Let us consider the wave equation

with initial conditions as
ou
u(x0) =h(x) 3r(x0) = fo(x)

D’Alembert’s solution of the wave equation consists of a substitution process of
variables x and t to alternate variables X and T and transforming the wave patrtial
differential equation into a form whose solution is already evaluated in Section 6.1. This
process is presented here.

X=x+ct (6.21)
T=x-ct (6.22)
2
Now Z—Z and — must be transformed in terms of the new variables X and T.

U = uxXe +urly = cux — cur
Uy = (cux — cur); = (cux — cup)xXe + (cux — cup) Tt
Uy = c(cuy — cur)y — c(cux — cur)r = c?(uxx — 2urx + urt) (6.23)
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U, = uxX, + urly, = ux + ug
Uyx = (Ux + up)y = (ux + ur)xXy + (ux + ur)rly
Uy = (ux +up)x + (ux + ur)t = uxx + 2uUrx + Urr

177

(6.24)

Substituting equations (6.23) and (6.24) in the wave partial differential equation gives

c?(uxx — 2urx + urr) = c?(uxx + 2urx + urr)
ZCZUTX =0
Using example 2c in Section 6.1 we write

u(X,T) =f(X) + g(T)

Using equations (6.21) and (6.22) we can write
u(x,t) = f(x + ct) + g(x — ct)
Applying initial conditions u(x,0) = f;(x) and %(x, 0) = f,(x), we have
fi(x) = f(x) + g()
f2(X) = cf (x) - cg'(x)
Integrating equation (6.27) from 0 to x results in
Jy f2(@)da = c[f (x) = F(0)] = c[g(x) — g(0)]
= I fa(@)da + £(0) — g(0) = f(x) — g(x)

(6.25)

(6.26)
(6.27)

(6.28)

After adding and subtracting equations (6.26) and (6.28) to evaluate f(x) and g(x) we obtain

fG) =356 + 52 f; fa(@da +3[£(0) — g(0)]
9@x) =3 () = = f; fa(@da =5 [£(0) — g (0)]
Using equations (6.25), (6.29), and (6.30) we have
uet) =3 i+ ct) +5- [ foladda + 5 [£(0) — g(0)]

+2file—ct) = - [T frla)da — S [£(0) — g(0)]

x+ct

WD) =5 fi 0+ ) + 5 fi0c— ) + 5 [T fo(@)da

If ‘Z—Lt‘(x, 0) = f,(x) = 0, then equation (6.31) reduces to
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uGt) = fix + ct) + 3 fi(x — ct) (6.32)
Example 6: Solve the wave equation for a string with length ¢ = 4, and given initial conditions.

ux0)=e™  Z(x,0)=10

fX‘l‘Ct

u(x,t) = %fl(x +ct) + %fl(x —ct) + i —er J2(@)da

1 _(x+at)2 ; 1 _(x—3t)2 , 1 (x+4t
u(xt) =-e (et4t) +e (x=41) +§fx_4t 10da

1 _ 2 1 _(r_ 2 5
u(X,t)=Ee (e+4t) +E€ (x—4t) +Za|,’§fi§

u(x,t) = %e‘(“‘mz + %e‘("“”)z + 10t

6.4 - Diffusion or Heat Equation

In this section we consider the solution of one dimensional diffusion or heat equation. Here
u(x,t) designates the temperature of a homogeneous thin rod with length L that is insulated
completely except at the ends (x = 0 and x = L). The temperature of the rod is assumed to be a
function of one dimensional displacement x and time t. We also assume the temperature of the
rod at both ends is kept at zero and the initial temperature of the bar to be fi(x). The partial
differential equation of the heat equation is given by

u _ 22%

T (6.33)

u(x,t)

with temperature kept at zero at both end and initial temperature as f1(x), the boundary
conditions and the initial condition are

Boundary Conditions: u0,t)=0 ulL,t)=0 (6.34)
Initial Condition: u(x,0) = fi(x) (6.35)
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x=0 X=L

Figure 6.2 Temperature u(x,t) in a Thin Rod of Length L

Clearly f1(0) and fi(L) must be both zero.

The constant term c? in equation (6.33) represents thermal diffusivity. Thermal diffusivity
depends on thermal conductivity, density, and specific heat of the rod.

Solution of wave partial differential equation with boundary conditions and initial condition
described above is obtained using separation of variables as shown below.

u(x,t) = Fa(x)F2(t) (6.36)

Substituting equation (6.36) in equation (6.33) results in

dF,(t) d*Fy(x)
Fi(x) === c? == Fy(0) (6.37)

Dividing both sides of equation (6.37) by c?F1(x)F2(t) we have

1 [dFZ(t)]z 1 [dZFl(x)]
C2F,(t) - dt Fi(x) " dx?

(6.38)

The left hand side of equation (6.38) is mainly a function of t and the right hand side of equation
(6.37) is a function of x. Therefore the only way a function of t is equal to a function of x is if they

are both equal to a constant. This constant is designated as K.

1 [szz(t)]_ 1 [szl(x)
2R dez 1 F() ' dx?

1=K (6.39)

Equation (6.39) results in two homogeneous differential equations as follows.

d?Fy (x)

1Y KF(x) =0 (6.40)
e GHAGEN (6.41)

Consider the boundary conditions u(0,t) =0 and u(L,t) = 0. Since u(x,t) = F1(X)F2(t), we have
u(0,t) = F1(O)F2(t) =0
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u(L,t) = Fa(L)F2(t) =0
Hence

F1(0)=0 (6.42)
FiL)=0 (6.43)

We begin with solving differential equation (6.40). The constant K can be zero, positive, or
negative. Hence we consider all the three cases.

Casel: K=0
From equation (6.40), we have

2
T8 =0 = F1(X) = Cax + Ca

Applying equation (6.42) and (6.43)

Ci(0)+C2=0
CiyL)+C2=0 = C1=C,=0 = F1i(x) = 0

u(x,t) = Fa(x)F2(t) =0
This is a trivial solution.

Casell: K > 0,K = A2
From equation (6.40), we have

2
LA 2R (x) =0 = F1(X) = C1e™® + Coe~
Applying equation (6.42) and (6.43)

Ci+C2=0
CieM + CreM =0 = Ci=C,=0 = Fi(x)=0

u(x,t) = Fa(x)F2(t) =0

This is also a trivial solution.

CasellL K < 0,K = —A?
From equation (6.40), we have

d?Fy(x)
dx?

+ A2F;(x) =0 = F1(X) = C1cos Ax + C,SinAx
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Applying equation (6.42) and (6.43)

C:=0

CasinAL=0 = C2 # 0, otherwise F1(x) = 0 and u(x,t) = Fi(x)F2(t) = 0
Hence

SinAL =0 AL = nm A== =

Fi(x) = Czsin(nL—n)x n=1,2, ... (6.44)

Using equation (6.41), we have

dF,(t)

——+ A2c?F,(t) =0

sz(t) ( )2 2F (t) =0 (645)

Solution of this differential equation is given by

CNTT.

Fy(t) = Aje” ) (6.46)

With u(x,t) = F1(x)F2(t) and using equations (6.44) and (6.46) we have

CNTT

Un(X.t) = C, sin (”L) x[Ae T

Without loss of generality we can assume C, = 1 and using equation (6.1) write the solutlon for
u(x,t) as

2

U(xt) = 22 Aule™ (2 sin (1) (6.47)

Equation (6.47) is the solution of the heat equation with boundary conditions as specified by
equation (6.34). Now the initial condition of equation (6.35) can be applied to determine An.

u(x,0) = f1(x)
Y 1A, sm( )x—fl(x)

Using Fourier sine expansion we have

f f1(x) sm( )xdx (6.48)
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In summary, equation (6.47) is the solution of the diffusion or heat equation with the boundary
condition and initial condition as specified by equations (6.34) and (6.35). Equation (6.48) is
used to determine the unknown coefficients An.

Example 7: Evaluate the temperature of a thin silver rod with L = 10cm, c? =1.74cm?%sec, and
given boundary and initial conditions.

u(0,t) =0, u(10,t) =0

0<x<5

_(x
ux,0) = {0 5<x <10

ux,t) =Y, A,fe (Czﬂ) t] sin (nnx) =y A [e —0.0174(nn)2t] sin (nl_%x)

——f fl(x)sm( )xdx 02f x sin 0.1nmx dx

5

A, =0.2[— %cos 0.1nmx + sin 0.1nmx] |3

1
(0 1n )2
sin 0.5nm]

5
Ay —02[—0'—c0505n7r+(0 s
A, = [—n—COSO 5nn+( n) sin 0.5nm]

sin 0.5n7] [e~00174(0)°t] sin (ﬂ)

uix,t) =Y 1[—1—c0305n7r+ 0

(nm)?

_ 201 _0.017472%t] o3 [TX 51,-0.0696m2¢t] iy [TX
u(x,t)—;[e | sin (1—0)+;[e | sin (?)

20 [ 2,1 . (3
——[e 0.1566m t] sm( ”x) .

97'[2 E

Example 8: Evaluate the temperature of a thin silver rod with L = 10cm, c? =1cm?/sec, and given
boundary and initial conditions.

u(0,t) =0, u(10,t) =0
u(x,0) = 8 sin 0.2mx

cni 2 .
W) = T Anle™ ) T sin (B2) =555, A, e~ 00107 in (22)
Before evaluating An using equation (6.48), consider u(x,0)
u(x,0) = A; sin 0.1mx + A, sin 0.2nx + A3 sin 0.3wx + A, sin 0.4x + -
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Comparing with the given initial condition results in

A;=8,and An=0foralln =2

u(x,t) = 8e 0047t gipy (%)

6.5 - Laplace’s Equation

In this section we consider the solution of two dimensional Laplace’s partial differential equation.
Here u is assumed to be a function of coordinates x and y. The applications of Laplace’s partial
differential solution is in electromagnetics, fluid mechanics, heat, etc. The Laplace’s two
dimensional partial differential equation is given by

0u | o _

u(x,y) Py 7 = 0 (6.49)

With the operator V2 defined as

2_ 0% | 9%
Vo= vz T 3y2 (6.50)
Equation (6.49) is simply written as
Viu=0 (6.51)
The boundary conditions assumed here are
Boundary Conditions: uO,y)=0 u(Ly,y) =0 (6.52)
u(x,0)=0 u(x,L2) = fi(x) (6.53)
Xzo,yzLZ_X:LllyzL2
x=0,y=0 x=1L1,y=0

Figure 6.3 Boundary Condition — Laplace’s Partial Differential Equation
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Clearly f1(0) and fi(L1) must be both zero.

Solution of Laplace’s partial differential equation with boundary described above is obtained
using separation of variables as shown below.

u(x,y) = Fi(x)Fa(y) (6.54)
Substituting equation (6.54) in equation (6.49) results in

da? F1(x)

F,() + Fi(x )d FZ(” =0 (6.55)

Dividing both sides of equation (6.55) by Fi(x)F2(y) we have

[szl(t)] [d F(y)
Fl(x) dx? Fz(Y)
d2F, (t) d2F2 (y)
Fi(x) L dx? ] Fz(}’) ] (6.56)

The left hand side of equation (6.56) is mainly a function of x and the right hand side of equation
(6.56) is a function of y. Therefore the only way a function of x is equal to a function of y is if

they are both equal to a constant. This constant is designated as K.

d’F (0] _ 1 d?R(), _
rwlae 1= " Rola: 1=K (6.57)
Equation (6.57) results in two homogeneous differential equations as follows.
d?F;(x) _
d;Z —KF,(x)=0 (6.58)
d?F,(y)
#Zy +KF,(y) =0 (6.59)

Consider the boundary conditions u(0,y) = 0 and u(L1,y) = 0. Since u(x,y) = Fi(X)F2(y), we have

u(0,y) = F1(0)F2(y) =0
U(Ls,y) = Fa(Ly)F2(y) = 0

Hence

F1(0) =0 (6.60)
Fi(L1) =0 (6.61)

We begin with solving differential equation (6.58). The constant K can be zero, positive, or
negative. Hence we consider all the three cases.
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Casel: K=0
From equation (6.58), we have

2
TP =0 = F1(x) = Cax + Ca

Applying equation (6.60) and (6.61)

Ci(0)+C2=0
Ci(Ly) +C2=0 = Ci1=C2=0 = Fi(x)=0

u(x,y) = Fi(x)F2(y) =0

This is a trivial solution.

Casell: K > 0,K = A2
From equation (6.58), we have

2
LA 2R () =0 = Fi(x) = Cae™ + Coe ™M
Applying equation (6.60) and (6.61)

Ci+C;=0
CieM! + CoeMl=0 = Ci=C,=0 = Fi(x) =0

u(x,y) = Fi(x)F2(y) =0

This is also a trivial solution.

CasellL K < 0,K = —A?
From equation (6.58), we have

d?Fy (x)
dx?

+ A2F;(x) =0 = F1(x) = C1cos Ax + C,SinAx

Applying equation (6.60) and (6.61)

Ci=0
CosinAL1=0 = C2 # 0, otherwise F1(x) = 0 and u(x,y) = F1(x)Fz(y) =0
Hence
sinAL; =0 AL =nmr A= Z—TE =
1
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Fy(x) = Czsin(:—")x n=1,2, .. (6.62)
1
Using equation (6.59), we have

d2F(y)
o —FR) =0

D EEPR() = 0 (6.63)

Solution of this differential equation is given by

F,(y) = A, cosh( )y + B, smh( )y (6.64)

With u(x,y) = F1(x)F2(y) and using equations (6.62) and (6.64) we have

un(X,y) = 6251n(—)x[A cosh( )y + B, smh( )y]

Without loss of generality we can assume C, = 1 and using equation (6.1) write the solutlon for
u(x,y) as

uxy) = Xa-4[4, cosh( )y+B smh( ) ]sin(%)x (6.65)

Equation (6.65) is the solution of the Laplace’s equation with boundary conditions as specified
by equation (6.52). Now the boundary conditions of equation (6.53) can be applied to determine
An and Bi.

ux,0)=0
Y A, sin (g)x =0 = A, =0

Hence we have
u(x,y) = Xm=; By, sinh ( )y sm(—)x (6.66)
We now apply the final boundary condition

u(x,L2) =fi(x)
u(x,L2) = ¥324[B, smh( )Lz] sm( )x = f,(x)
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Using Fourier sine expansion we have

B,sinh (MLZ) = f f,(x)sin ( ) xdx

Lysinh

B, = WI f1() sm( )xdx (6.67)

In summary, equation (6.66) is the solution of the Laplace’s partial differential equation with the
boundary conditions as specified by equations (6.52) and (6.53). Equations (6.67) is used
determine the unknown coefficient B,. Should the boundary conditions be different than those
specified by equations (6.52) and (6.53), a new solution of Laplace’s partial differential equation
needs to be evaluated following similar procedure as done above.

Example 9: Solve the Laplace’s partial differential equation with length L, = 7, L, =1, and given
boundary conditions.

u(,y) =0, u(m,y) =0
u(x,0) =0, u(x,1) =1 — cos 2x

ux,y) = Ym=1 By smh( )ysm(—)x

u(x,y) = Ym—q B, sinh(ny) sin(nx)

B, = (m,LZ) lef (x) sm( )xdx

Lls nh

B, = f (1 — cos 2x) sin(nx) dx = f [sin(nx) — sinnx cos 2x] dx

nsmh(n)

nsinh(n)

Note: sin(nx)cos(2x) = (1/2)[sin(n + 2)x + sin(n —2)x]

= 2 -1 95 05 _ fia
Bn = S [ c0s e+ g cos(n+ 2)x + 7 cos(n = 2)x]fo
= : 05 05
Bn = wsinh(n) [ cos(nm) + _COS(n +2)m+ —cos(n -2 + et S

B,, evaluated here cannot be used to compute B, due to the term (n — 2) in the
denominator. The coefficient B, needs to be evaluated separately as shown below.

2 m . 2 .
B, = prees fo (1 — cos 2x) sin(2x) dx = smh(z)f [sin(2x) — 0.5sin 4x] dx
__ 2 _1 1 i
B, = ——) [ - €0 2x + ~cos 4x]|o
Bl =0
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Bn can Now be substituted in u(x,y) and the series solution can be expanded for as many
terms as desired.

Example 10: Solve the Laplace’s partial differential equation with length L, = 4, L, =4, and given
boundary conditions.

u(0,y) = 0, u(4,y) =0

u(x,0) = 0, u(x,4) = 3sin (7) x — 2sin () x

u(x,y) = ¥, B, sinh (%) y sin(%)x

u(x.y) = ¥, B, sinh (%) sin(%5)

Before evaluating B, using equation (6.67), consider u(x,4)

u(x,4) = %21 By sinh(nm) sin(=7)

u(x,4) = B, sinh(n)sin(%)x + B, sinh(Zn)sin(g)x + B3 sinh(3m)sin (%ﬂ) X+
Comparing with the given boundary condition u(x,4) results in

B; sinh(m) = 3 B, =

B; sinh(3m) = —2 B; =

u(x,t) = —— sinh ("Ty) sinh (E) _

4

sinh (?) sinh (?)

sinh 3w
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