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CHAPTER 1 

 

Complex Variables 
 

 

Overview 

Complex numbers and their algebraic operations are presented in this Chapter in Sections 1.1 

and 1.2. Complex functions, set, domain, and range are discussed in Section 1.3. Section 1.4 

covers limit of a function, continuity, derivative, and analytic function. Section 1.5 covers Cauchy 

Riemann equations and harmonic functions. Exponential and logarithmic functions are 

discussed and presented in Section 1.6, trigonometric and Inverse trigonometric in Sections 1.7, 

and hyperbolic and inverse hyperbolic in Section 1.8.     
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1.1 – Complex Numbers and Basic Operation 

 

Students taking algebra are taught to set the function y = f(x) equal to zero in order to obtain the 

x-intersections. Let us consider the following function: 

 y = f(x) = x3 + 7x2 + 31x + 25  

If y is set to zero, only x = -1 is an acceptable solution as an x-intersection. Hence the graph of y 

versus x intersects the x axis only at one point, even though setting a polynomial of degree 

three to zero provides three roots. In this example the other two roots happen to be complex 

numbers and the graph of y versus x deals with real numbers.     

              

A complex variable z can be written as z = x + iy or as an ordered pair z = (x,y). The real part of 

z is x and the imaginary part of z is y. The notation (x,y) is rarely used in engineering and 

instead, rectangular form x + iy or polar form is utilized. The polar form of a complex number is 

presented in Section 1.2. 

 

 x = Re(z) y=Im(z)        (1.1) 

 

If x =0, z is a pure imaginary number and if y = 0, z is a pure real number. The term i is the 

imaginary unit defined as: 

 

i =j = √−1   = (0,1) and i2 = -1, i3 = -i, i4 = 1, i5 = i, etc.   (1.2) 

 z = (x,y) = x(1,0) + y(0,1) = x + iy = x +yi     (1.3) 

 

Complex number z1 = x1 + iy1 = (x1,y1) can be geometrically shown in complex plane as 

presented in Figure 1.1. The horizontal axis (x-axis) is referred to as the real axis and the 

vertical axis (y-axis) is referred to as imaginary axis. 

                                                                          y       Imaginary Axis    

              z1 = x1 + iy1 = (x1,y1) 

                                                                          y1 

           x 

            0       x1   Real Axis 

       

             

             

        Figure 1.1 Complex Plane, Rectangular Form 
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Just as the Cartesian Coordinate system the real axis and the imaginary axis divide the complex 

plane into four quadrants 

Quadrant I:  Real Part > 0  Imaginary Part > 0              

Quadrant II:  Real Part < 0  Imaginary Part > 0               

Quadrant III:  Real Part < 0  Imaginary Part < 0                 

Quadrant IV:  Real Part > 0  Imaginary Part < 0  

Pure real numbers are on the horizontal (real) axis and pure imaginary numbers are on the 

vertical (imaginary axis). The origin “0” defines z = (0,0) = 0 + i0. Figure 1.2 shows the locations 

of some complex numbers in the complex plane. 

Example 1: z1 = -4   z2 = +5  z3 = -i3  z4  =+i4                                                         

z5 = 2+i2 z6 = -2+i3 z7 = -2-i  z8 = 1-i3 

             Imaginary 

                                                                       z4 

                                                              z6 

                                                                                               z5 

 

                           

                     z1     0    z2 Real             

                   z7        

                       

                                                  z3                 z8 

 

 

     Figure 1.2 Examples of Some Complex Numbers  

Complex Conjugate 𝑧̅  in Rectangular Form                         

The complex conjugate of a complex number z = x + iy = (x,y) is denoted by 𝑧̅ and is defined 

as: 

 𝑧̅ = x - iy = (x,-y)        (1.4) 

Geometrically �̅� is the reflection of z with respect to real axis. Clearly 𝑧̿ = z and the complex 

conjugate of a pure real number is itself.         

 

Example 2: z1 = 3 – i4 = (3,-4) 𝑧̅1= 3 + i4 = (3,4)                              

z2 = i2 = (0,2)  𝑧̅2= – i2 = (0,-2)                                           

z3 = 10 = (10,0) 𝑧̅3= 10 = (10,0) 
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                                                                           y    Imaginary Axis    

              z1 = x1 + iy1 = (x1,y1) 

                                                                          y1 

           x 

            z2 = �̅�2 =-x2    0     x1   Real Axis 

       

                                                           -y1                         𝑧̅1 = x1 - iy1 = (x1,-y1)                      

                                                                                                       

             

         Figure 1.3 Complex Conjugate in Rectangular Form 

 

Basic Algebraic Operations – Rectangular Form                       

Consider z1 = x1 + iy1 = (x1,y1) and z2 = x2 + iy2 = (x2,y2) 

                                                                                                                                                     

Equality                     

z1 = z2 implies x1 = x2 and y1 = y2        (1.5)             

Both the real part and the imaginary part must be equal. 

Addition                    

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) = (x1 + x2,y1 + y2)  (1.6) 

Subtraction                     

z1 - z2 = (x1 + iy1) - (x2 + iy2) = (x1 - x2) + i(y1 - y2) = (x1 - x2,y1 - y2)   (1.7)  

Multiplication                     

z1.z2 = (x1 + iy1).(x2 + iy2) = x1x2 + ix1y2+ ix2y1 + i2y1y2  kz = k(x1 + iy1) = kx1 + iky1           

z1.z2 = (x1x2 - y1y2) + i(x1y2+ x2y1) = (x1x2 - y1y2 , x1y2+ x2y1)     (1.8)   

Integer Power (n = 0, 1, 2,…)                                 

Integer power of z is given by; zn = zz….z. Depending on the value of n, it is probably best for 

this operation to be performed in polar form as discussed in Section 1.2. 

Division                                
𝑧1

𝑧2
 = 

𝑥1+ 𝑖𝑦1

𝑥2+ 𝑖𝑦2
 = a + ib   z2 ≠ 0 

The equations for a and b are to be determined. To do so both sides of the above equation are 

multiplied by z2. 

(a + ib)(x2 + iy2) = x1 + iy1 

Using equality, we can write:                           

ax2 - by2 = x1                             

ay2 + bx2 = y1    



5 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

Solving the two equations with unknown a and b results in: 

a = 
𝑥1𝑥2+ 𝑦1𝑦2

𝑥2
2+ 𝑦2

2  and   b = 
𝑥2𝑦1− 𝑥1𝑦2

𝑥2
2+ 𝑦2

2   Hence, 

𝑧1

𝑧2
 = 

𝑥1+ 𝑖𝑦1

𝑥2+ 𝑖𝑦2
 = 

𝑥1𝑥2+ 𝑦1𝑦2

𝑥2
2+ 𝑦2

2  + i 
𝑥2𝑦1− 𝑥1𝑦2

𝑥2
2+ 𝑦2

2  = (
𝑥1𝑥2+ 𝑦1𝑦2

𝑥2
2+ 𝑦2

2  , 
𝑥2𝑦1− 𝑥1𝑦2

𝑥2
2+ 𝑦2

2 )  (1.9) 

It should also be noted that z-n = (1/z)(1/z)…(1/z), where n is a positive integer and z ≠ 0. 

 

Some Complex Conjugate Application                                                   

Complex Conjugate is used in many applications. Some fundamental applications are 

considered here. 

z + 𝑧̅ = (x + iy) + (x - iy) = 2x  ⇒  x = Re z = 
z + �̅�

2
   (1.10) 

z - 𝑧̅ = (x + iy) - (x - iy) = i2y  ⇒  y = Im z = 
z − �̅�

2𝑖
   (1.11) 

𝑍�̅� = (x + iy).(x - iy) = x2 + y2        (1.12)  

Clearly z.𝑧̅ is real and positive and only zero if z = 0. This provides an alternate method of 

dividing complex numbers z1 by z2. The numerator and the denominator of z1/z2 are multiplied 

by the complex conjugate of the denominator and the real and imaginary parts are separated. 

 

𝑧1

𝑧2
 = 

𝑥1+ 𝑖𝑦1

𝑥2+ 𝑖𝑦2
 . 

𝑥2− 𝑖𝑦2

𝑥2− 𝑖𝑦2
 = 

𝑥1𝑥2+ 𝑦1𝑦2

𝑥2
2+ 𝑦2

2  + i 
𝑥2𝑦1− 𝑥1𝑦2

𝑥2
2+ 𝑦2

2  = (
𝑥1𝑥2+ 𝑦1𝑦2

𝑥2
2+ 𝑦2

2  , 
𝑥2𝑦1− 𝑥1𝑦2

𝑥2
2+ 𝑦2

2 ) 

 

As can be observed this is the same results obtained earlier. 

It can also be shown that: 

 

𝑍1 + 𝑍2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑍1

̅̅ ̅ + 𝑍2
̅̅ ̅         (1.13) 

𝑍1 − 𝑍2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑍1

̅̅ ̅ –  𝑍2
̅̅ ̅         (1.14) 

𝑍1. 𝑍2
̅̅ ̅̅ ̅̅ ̅ = 𝑍1

̅̅ ̅ . 𝑍2
̅̅ ̅          (1.15)                

(𝑍1/𝑍2
̅̅ ̅̅ ̅̅ ̅̅ ̅) = (𝑍1

̅̅ ̅) / (𝑍2)̅̅̅̅̅         (1.16)    

 

Example 3: If z1 = 2 + i5 and z2 = -4 + i3, evaluate 

a) z1 + z2 b) z1 - z2 c) z1.z2  d) z1/z2  e) 𝑍1
̅̅ ̅  f) 1/𝑍2

̅̅ ̅ 
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a) z1 + z2 = (2 + i5) + (-4 + i3) = -2 + i8 

b) z1 - z2 = (2 + i5) - (-4 + i3) = 6 + i2 

c) z1.z2= (2 + i5).(-4 + i3) = -8 + i6 - i20 + i215 = -23 - i14 

d) z1/z2 = (2 + i5)/(-4 + i3)                 

𝑍1

𝑍2
 = (

2+𝑖5

−4+𝑖3
) (

−4−𝑖3

−4−𝑖3
) =

−8−𝑖6−𝑖20−𝑖215

25
= 

7

25
− 𝑖

26

25
   

e) 𝑍1
̅̅ ̅ = 2 − 𝑖5 

f) 1/𝑧2̅ = (
1

−4−𝑖3
) (

−4+𝑖3

−4+𝑖3
) =  

−4+𝑖3

  25
= −

4

25
+ 𝑖

3

25
 

 

Fundamental Laws:                                 

Here it assumed z1, z2, and z3 belong to the set S of complex numbers 

Commutative Law (Addition)   z1 + z2 = z2 + z1                     

Associative Law (Addition)   z1 + (z2 + z3) = (z1 + z2) + z3                              

Commutative Law (Multiplication)  z1 . z2 = z2 . z1                                                          

Associative Law (Multiplication)  z1.(z2.z3) = (z1.z2).z3                                  

Distributive Law     z1.(z2 + z3) = z1.z2 + z1.z3                              

Additive Identity    z1 + 0 = z1                                            

Additive Inverse    z1 - z1= 0                            

Multiplicative Inverse    z1.(1/z1) = 1     

 

Graphical Representation of Complex Numbers – Addition and Subtraction                   

A complex number z1 = x1 + iy1 represents a single point in the complex plane and can be 

thought of as tip of a vector z1 = (x1,y1) = x1 + iy1 as shown in Figure 1.4. Similarly z2 is shown. 

Addition and subtraction of complex numbers z1 and z2 (z1 + z2 and z1 – z2) can be interpreted 

as addition of two vectors z1 and z2 and z1 and –z2 respectively, as shown in Figure 1.4.  

 

                                                                          y        

                     z1 + z2 

                                                                                     z2 

                           z1   

                                             x  

           z1 - z2    

                                                -z2 

 

  

Figure 1.4 Graphical Interpretation of Addition of z1 and z2  
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1.2 – Polar Form of Complex Numbers and Basic Operations 

 

Complex number z = x + iy can be represented in the complex plane in polar form. This form 

simplifies many of complex number operations and is used in variety of engineering application. 

Figure 1.5 shows a complex number z in terms of a length (distance from the origin) and an 

angle (measured from positive side of the real axis in the counterclockwise sense, in radians or 

degrees). The length is denoted by r or |𝑧| and is called magnitude, modulus, or absolute value. 

The angle is denoted by θ and is called simply angle, argument (arg z), or phase.  The 

magnitude is a distance from the origin and is positive. It is zero, if complex number z = 0. The 

angle θ is referred to as the principle value and is denoted by Arg z, when –π < θ ≤ π                 

(-180  ͦ< θ ≤ 180  ͦ) Clearly θ in general can be represented as any integer multiple of 2π (360  ͦ) 

in counterclockwise sense or -2π (-360  ͦ) in clockwise sense as shown in Figure 1.6. 

 

                                                                                 Imaginary Axis    

                      y             z 

                                                      𝑟 =  |𝑧|                                                 
                                   

θ                                           

0      x              Real Axis                  

    

 

Figure 1.5 Complex Plane, Polar Form  

 

                                                                                π/2, 5π/2,…  -3π/2, -7π/2….. 

                                                                  3π/4,… -5π/4,…                π/4,…    -7π/4,…                                                                  

 

                                                          π, 3π, … -π, -3π,…                                   0, 2π,… -2π,… 

 

                                                          5π/4,… -3π/4,…                                  -π/4,… 7π/4,…  

                                                                 

                                                                                3π/2, 7π/2,… -π/2, -5π/2….. 

Figure 1.6 Example of Some Argument of z 

 

Clearly 0, π/4, 3π/4, π, -π/4, - π/2, and -3π/4 are the principle values (–π < θ ≤ π) in this Figure. 



8 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

Referring to Figure 1.4 we can write 

 

 x = r cos θ and  y = r sin θ      (1.17) 

 

As a result the polar form of complex number z can be represented as 

 

 z = r cos θ + i r sin θ = r (cos θ + i sin θ)     (1.18) 

 

We can consider (1.17) as polar to rectangular conversion. Similarly we can write; 

 

 r = √𝑥2 + 𝑦2   and θ = Arg z = arctan 
𝑦

𝑥
 , if x > 0   (1.19) 

          = arctan 
𝑦

𝑥
 - π, if x < 0 and y < 0 

          = arctan 
𝑦

𝑥
 + π, if x < 0 and y > 0  

 

The addition and subtraction of π in (1.19) has to do with the fact that the domain of arctan is     

(-π /2 , π /2).  

 

Considering the magnitude of a complex number z is the distance from z to the origin and its 

angle is measured from the positive side of real axis, it should not be necessary to use equation 

(1.19) to convert a complex number that is pure real or pure imaginary from rectangular to polar 

from and such conversion should be obvious. For example z = 2 has a magnitude of 2 and the 

angle of 0, z = -3 has a magnitude of 3 and the angle of π, z = i5 has a magnitude of 5 and the 

angle of π/2, and z = -i6 has a magnitude of 6 and the angle of –π/2. Similarly if the angle of a 

complex number indicates it is located on the real or imaginary axis, there should be no need to 

use equation (1.17) to convert from polar to rectangular form. 

 

Example 4: Perform the following conversions: 

a) z = -1 + i to polar form                   

b) z = 10 (cos π/3 + i sin π/3) to rectangular form 

a) r = √(−1)2 + (1)2 = √2  θ = arctan 
1

−1
 + π = (-π/4) + π = 3π/4                                    

b) z = 10 (cos π/3 + i sin π/3) = 10 cos π/3 + i 10 sin π/3 = 5 + i5√3 
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Knowing the magnitude of a complex number z is the distance from the origin to the complex 

point z and using the principle of vector addition and subtraction, |z1|, |z2|, |z1 - z2|,and              

|z1 + z2| can be shown geometrically as in Figure 1.7.      

                                                                                 Im                        |z1 + z2| 

            z2                           |z1 - z2| = |z2 - z1| 

                                                                                                                                                                                                                   

|z2|               |z1|           z1 

                       Real 

                                               

                

Figure 1.7 Distances |z1|, |z2|, |z1+z2|, and |z1-z2| 

Complex Conjugate 𝑧̅  in Polar Form 

Complex conjugate of a complex number z = r (cos θ + i sin θ) in polar form is;  

 𝑧̅ = r (cos -θ + i sin -θ) = r (cos θ - i sin θ)     (1.20) 

Clearly the magnitude of  𝑧̅ the same as z and the angle 𝑧̅ is opposite sign of angle of z, as 

shown in Figure 1.8. 

                                                                                 Imaginary Axis    

                      y             z 

                                                      𝑟 =  |𝑧|                                                 
                                       

θ                                           

0              - θ       x              Real Axis             

                     |𝑧̅|    

               

                  -y         𝑧̅     

                                                                           

 Figure 1.8 Complex Conjugate in Polar Form  

Triangle Inequality 

The triangle inequality states that the sum of two lengths of any two sides of a triangle is greater 

or equal to the length of the third side, regardless what sides are selected. Using triangle 

inequality and having discussed the geometrical description of magnitudes of complex numbers 

(Figure 1.7), we can write: 

  |z1 + z2| ≤ |z1| + |z2|        (1.21) 
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Using (1.21), it can be shown that: 

|z1 + z2| ≥ |z1| - |z2|        (1.22) 

Equation (1.21) can be extended to: 

 |z1 + z2 +….+zn| ≤ |z1| + |z2|+...+ |zn|      (1.23) 

 

Basic Algebraic Operations – Polar Form                       

Consider z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2) 

                                                                                                                                                     

Equality                     

z1 = z2 implies r1 = r2 and θ 1 = θ 2 + 2kπ       (1.24)              

Addition                    

Complex numbers can be added in polar form, if their arguments are the same or 180 ͦ apart. In 

other words, they have to be located on the same axis. Here axis is used in a general term 

indicating the same angle θ or θ ± 180  ͦ.  

z1 + z2 = r1(cos θ1 + i sin θ1) + r2(cos θ1 + i sin θ1) = (r1+r2)(cos θ1 + i sin θ1)  (1.25) 

However, in general the complex numbers z1 and z2 can be converted to rectangular form, 

added, and converted back to polar form, if so desired. 

Subtraction                                 

Similarly complex numbers can be subtracted in polar form, if their arguments are the same or 

180  ͦapart. In other words, they have to be located on the same axis. Here axis is used in a 

general term indicating the same angle θ or θ ± 180  ͦ.  

z1 - z2 = r1(cos θ1 + i sin θ1) - r2(cos θ1 + i sin θ1) = (r1-r2)(cos θ1 + i sin θ1)  (1.26) 

Here it is assumed r1 > r2. Again, in general the complex numbers z1 and z2 can be converted to 

rectangular form, subtracted, and converted back to polar form, if so desired.                                         

                                      

Multiplication                     

z1.z2 = r1(cos θ1 + i sin θ1).r2(cos θ2 + i sin θ2)  

        = r1r2 [cos (θ1+θ2) + i sin (θ1+θ2)]      (1.27) 

The proof of equation (1.27) is left as an exercise.  

Integer Power (n = 0, 1, 2,…)                        

Using equation (1.27), we can write: 

zn = [r(cos θ + i sin θ)]n = rn(cos nθ + i sin nθ)     (1.28)  

Depending on n, this operation may produce a rather large magnitude and an argument. The 

argument can be written in principle form. Equation (1.28) is known as De Moivre’s Formula and 

is simply an extension of equation (1.27). 
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Division                                
𝑧1

𝑧2
 = 

𝑟1(cos𝜃1+ 𝑖 𝑠𝑖𝑛 𝜃1)

𝑟2(cos𝜃2+ 𝑖 𝑠𝑖𝑛 𝜃2)
 = 

𝑟1

𝑟2
 [cos(𝜃1 − 𝜃2) + 𝑖 s 𝑖𝑛(𝜃1 − 𝜃2)]  z2 ≠ 0  (1.29) 

The proof of equation (1.29) is left as an exercise. 

Using equations (1.28) and (1.29), we can write: 

z-n = (1/rn)(cos -nθ + i sin -nθ)   n ≥ 0  &  z ≠ 0    (1.30) 

 

Based on the results obtained above, the following observations are made: 

|z1z2| = |z1||z2| = r1r2  arg z1z2 = arg z1 + arg z2 = θ1+θ2   (1.31) 

|z1/z2| = |z1|/|z2| = r1/r2   arg z1/z2 = arg z1 - arg z2 = θ1-θ2 z2 ≠ 0  (1.32) 

𝑍�̅� = (x + iy).(x - iy) = r(cos θ + i sin θ).r(cos -θ + i sin -θ) = x2 + y2 = r2 = |z|2 (1.33) 

Equations (1.31), (1.32), and (1.33) have various applications in engineering, when one is 

purely interested in magnitude or phase. 

 

Example 5: If z1 = 5(cos π/3 + i sin π/3), z2 = 2(cos 2π/3 + i sin 2π/3), z3 = (cos π/2 + i sin π/2), 

z4 = 2(cos -2π/3 + i sin -2π/3), and z5 = (1 + i), evaluate 

a) z1 + z4 b) z1 – z4 c) z1.z2.z3  d) z1/z2  e) 𝑍2𝑍3
̅̅ ̅              

f) (z5)10 

a) z1 + z4 = 5(cos π/3 + i sin π/3) + 2(cos -2π/3 + i sin -2π/3) = 3(cos π/3 + i sin π/3)    

b) z1 – z4 = 5(cos π/3 + i sin π/3) - 2(cos -2π/3 + i sin -2π/3) = 7(cos π/3 + i sin π/3) 

c) z1.z2.z3= 5(cos π/3 + i sin π/3).2(cos 2π/3 + i sin 2π/3).(cos π/2 + i sin π/2) =                                                          

10(cos 3π/2 + i sin 3π/2) = 10(cos -π/2 + i sin -π/2) 

d) z1/z2 = [5(cos π/3 + i sin π/3)]/[2(cos 2π/3 + i sin 2π/3)] =  

5/2[(cos (π/3 -2π/3) + i sin (π/3 -2π/3)] = 2.5(cos -π/3 + i sin -π/3) 

e) 𝑍2𝑍3
̅̅ ̅ =  2(cos 2π/3 + i sin 2π/3). (cos -π/2 + i sin -π/2) = 2(cos π/6 + i sin π/6) 

f) (z5)10 = (1 + i)10 =[√2  (cos π/4 + i sin π/4)]10 = 32 (cos10π/4 + i sin10π/4) =  

32(cos π/2 + i sin π/2) = i32 

 

Root of Complex Numbers 

Equation (1.28) can be extended to obtain the nth root of a complex number z = r(cos θ + i sin θ). 

Given wn = z, then w = [ z ](1/n) is referred to as the nth root of complex number z. We assume w 

to be a complex number denoted by: 

w = R(cos Փ + i sin Փ)       (1.34) 

The objective is to evaluate R and Փ. Using wn = z, we can write: 

[R(cos Փ + i sin Փ)]n = r(cos θ + i sin θ)  
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Rn(cos nՓ + i sin nՓ)] = r(cos θ + i sin θ)     (1.35) 

Applying equation (1.24) for equality 

 Rn = r  ⇒ R = √𝑟
𝑛

   

and 

nՓ= θ + 2kπ ⇒ Փ= 
(θ + 2kπ ) 

𝑛
     (1.36) 

Hence, given z = r(cos θ + i sin θ) and wn = z, there are exactly n distinct roots and the nth root of 

the complex number z is given by 

 w = [ z ](1/n) = √𝑟
𝑛

 (cos 
θ + 2kπ  

𝑛
 + i sin 

θ + 2kπ  

𝑛
)    (1.37) 

 k = 0, 1, …, n-1 

As can be noted in equation (1.37), all the roots have the same magnitude ( √𝑟
𝑛

) and the angles 

of the roots are equally separated by (2π/n). Hence all the values of w lie on a circle of radius 

( √𝑟
𝑛

) and separated by an angle (2π/n). It is also important to note that if k is selected as n, n+1, 

n+2,…the previous roots are simply repeated, indicating there are only n roots to be evaluated. 

Example 6: Evaluate w, given  

a) w4 = i16                                             

b) w3 = 27                      

c) w2 = 1 - i                                         

a) w4 = 16 (cos π/2 + i sin π/2)                                              

w = √16
4 (cos 

π/2 + 2kπ  
4

 +  i sin 
π/2 + 2kπ  

4
) k = 0, 1, 2, 3                                         

k=0 w1 = 2 (cos π/8 + i sin π/8)                                         

k=1 w2 = 2 (cos 5π/8 + i sin 5π/8)                                                                                  

k=2 w3 = 2 (cos 9π/8 + i sin 9π/8)                                        

k=3 w4 = 2 (cos 13π/8 + i sin 13π/8)  4 Roots Shown in Figure 1.9a 

b) w3 = 27 (cos 0 + i sin 0)                                              

w = √27
3 (cos 

0 + 2kπ  
3

 +  i sin 
0 + 2kπ  

3
) k = 0, 1, 2                                         

k=0 w1 = 3 (cos 0 + i sin 0)                                         

k=1 w2 = 3 (cos 2π/3 + i sin 2π/3)                                                                                  

k=2 w3 = 3 (cos 4π/3 + i sin 4π/3)   3 Roots Shown in Figure 1.9b                                   

c) w2 =1 - i = √2 (cos -π/4 + i sin -π/4)                                            

w = √2
4 (cos 

−π/4 + 2kπ  
2

 +  i sin 
−π/4 + 2kπ  

2
) k = 0, 1                                         

k=0 w1 = = √2
4

 (cos -π/8 + i sin -π/8)                                                                           

k=1         w2 = = √2
4

 (cos 7π/8 + i sin 7π/8)  2 Roots Shown in Figure 1.9c 
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      w2                                                                w2          

                                                                                               w2 

                                    w1                                                                    w1    

   w3                                                                                                                                                                                                             w1 

                                                    

                           w4                                w3               

Figure 1.9a          Figure 1.9b          Figure 1.9c 

 

Using equations (1.28) and (1.37), we can write the rational power of z as 

wn = zm      ⇒                                                                       

 w = [ z ](m/n) = √𝑟𝑚𝑛
 [cos 𝑚(

θ + 2kπ  
𝑛 ) + i sin m( 

θ + 2kπ  

𝑛
)]  (1.38) 

 k = 0, 1, …, n-1 

 

 

1.3    – Complex Set, Function, Domain, and Range 

 

Complex Set 

Prior to defining a complex function, it is necessary to define a complex set. As discussed in the 

previous sections, a complex number z is represented as z = x + iy = r (cos θ + i sin θ). A 

complex set D is a collection of finitely or infinitely many complex numbers. These complex 

numbers can be interior points, boundary points, or exterior points. A complex set can be open 

or closed, connected, simply connected or multiply connected, or bounded or unbounded. 

These terms are defined below:         

   

Neighborhood of z0:                                                                                                                                      

All point z that satisfy;  |z - z0| < ε  where ε > 0                                                                             

Interior Points of a Set:                                                                                                               

Points for which there exists at least a neighborhood of z0 all whose points belong to that set.  

Boundary Points of a Set:                                                                                                                

Points for which every neighborhood of z0 contains points that belong to that set as well as 

points that don’t belong to that set 
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Exterior Points of a Set:                                                                                                               

Points for which there exists at least a neighborhood of z0 none of whose points belong to that 

set. 

Connected Set:                                                                                                                               

It is a set that any two points of this set can be connected by a number of line segments all 

belonging to the set. 

Simply Connected Set:                                                      

It is a connected set that every simple closed curve in the set only contains points of that set. A 

simple closed curve is one that does not intersect itself. 

                 Imag 

 

                                                                                                                                                Re 

 

        Figure 1.10 Simply Connected 

Multiply Connected Set:                        

It is a connected set that there is at least one simple closed curve in the set with one or more 

points that don’t belong to the set.                                                                                    

                                                                                                                  Imag 

 

 

              Re 

 

Figure 1.11 Multiply Connected 

Bounded and Unbounded Sets:                   

If all the points, z in the set satisfy: 

|z | < ρ, 

Then the set is called bounded. If a set is not bounded, then it is called unbounded. For 

example, a set defined by all the points |z | = 6 is bounded and the set defined by |z | > 10 is 

unbounded. 

 

Let us now consider some examples of sets.   

 

Example 7: Sketch the set of complex points described by; 

a) |z | = 1                                                                         

b) |z | > 1                                                      
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c) |z | < 1                                                                        

d) |z - (1 + i)| = 1                                                         

e) 1< |z + i2| ≤ 2                      

f) -1 < Im z < 2                                                                                   

g) 0 ≤ Re z ≤ 1 

 

a) |z | = 1, points on a circle with center at z = 0 and radius 1.   

         

                              Im                                                         

                                                                                                              

                                     1                                                                                                              

                                                                         Re                                                                                                                                                                                                

                                                    

                   Figure 1.12                                                      

  b) |z | > 1, exterior points to a circle with center at z = 0 and radius 1. Boundary point   

excluded, since there is no equality included with the greater than sign. 

                         Im 

                                                                                

                      1                                                                                                           

                                                                                                                            

                                                               1               Re                                                                                                                                                                                                         

                                                    

                                                                        

                     

Figure 1.13     

c) |z | < 1, interior points to a circle with center at z = 0 and radius 1. Boundary point 

excluded, since there is no equality included with the greater than sign. 

                          Im 

 

                                     1    Re 

 

 

Figure 1.14  
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   d) |z - (1 + i)| = 1, points on a circle with center at z = 1 + i and radius 1. 

                            Im 

 

                        1 

 

                                     1                        Re 

Figure 1.15  

 

   e) 1< |z + i2| ≤ 2, interior points between two concentric circles with center at z = -i2 and 

radii 1 and 2. Boundary points of inner circle excluded, but the outer circle included. 

                            Im 

                               1    2                  Re 

                        1 

                           1                                       

                                                                      

                     -4                                

Figure 1.16  

 

   f) -1 < Im z < 2, set of complex points whose imaginary parts are between y = -1 and y = 2. 

The boundary points on horizontal lines y = -1 and y = 2 are excluded. The real parts 

extends from −∞ to +∞. 

                            Im 

                       2                    

                        1 

                                                              Re                                       

                      -1                                

Figure 1.17  
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   g) 0 ≤ Re z ≤ 1, set of complex points whose real parts are between x = 0 and x = 1. The 

boundary points on vertical lines x = 0 and x = 1 are included. The imaginary parts 

extends from −∞ to +∞. 

                     Im 

                                           

                       0              1                      Re 

        

                                          

 

Figure 1.18      

                                                                           

It is important to note that |z | is simply the length from the complex variable z to the origin,         

z = 0. Similarly for a given complex point z1, |z - z1| represents the length from the complex 

variable z to z1. As can be recalled 

 |z | = √𝑥2 + 𝑦2      and   |z - z1| = √(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2                                                                                

This should help to better understand example problems 7a, b, c, and d. It should be clear that 

the magnitude |z - z1| is always greater or equal to zero and can never be negative.     

                                                                                                                  

Complex Function 

A function f is a rule that assigns to each complex point z in a set D, a complex point w in a set 

R. Hence we define the complex function of a complex variable z belonging to domain D as;  

     

w = f(z) = u(x,y) + iv(x,y)       (1.39) 

 

The real part of the function f(z) is u(x,y) and the imaginary part of f(z) is v(x,y). In general f(z) is 

complex function of x and y, where u(x,y) and v(x,y) are real functions of x and y. This can be 

interpreted as mapping a complex point z in z-plane to a complex point w in the w-plane as 

shown in Figure 1.19.      

                           y      Imag                                 f                                  v    Imag                                                         

                                 z = x+iy                                                                w = u +iv               

                     D                            x   Re                                        R                             u   Re 

                           y                                                                                                                              

                  Figure 1.19 Complex Function w = f(z) = u(x,y) + iv(x,y)   



18 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

Example 8: Represent the given functions in the form w = f(z) = u(x,y) + iv(x,y), 

a) w = f(z) = z2 + 2z + 10                                                         

b) w = f(z) =  1/z                      

c) w = f(z) = (z + 1)/(𝑧̅ - 1)                   

d) w = f(z) = z𝑧̅                                      

a) w = (x + iy)2 + 2(x + iy) +10 = x2 + i2xy - y2 + 2x + i2y + 10 =                                                               

w = (x2 - y2 + 2x + 10) + i(2xy + 2y) ⇒ u(x,y) = x2 - y2 + 2x + 10 and v(x,y) = 2xy + 2y  

b) w = 1/z = 1/(x+iy) = (x-iy)/[(x+iy)(x-iy)] = [x/(x2+y2)] + i[-y/(x2+y2)]     ⇒ u(x,y) = [x/(x2+y2)]  

and v(x,y) = [-y/(x2+y2)]     

c) w = (z + 1)/(𝑧̅ - 1) = [x+1 + iy]/[x-1 - iy] = [x+1 + iy] [x-1+ iy]/[x-1 - iy] [x-1 + iy] =                           

[(x2 - 1 - y2)]/[(x - 1)2 + y2] + i2xy/[(x - 1)2 + y2]    ⇒ u(x,y) = [(x2 - 1 - y2)]/[(x - 1)2 + y2] and 

v(x,y) = 2xy/[(x - 1)2 + y2] 

d) w = z𝑧̅ = (x+iy)(x-iy) = x2 + y2         ⇒ u(x,y) = x2 + y2 and v(x,y) = 0 

 

Example 9: Evaluate f(z) = 1/z at z = 3 + i4 

This problem can be solved by substituting x = 3 and y = 4 in u(x,y) and v(x,y) of example 8b. Or 

one can simply substitute z = 3 + i4 in f(z) = 1/z and perform the operation. The final result is the 

same. 

     f (3 + i4) = 1/(3 + i4) = (3 - i4)/[(3 + i4)(3 - i4)] = (3/25) + i(-4/25) 

 

 

Domain and Range 

Referring to the definition of a complex function w = f(z) stated above and Figure 1.19, domain 

and range can be defined as: 

Domain, D:                                                                            

The set of allowable and permissible values of z in w = f(z). D can include the entire z-plane or 

portion of it based on any given restriction. 

Range, R:                                                                            

The corresponding set of all values of w in w = f(z). 

 

 

 

 



19 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

1.4    – Limit, Continuity, Derivative, and Analytic Function 

 

Limit 

Let w = f(z) and assume this function is defined in some neighborhood of z0 but it may or may 

not be defined at z0. We write the function f(z) has a limit w0 as z approaches z0.  

 

lim f(z) = w0         (1.40)                                                

 z → z0   

        

and if for any real ε > 0, one can find a real δ > 0 such that for all z satisfying |z – z0| < δ  implies 

|f(z) – w0| < ε. Figure 1.20 shows a geometrical interpretation of this limit. 

                                y                             f                                           v                               

                                  R 

                                                                                                                  f(z)     

              D                       δ      z                                                                 ε     w0 

                                            z0                                           

                                                                          x                                                                      u 

 

 

Figure 1.20 Geometrical Interpretation of Limit of a Function 

 

Similar to real calculus, if 

lim f1(z) = L1         (1.41)                                                

 z → z0   

lim f2(z) = L2         (1.42)                                                

 z → z0   

then 

lim [f1(z) + f2(z)] = L1+ L2       (1.43)                                                

 z → z0   

lim [f1(z) . f2(z)] = L1.L2        (1.44)                                                

 z → z0   

lim [f1(z)/f2(z)] = L1/L2  L2 ≠ 0      (1.45)                                                

 z → z0   
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Continuity 

Function w = f(z) is continuous at z0 if it is defined at z0 and if limit of the function at z0 is equal 

to the value of the function at z0.  

  

lim  f(z) = f(z0)         (1.46)                                                

 z → z0   

 

Derivative 

The differentiation of a complex function w = f(z) is analogous to real calculus. If w = f(z) is 

defined at z0, the derivative dw/dz = df(z)/dz = f ´(z) at z0 is defined as 

 

dw/dz = df(z)/dz = f´(z0) =  lim     f(z0 + ∆z) – f(z0)    (1.47)                                                

                                 ∆z→0     ∆z 

 

The increment ∆z = ∆x + 𝑖∆y can approach zero on infinitely many paths, some of which are 

shown in Figure 1.21. Regardless of what path is taken, equation (1.47) should result in the 

same result for the derivative to exist.   

                                y                                                                                                      

                                                            z0 + ∆z                        

    

                                                                                                                       

                                                                                                              

                                            z0                                           

                            0                                                                x                                                                       

 

 

Figure 1.21 Example of Four Possible Paths of Infinitely Many ∆z→0 

 

Example 10: Differentiate f(z)                         

a) w = f(z) = 5z2 + 2z                                                         

b) w = f(z) =  1/z                      

c) w = f(z) = 𝑧̅                                    
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a) f´(z) = lim      f(z + ∆z) – f(z)                                                                                      

            ∆z→0     ∆z  

           = lim         5(z + ∆z )2 + 2(z +∆z ) -  5z2 - 2z                

          ∆z→0                        ∆z 

        = lim         5z2 + 10z ∆z +5(∆z)2 + 2z + 2∆z  -  5z2 - 2z                

          ∆z→0                        ∆z 

      = lim         10z ∆z + 5(∆z)2 + 2∆z                              

          ∆z→0                 ∆z 

           = 10z + 2 

 

b) f´(z) = lim      f(z + ∆z) – f(z)                                                                                      

            ∆z→0     ∆z  

           = lim       1/( z + ∆z ) -  1/z                                           

             ∆z→0             ∆z 

        = lim           z  - z - ∆z                                                  

          ∆z→0     ∆z(z + ∆z)z 

           = - 1/z2 

 

c) f´(z) = lim      𝑧 + ∆𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑧̅    Using Equation (1.14)   ⇒                                                                                   

            ∆z→0     ∆z  

           = lim       𝑧̅ + ∆𝑧̅̅ ̅ − 𝑧̅                                                                 

         ∆z→0         ∆z 

           = lim        ∆𝑧̅̅ ̅    ∆𝑧 = ∆𝑥 + 𝑖∆𝑦  and  ∆𝑧̅̅ ̅ = ∆𝑥 −  𝑖∆𝑦                      

         ∆z→0     ∆z                 

No cancellation can occur in the last expression. As indicated above, there are infinitely 

many paths for ∆z→0. Let us consider, 1) ∆x→0 then ∆y→0   2) ∆y→0 then ∆x→0   

1) f´(z) = lim        ∆𝑥 − 𝑖∆𝑦     = -1                   

      ∆x→0   ∆𝑥 + 𝑖∆𝑦                                     

              ∆y→0                 

2)  f´(z) = lim        ∆𝑥 − 𝑖∆𝑦     =  1                   

      ∆y→0    ∆𝑥 + 𝑖∆𝑦                                

       ∆x→0                  

Hence w = f(z) = 𝑧̅ does not have a derivative. 
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Certainly we are not expected to obtain f´(z) using the limit definition of equation (1.47) for every 

given f(z). For example a polynomial of the form 

 

            f(z) = anzn + an-1zn-1+ … + a1z + a0       (1.48) 

 

is an analytic function. Furthermore a rational function of z of the form 

                                      

 f(z) = [anzn + an-1zn-1+ … + a1z + a0] / [bmzm + bm-1zm-1+ … + b1z + b0] (1.49) 

 

is analytic, except for those values of z for which the denominator is zero. The constant 

coefficients an, an-1,…,a1, a0 and bm, bm-1, …,b1, b0 are in general complex.  

The definition of derivative given by equation (1.47) is identical to f´(x) in real calculus. Hence 

the formula and the rules for differentiation are the same. Let us assume f(z), f1(z), f2(z),…,fn(z) 

are differentiable and C is a constant. Here are some general rules of derivative which should 

look familiar. 

 

 F(z) = C     F´(z) = 0    (1.50)                  

F(z) = zn n is a integer  F´(z) = nz(n-1)       (1.51)          

F(z) = f n(z) n is a integer  F´(z) = n f n-1(z). f´(z)   (1.52)                 

F(z) = Cf(z)    F´(z) = Cf´(z)    (1.53)                 

F(z) = f1(z) + f2(z) +…+fn(z)  F´(z) = f´1(z) + f´2(z) +…+f´n(z) (1.54)             

F(z) = f1(z).f2(z)   F´(z) = f´1(z)f2(z) + f1(z)f´2(z)  (1.55)            

F(z) = f1(z)/f2(z)   F´(z) = [f´1(z)f2(z) - f1(z)f´2(z)]/[f2(z)]2 (1.56)                           

F(z) = f1(z) ᵒ f2(z) = f1(f2(z))   F´(z) = f´1(f2(z)).f´2(z)   (1.57)                   

 

The derivative of other complex functions, such as exponential, logarithmic, trigonometric, and 

hyperbolic function will be discussed 1.6, 1.7, and 1.8 respectively. 

 

Analytic Function 

A complex function f(z) is analytic at a point z0 in domain D, if f(z) is defined at z0 and is 

differentiable at z0. This definition of analyticity can be extended to an entire domain D or a 

subset of domain D. Clearly f(z) = 1/z is analytic everywhere except at z = 0 and the function   

f(z) =𝑍 is not analytic. 
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1.5    – Cauchy-Riemann Equations and Harmonic Functions 

 

Cauchy-Riemann Equations in Rectangular Form 

Theorem 1.1  Cauchy-Riemann Equations – Rectangular Form                       

Let w = f(z) = u(x,y) + iv(x,y) be differentiable at z = x + iy. Then partial derivatives u x, u y, v x, 

and v y exist and satisfy the following equations: 

 

u x = v y  and   u y = - v x      (1.58)   

    

Furthermore if f(z) is analytic in D, then u x, u y, v x, and v y exist and satisfy equation (1.58). 

Equation (1.58) is called Cauchy-Riemann equations or conditions. 

Proof:              

Since f(z) is differentiable, we can write 

 

f´(z) =  lim       f(z + ∆z) – f(z)      (1.59)                                                

   ∆z→0         ∆z 

The proof is based on writing equation (1.59) in terms of x and y. Next we let ∆z = ∆𝑥 + 𝑖∆𝑦 →0 

on two different paths 1) ∆x→0 then ∆y→0   2) ∆y→0 then ∆x→0. This process will result in two 

different equations for f´(z). Since f(z) is assumed to be differentiable, the two equations must 

be one and the same.  

 

  f´(z) = lim           [u(x+∆𝑥 , y+∆𝑦) + iv(x+∆𝑥 , y+∆𝑦)] – [u(x , y) + iv(x , y)]    (1.60)                                           

        ∆𝑥 + 𝑖∆𝑦 →0                             ∆𝑥 + 𝑖∆𝑦   

 

Now let us consider 1) ∆x→0 then ∆y→0. We let ∆x→0 in equation (1.60).  

  f´(z) = lim       [u(x , y+∆𝑦) + iv(x , y+∆𝑦)] – [u(x , y) + iv(x , y)]                                                

            ∆𝑦 →0                              𝑖∆𝑦   

f´(z) = lim       [u(x , y+∆𝑦) –  u(x , y)] + i[v(x , y+∆𝑦) – v(x , y)]    with 1/i = -i ⇒                                            

            ∆𝑦 →0                              𝑖∆𝑦   

f´(z) = lim        [v(x , y+∆𝑦) – v(x , y)]   - i lim      [u(x , y+∆𝑦) – u(x , y)]                                                   

             ∆𝑦 →0              ∆𝑦         ∆𝑦 →0              ∆𝑦   

 f´(z) = 
𝜕𝑣

𝜕𝑦
− 𝑖

𝜕𝑢

𝜕𝑦
 = v y – iu y       (1.61)                                            
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Next let us consider 2) ∆y→0 then ∆x→0. We let ∆y→0 in equation (1.60).  

  f´(z) = lim       [u(x+∆𝑥, y) + iv(x+∆𝑥 , y)] – [u(x , y) + iv(x , y)]                                                

            ∆𝑥 →0                              ∆𝑥   

f´(z) = lim       [u(x+∆𝑥 , y) –  u(x , y)] + i[v(x+∆𝑥 , y) – v(x , y)]                                                

            ∆𝑥 →0                              ∆𝑥   

f´(z) = lim        u(x+∆𝑥 , y) –  u(x , y)]  + i lim      [v(x +∆𝑥, y) – v(x , y)]                                                   

             ∆𝑥 →0              ∆𝑥         ∆𝑥 →0              ∆𝑥   

 f´(z) = 
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 = u x + iv x       (1.62)                                            

Equations (1.61) and (1.62) must be the same for f(z) to be differentiable. Hence, setting the two 

equations equal, we obtain, 

 
𝜕𝑣

𝜕𝑦
− 𝑖

𝜕𝑢

𝜕𝑦
 =  

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 ⇒  

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
   and   

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
            or   ux = vy   and    uy = -vx  (1.63)  

                        

Once it is shown f(z) is analytic and both conditions of equation (1.63) are satisfied, either of the 

two equations (1.61) and (1.62) can be used to obtain derivative of f(z), if so desired.  

 

Example 11: Check if the given f(z) is analytic and if so, evaluate f´(z) using equation (1.61) or 

(1.62)                         

a) f(z) = z3 + 2                                       

b) w = f(z) =[ 𝑧̅ ]2                                  

                 

a) f(z) = z3 + 2 = (x + iy)3 +2 = x3 + 3x2(iy) + 3x(iy)2 + (iy)3 + 2 = (x3 - 3xy2 + 2) + i(3x2y - y3)                                   

ux = vy   ⇒ 3x2 – 3y2 = 3x2 – 3y2                                                                                         

uy = -vx  ⇒          -6xy = -(6xy) 

    Function f(z) is analytic and using equation (1.62) we have 

 f´(z) = u x + iv x = (3x2 – 3y2) + i6xy = 3[(x2 – y2) + i(2xy)] = 3(x + iy)2 = 3z2                                      

     

b) f(z) = [ 𝑧̅ ]2 = (x - iy)2 = (x2 - y2) + i(-2xy)                                                                                            

ux = vy   ⇒ 2x ≠ – 2x                                                                                                   

uy = -vx  ⇒         –2y ≠ – (–2y) 

    Function f(z) is not analytic.  
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Cauchy-Riemann Equations in Polar Form 

Theorem 1.2  Cauchy-Riemann Equations – Polar Form                         

Let w = f(z) = u(r,θ) + iv(r,θ) be differentiable at z = r(cos θ + i sin θ). Then partial derivatives u r, 

u θ, v r, and v θ exist and satisfy the following equations: 

 

r u r = v θ  and     r v r = - u θ       (1.64)  

and 

 f´(z) = (cos θ - i sin θ)( u r + iv r) = (cos θ - i sin θ)( v θ - iu θ)/r  (1.65)   

Furthermore if f(z) is analytic in D, then u r, u θ, v r, and v θ exist and satisfy equation (1.64). 

Equation (1.64) is called Cauchy-Riemann equations or conditions in polar form.   

  

Proof:              

We use Theorem 1.1 and note,  

u x = u r r x + u θ θ x                                                                                                                                          

u y = u r r y + u θ θ y                                                                                                                           

v x = v r r x + v θ θ x                                                                                                                                          

v y = v r r y + v θ θ y                                                                                                                            

Since r = √𝑥2 + 𝑦2 and θ = arctan 
𝑦

𝑥
 , we can evaluate r x, r y, θ x, and θ y and substitute in the 

above four equations. After substituting x = r cos θ, and y = r sin θ and simplifying, we obtain  

u x = u r cos θ - u θ (sin θ)/r       (1.66)                                                                                                                                    

u y = u r sin θ + u θ (cos θ)/r        (1.67)              

v x = v r  cos θ - v θ (sin θ)/r                                                              (1.68)                                         

v y = v r  sin θ + v θ (cos θ)/r       (1.69)                    

  

Since ux = vy and uy = -vx , we write         

  

u r cos θ - u θ (sin θ)/r = v r  sin θ + v θ (cos θ)/r    (1.70)                           

u r  sin θ + u θ (cos θ)/r = - v r  cos θ + v θ (sin θ)/r     (1.71)  

                                                                           

If we multiply equation (1.70) by cos θ and equation (1.71) by sin θ and adding them results in 

u r = v θ / r ⇒  r u r = v θ       (1.72) 

If we multiply equation (1.70) by – sin θ and equation (1.71) by cos θ and adding them results in 

                                   

 u θ / r = - v r  ⇒ r v r = - u θ      (1.73) 

This proves the first segment of Theorem 1.2. To evaluate the derivative in polar form, consider 

equations (1.61) and substitute v y and u y using equations (1.69) and (1.67). 
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f´(z) = v y – iu y = [v r  sin θ + v θ (cos θ)/r] - i [u r sin θ + u θ (cos θ)/r] (1.74) 

Substituting for v θ and u θ using equations (1.72) and (1.73) in equation (1.74) gives 

f´(z) = [v r  sin θ + r u r (cos θ)/r] - i [u r sin θ -r v r (cos θ)/r]      

         = [v r  sin θ + u r cos θ] - i [u r sin θ - v r cos θ]                 

         = [ cos θ - i sin θ)] [u r + i v r ]      (1.75) 

Similarly substituting for v r and u r using equations (1.72) and (1.73) in equation (1.74) gives 

f´(z) = [(-u θ/r) sin θ + v θ (cos θ)/r] - i [(v θ/r)sin θ + u θ (cos θ)/r]                       

= (1/r)[(-u θ sin θ + v θ cos θ) - i ( v θ sin θ + u θ cos θ)]                                                
= [cos θ - i sin θ][ v θ - iu θ] / r      (1.76) 

 

Equations (1.74) and (1.75) prove the second segment of Theorem 1.2. 

 

 

Harmonic Functions 

If a function ζ(x,y) has first and second continuous partial derivatives in some domain D and 

satisfies Laplace’s partial differential equation, 

∇2 ζ =  
𝜕2𝜁

𝜕𝑥2
+ 

𝜕2𝜁

𝜕𝑦2
  = ζ xx + ζ yy = 0      (1.77) 

It is called a harmonic function. 

 

Theorem 1.3                                             

If w = f(z) = u(x,y) + iv(x,y) is an analytic function in some domain D, then the real part (u) and 

the imaginary part (v) of f(z) satisfy Laplace’s partial differential equation or in other words are 

harmonic functions. 

 

Proof:              

Since f(z) is analytic, we have         

  

ux = vy   and    uy = -vx  

 

Taking the partial derivative of ux = vy with respect to x and uy = -vx with respect to y results in 

            u xx = v yx   and    u yy = -v xy  adding the two equations  ⇒     

 u xx + u yy = 0         (1.78) 
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Taking the partial derivative of ux = vy with respect to y and uy = -vx with respect to x results in 

            uxy = vyy   and    uxy = -vxx  subtracting the two equations ⇒    
            

 vxx + vyy = 0         (1.79) 

 

 

Example 12: The f(z) = u(x,y) + i v(x,y) is analytic. The real part of this function is given as             

u(x,y) =  x3 - 3xy2 + 5. Evaluate the imaginary part of f(z), given f(1 + i) = 3 + i5   

    

u x = v y  ⇒   vy = 3x2 - 3y2   v(x,y) = 3x2y - y3 + g(x)                     

v x = - u y  ⇒   6xy + g΄(x) = - (-6xy)  g(x) = c 

f(z) = (x3 - 3xy2 + 5) + i(3x2y - y3 + c)                

f(1 + i) = 3 + i5 ⇒  (1 – 3 + 5) + i(3 -1 + c) = 3 + i5 ⇒  3 + i(2+c) = 3 + i5             

g(x) = c = 3 

f(z) = (x3 - 3xy2 + 5) + i(3x2y - y3 + 3)                                

 

Example 13: Show the real part and the imaginary part of f(z) = z3 + 5z2 + 10 are harmonic 

functions.       

f(z) = z3 + 5z2 + 10 = [x3 + 3x2(iy) + 3x(iy)2 + (iy)3] + [5x2 + 5(i2xy) - 5y2] + [10]     

 = (x3 - 3xy2 + 5x2 - 5y2 + 10) + i(3x2y - y3 + 10xy) 

u x = 3x2 - 3y2 + 10x u xx = 6x + 10                    

u y = - 6xy - 10y  u yy = -6x - 10  ⇒ u xx + u yy = 0   

v x = 6xy + 10y  v xx = 6y                    

v y = 3x2 - 3y2 + 10x v yy = -6y  ⇒ v xx + v yy = 0 

                                                                        

                                                                                                                                                             

  

1.6    – Exponential and Logarithmic Functions 

 

Exponential Function 

Exponential function f(z) = e z is defined as 

 

 f(z) = e z = e (x + iy) =  e x e iy       (1.80) 
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The term e iy can be expanded using Maclaurin series as 

 

 e iy = 1 + (iy)/1! + (iy)2/2! + (iy)3/3! + (iy)4/4! + (iy)5/5! + …       

 e iy = (1 - y 2/2! + y 4/4! - …) + i (y/1! - y 3/3! + y 5/5! +…)  ⇒ 

 

 e iy = cos y + i sin y        (1.81)    

 

Using equation (1.81), we note that 

e i2π = 1,  e iπ = -1 e iπ/2 = i  e -i2π = 1,  e -iπ = -1 e -iπ/2 = - i 

 

Equation (1.81) is known as Euler formula. Substituting equation (1.81) in equation (1.80) 

results  

 

f(z) = e z = e x e iy = e x (cos y + i sin y)     (1.82) 

 

Some Properties of e z 

Using equations (1.81) and (1.82), we observe 

a) f(z) = e z = e x, if y =0       (1.83) 

b) |e z | = e x  and  arg e z = y + 2nπ  (n= 0, ±𝟏,±𝟐,… ) (1.84) 

c) |e iy | = 1 and   arg e iy = y + 2nπ  (n= 0, ±𝟏,±𝟐,… )   (1.85) 

 

d) e z1 . e z2  = e x1 (cos y1 + i sin y1) . e x2 (cos y2 + i sin y2)               

= e x1. e x2[(cos y1cos y2 - sin y1sin y2)+i (sin y1 cos y2 + cos y1 sin y2)]                    

= e (x1+x2) [cos (y1 + y2) + i sin (y1 + y2)]    ⇒ 

 

e z1 . e z2  = e (z1+z2)         (1.86)    

 

e) e z1 / e z2  = e x1 (cos y1 + i sin y1) / e x2 (cos y2 + i sin y2)               

= e x1/ e x2[(cos y1 + i sin y1)(cos y2 - i sin y2) / (cos y2 + i sin y2)(cos y2 - i sin y2) 

  

Note:  (cos y2 + i sin y2)(cos y2 - i sin y2) = cos2 y2 + sin2 y2 = 1   
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= e (x1- x2) [(cos y1cos y2 + sin y1sin y2)+i (sin y1 cos y2 - cos y1 sin y2)]                

= e (x1-x2) [cos (y1 - y2) + i sin (y1 - y2)]    ⇒ 

 

e z1 / e z2  = e (z1-z2)       (1.87) 

f) f(z) = e z is periodic with period of i2π 

e z = e z+i2π              (1.88)                                                                                                                            

This is simply to show using equation (1.86) and having shown e i2π = 1. This is also 

clear by examining equation (1.84). However, the region defined by –π < 𝑦 ≤ π is 

referred to as the fundamental region as is shown in Figure 1.22. 

                                                  Im 

                                            π             

                         

                                                                          Re                                       

                                            -π                         

 

        Figure 1.22 Fundamental Region of e z  

                                                                        

Derivative of f(z) = e z 

Using Cauchy-Riemann equations, we can show f(z) = e z is analytic 

 f(z) = e z = e x (cos y + i sin y) u(x,y) = e x cos y   and  v(x,y) = e x sin y 

 u x = v y = e x cos y   

 u y = - v x = - e x sin y 

To find f´(z), equation (1.62) can be used 

f´(z) = u x + iv x = e x cos y + i e x sin y  = e x (cos y + i sin y) = e z  (1.89)  
     

Similarly to real calculus, given g(z) is analytic we can write  

F(z) = e g(z)  

 F´(z) = g´(z) . e g(z)        (1.90) 
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An Alternate Polar Form of z 

We saw earlier that the polar form of complex number z is 

 

z = r (cos θ + i sin θ) 

 

Using Euler formula, we can write z as 

 

z = r (cos θ + i sin θ) = r eiθ       (1.91) 

 

As an example z = -1 + i can be written z = √2 e i3π/4. Equation (1.91) is a short version of polar 

form of z and is routinely used in engineering problems and applications dealing with complex 

variables. 

 

Example 14: Evaluate f(z) = e z at z = -1 + i2      

f(z) = e -1 + i2 = e -1 (cos 2 + i sin 2) = 0.368(-0.42 + i 0.91) = - 0.153 + i 0.334   

 

Example 15: Solve e z = 1 - i2 for z = x + iy      

| e z | =   e x = | 1 - i2 | = √5   e x cos y = 1       e x sin y = -2            ⇒                

x = ln √5 = (1/2)ln 5 = 0.805 cos y = 0.447    sin y = -0.894 ⇒    y = -1.11      

z = 0.805 - i(1 .11 + 2nπ)   n= 0, ±𝟏,±𝟐,…                                                       

 

 

Logarithmic Function 

The natural logarithm of z represented by ln z is the inverse of exponential function exponential 

function.  

w = ln z = log z e w = z  z ≠ 0     (1.92) 

 

Represent the given z in polar form (z = r eiθ) and let w = u + iv. The objective is to compute u 

and v. Using equation (1.92) 

e w = e u + iv = r eiθ  
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Equating magnitude and phase results in 

e u = r   ⇒ u = ln r  and   v = θ ± 2nπ     

   

Hence             

  

w = ln z = ln r + i (θ± 2nπ)         (1.93)   

 

When v is restricted to –π < 𝑣 ≤ π, the corresponding logarithm of z is referred to as the 

principle logarithmic function of z and is denoted by Ln z. 

             

 Ln z = ln r + i θ        (1.94)  

  

Some Properties of ln z 

Using equations (1.81) and (1.82), we observe 

a) ln (z1 z2) = ln z1 + ln z2         (1.95) 

b) ln (z1 / z2) = ln z1 – ln z2       (1.96) 

 

Derivative of f(z) = ln z 

Using Cauchy-Riemann equations, we can show f(z) = ln z is analytic 

 f(z) = ln z = ln r + i (θ ± 2nπ)   

Since derivative of a constant is zero, we can ignore ± 2nπ and assume θ = arctan (y/x) without 

addition or subtraction of π, if the real part of z < 0. 

f(z) = ln √𝑥2 + 𝑦2 + i arctan (y/x) = (1/2) ln (x2 + y2) + i arctan (y/x)     

 u(x,y) = (1/2) ln (x2 + y2)   and  v(x,y) = arctan (y/x)    

 u x = (1/2)(2x)/(x2 + y2) = x/(x2 + y2)  and  v y = (1/x)/[1 + (y/x)2] = x / (x2 + y2) ⇒ u x= v y     

 u y = (1/2)(2y)/(x2 + y2) = y/(x2 + y2)  and - v x = -(-y/x2)/[1 + (y/x)2] = y / (x2 + y2) ⇒ u y = -vx     

To find f´(z), equation (1.62) can be used 

f´(z) = u x + iv x = [x/(x2 + y2)] + i [-y/ (x2 + y2)] = (x – iy)/(x2 + y2) = 1/z  (1.97)    

    

Similarly to real calculus, given g(z) is analytic we can write  

F(z) = ln g(z)  g(z) ≠ 0 

F´(z) = g´(z) / g(z)         (1.98) 
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Complex Power 

Having explained exponential and logarithmic functions of complex variable z, we can now 

consider complex power A B, where both A and B in general are complex. 

 

A B = e B ln A         (1.99) 

 

Example 16: Evaluate a) (1 – i) (1 + i)  b)  2 i     

a) (1 – i) (1 + i) = 𝑒(1+𝑖)[ln(1−𝑖)] = 𝑒
(1+𝑖)[𝑙𝑛√2 + 𝑖(− 

𝜋

4
 ± 2𝑛𝜋)]

 = 

 𝑒
𝑙𝑛√2 + ( 

𝜋

4
 ± 2𝑛𝜋)

𝑒𝑖 (𝑙𝑛√2 − 
𝜋

4
 ± 2𝑛𝜋)  

=  

√2  𝑒
( 

𝜋

4
 ± 2𝑛𝜋)

 [cos (ln√2 - π/4) + i sin (ln√2 - π/4)] 

     

b) 2 i = 𝑒(𝑖)𝑙𝑛 2  = 𝑒(𝑖)[ln 2+ 𝑖(0 ± 2𝑛𝜋)] =  𝑒( ± 2𝑛𝜋)
 [cos (ln 2) + i sin (ln 2)] 

 

 

 

1.7    – Trigonometric and Inverse Trigonometric Functions 

 

Trigonometric Functions 

Similar to real trigonometry, Euler equation in complex form and the complex trigonometric 

functions sin z, cos z, tan z, cot z, sec z, and csc z are defined. 

 𝑒𝑖𝑍 = cos z + i sin z        (1.100) 

sin z = 
1

2𝑖
 (𝑒𝑖𝑍 − 𝑒−𝑖𝑍)       (1.101) 

cos z = 
1

2
 (𝑒𝑖𝑍 + 𝑒−𝑖𝑍)       (1.102) 

tan z = 
sin𝑍

cos𝑍
         (1.103) 

cot z = 
cos𝑍

sin𝑍
         (1.104) 

sec z = 
1

cos 𝑍
         (1.105) 

csc z = 
1

sin𝑍
         (1.106) 
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If z is replaced by x in the above equations, we obtain the same familiar functions considered in 

real trigonometry. Furthermore using the above definitions we can write 

 sin (-z) = -sin z ,   cos (-z) = cos z,   tan (-z) = -tan z,   cot (-z) = -cot z (1.107)    

                  

Since e z and e iz are analytic everywhere, sin z and cos z are also analytic everywhere. The 

functions tan z and sec z are analytic functions except at the points z where cos z becomes 

zero. The functions cot z and csc z are analytic functions except at the points z where sin z 

becomes zero. Since d(e z)/dz = e z and d(e iz)/dz = ie z, we can write the following derivatives 

which should look familiar. 

 

 f(z) = sin z     f´(z) = cos z    (1.108)                  

f(z) = cos z    f´(z) = - sin z    (1.109)             

f(z) = tan z     f´(z) = sec 2 z    (1.110)       

f(z) = cot z     f´(z) =  - csc 2 z   (1.111)                

f(z) = sec z     f´(z) = sec z tan z   (1.112)                    

f(z) = csc z     f´(z) = - csc z cot z   (1.113) 

 

Some General Complex Trigonometric Identities                             

 cos2 z + sin2 z = 1        (1.114)     

 cos (z1± z2) = cos z1 cos z2 ∓ sin z1 sin z2     (1.115)  

 sin (z1± z2) = sin z1 cos z2 ± cos z1 sin z2     (1.116)     

 sin 2z = 2 sin z cos z        (1.117) 

 cos 2z = cos2 z – sin2 z = 1 – 2sin2 z = 2cos2 z – 1    (1.118) 

 cos (z) = cos (x + iy) = 
1

2
 (𝑒𝑖𝑍 + 𝑒−𝑖𝑍)= 

1

2
 (𝑒𝑖(𝑥+𝑖𝑦) + 𝑒−𝑖(𝑥+𝑖𝑦)  

 = 
1

2
 [𝑒−𝑦𝑒𝑖𝑥 + 𝑒𝑦𝑒−𝑖𝑥) = 

1

2
 [𝑒−𝑦(cos 𝑥 + 𝑖𝑠𝑖𝑛𝑥) + 𝑒𝑦(cos 𝑥 − 𝑖𝑠𝑖𝑛𝑥)] 

  =  
1

2
 [cos 𝑥 (𝑒−𝑦 + 𝑒𝑦) − 𝑖𝑠𝑖𝑛 𝑥(𝑒𝑦 − 𝑒−𝑦)]     

  

 cos z = cos x cosh y – i sin x sinh y      (1.119) 

             

 Similarly, 

 sin (z) = sin (x + iy) = 
1

2𝑖
 (𝑒𝑖𝑍 − 𝑒−𝑖𝑍)= 

1

2𝑖
 (𝑒𝑖(𝑥+𝑖𝑦) − 𝑒−𝑖(𝑥+𝑖𝑦)   

 = 
1

2𝑖
 [𝑒−𝑦𝑒𝑖𝑥 − 𝑒𝑦𝑒−𝑖𝑥) = 

1

2𝑖
 [𝑒−𝑦(cos 𝑥 + 𝑖𝑠𝑖𝑛𝑥) − 𝑒𝑦(cos 𝑥 − 𝑖𝑠𝑖𝑛𝑥)] 

  =  
1

2
 [sin 𝑥 (𝑒−𝑦 + 𝑒𝑦)] − 𝑖

1

2
[𝑐𝑜𝑠 𝑥(𝑒−𝑦 − 𝑒𝑦)] 
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 sin z = sin x cosh y + i cos x sinh y      (1.120)  

             

            

 Using equations (1.119), (1.120), and cosh2 y – sinh2 y = 1, we can write 

 |cos z|2 = cos2 x + sinh2 y       (1.121) 

 |sin z|2 = sin2 x + sinh2 y       (1.122) 

 

Equations (1.119) and (1.120) can be used to show Cauchy-Riemann equations hold and 

evaluate the derivatives of sin z and cos z. 

 

 

Example 17: Evaluate f(z) = sin z at z = -1 + i2      

f(z) = sin z = sin (-1 + i2) = sin -1 cosh 2 + i cos -1 sinh 2 = (-0.841)(3.762) + i (0.540)(3.627) 

 = -3.164 + i 1.959 

 

Example 18: Evaluate z, if cos z = 2     

cos z = cos x cosh y – i sin x sinh y = 2     ⇒ 

cos x cosh y = 2            

sin x sinh y = 0 

From the second equation sinh y = 0 ⇒ y = 0. This cannot be, since y = 0 implies cos x = 2 in 

the first equation.  Hence in the second equation 

sin x = 0  ⇒ x = nπ (n = 0, ±1,±2,…) 

If x = nπ is substituted in the first equation   ⇒ cosh y < 0 (for n odd), which is not 

possible. Hence; 

x = 2nπ   (n = 0, ±1,±2,…) using cos x cosh y = 2 ⇒                    

cosh y = 2 ⇒ y = 1.317 

 

z = x + iy = 2nπ + i 1.317  (n = 0, ±1,±2,…) 

      

Inverse Trigonometric Functions 

We know trigonometric functions are periodic and as a result the inverse of these function do 

not exist. The inverse of trigonometric functions are multiple-valued functions. If we ignore the 

multiple-valued condition, we can obtain equations fo sin -1 z, cos -1z, etc. For example let 
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 w = cos -1 z         (1.123)  

            

 z = cos w = 
1

2
 (𝑒𝑖𝑊 + 𝑒−𝑖𝑊)      (1.124) 

 

To obtain w, we multiply both sides of equation (1.124) by 2𝑒𝑖𝑊, solve the resulting quadratic 

equation for 𝑒𝑖𝑊, and finally take natural log as follows 

 𝑒𝑖2𝑊 − 2𝑧𝑒𝑖𝑊 + 1 = 0 

 𝑒𝑖𝑊 = 𝑧 ± √𝑧2 − 1 

 w = cos -1 z = - i ln( 𝑧 ± √𝑧2 − 1) 

Considering the plus sign (principle value of ln), we obtain 

 w = cos -1 z = - i ln( 𝑧 + √𝑧2 − 1)      (1.125) 

Similarly, 

 w = sin -1 z = - i ln( 𝑖𝑧 + √1 − 𝑧2)      (1.126) 

w = tan -1 z = 
𝑖

2
 ln 

𝑖+𝑍

𝑖−𝑍
       (1.127)  

  

It can be shown that he derivative of inverse trigonometric functions are given by. 

f(z) = sin -1z     f´(z) = 
1

√1−𝑧2
    (1.128)                        

f(z) = cos -1z     f´(z) = - 
1

√1−𝑧2
    (1.129)                   

f(z) = tan -1z     f´(z) = 
1

1 + 𝑧2
    (1.130) 

                                                 

The proof of equations (1.128), (1.129), and (1.130) is left as an exercise. 

 

 

1.8    – Hyperbolic and Inverse Hyperbolic Functions    

  

Hyperbolic Functions 

Similar to real calculus, we define functions sinh z, cosh z, tanh z, coth z, sech z, and csch z. 
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sinh z = 
1

2
 (𝑒𝑍 − 𝑒−𝑍)       (1.131) 

cosh z = 
1

2
 (𝑒𝑍 + 𝑒−𝑍)       (1.132) 

tanh z = 
sinh𝑍

cosh𝑍
        (1.133) 

coth z = 
cosh𝑍

sinh𝑍
        (1.134) 

sech z = 
1

cosh𝑍
        (1.135) 

csch z = 
1

sinh𝑍
        (1.136) 

If z is replaced by x in the above equations, we obtain the same familiar functions considered in 

real trigonometry. Furthermore using the above definitions we can write    

sinh (-z) = -sinh z ,   cosh (-z) = cosh z,   tanh (-z) = -tanh z,   coth (-z) = -coth z (1.137)    

             

Since e z is analytic everywhere, sinh z and cosh z are also analytic everywhere. The functions 

tanh z and sech z are analytic functions except at the points z where cosh z becomes zero. The 

functions coth z and csch z are analytic functions except at the points z where sinh z becomes 

zero. Since d(e z)/dz = e z, we can write the following derivatives which should also look 

familiar. 

 f(z) = sinh z     f´(z) = cosh z    (1.138)                  

f(z) = cosh z    f´(z) = sinh z    (1.139)             

f(z) = tanh z     f´(z) = sech 2 z    (1.140)       

f(z) = coth z     f´(z) =  - csch 2 z   (1.141)                

f(z) = sech z     f´(z) = - sech z tanh z   (1.142)                    

f(z) = csch z     f´(z) = - csch z coth z   (1.143) 

 

Some General Complex Hyperbolic Identities                             

 cosh2 z - sinh2 z = 1        (1.144)     

 cosh iz = cos z        (1.145)  

 sinh iz = i sin z         (1.146) 

 cos iz = cosh z         (1.147) 

 sin iz = i sinh z         (1.148) 

 cosh (z1+ z2) = cosh z1 cosh z2 + sinh z1 sinh z2    (1.149) 

 sinh (z1+ z2) = sinh z1 cosh z2 + cosh z1 sinh z2    (1.150)    

 cosh (z) = cosh x cos y + i sinh x sin y     (1.151) 

 sinh (z) = sinh x cos y + i cosh x sin y     (1.152)  
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The proof of above equations and some other Hyperbolic Identities can be easily shown using 

the definitions and is left as an exercise. 

Equations (1.151) and (1.152) can be used to show Cauchy-Riemann equations hold and 

evaluate the derivatives of sinh z and cosh z. 

 

Example 19: Evaluate f(z) = sinh z at z = -2 - i2      

f(z) = sinh z = sinh (-2 - i2) = sinh -2 cos -2 + i cosh -2 sin -2     

 = (-3.627)(-0.416) + i (3.762)(-0.909) = 1.509 – i 3.421 

  

Inverse Hyperbolic Functions 

Similar to inverse trigonometric functions, we can consider the inverse hyperbolic functions. For 

example let 

 

 w = cosh -1 z         (1.153)  

            

 z = cosh w = 
1

2
 (𝑒𝑊 + 𝑒−𝑊)      (1.154) 

 

To obtain w, we multiply both sides of equation (1.154) by 2𝑒𝑊, solve the resulting quadratic 

equation for 𝑒𝑊, and finally take natural log as follows 

 𝑒2𝑊 − 2𝑧𝑒𝑊 + 1 = 0 

 𝑒𝑊 = 𝑧 ± √𝑧2 − 1 

 w = cosh -1 z =  ln( 𝑧 ± √𝑧2 − 1) 

Considering the plus sign (principle value of ln), we obtain 

 w = cosh -1 z = ln( 𝑧 + √𝑧2 − 1)      (1.155) 

Similarly, 

 w = sinh -1 z = ln( 𝑧 + √𝑧2 + 1)      (1.156) 

w = tanh -1 z = 
1

2
 ln 

1+𝑍

1−𝑍
       (1.157)  

The derivatives of inverse hyperbolic function can be obtained using implicit differentiation. This 

is left as an exercise.  
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CHAPTER 2 

 

Integrals of Complex Functions 
 

 

Overview 

Integrals of complex functions are presented in this chapter. Section 1.1 addresses line 

integration in rectangular form and parametric form. Examples are given for writing parametric 

representations of different paths. Cauchy – Goursat Integral Theorem is covered in Section 2.2 

and some application of this theorem is presented in Section 2.3. Cauchy Integral Formulas for 

derivatives of a complex function are presented in Section 2.4. Section 2.4 ends with Liouvill’s 

Theorem.  
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2.1 – Line Integration  

 

Here we consider integrating a complex function f(z) along a piecewise defined curve C in the 

complex plane from some initial complex point z0 to zn. Curve C is referred to as path or contour 

of integration. 

 

 ∫ 𝑓(𝑧)𝑑𝑧
𝑧𝑛

𝑧0
         (2.1)  

 C 

Let us assume f(z) is a continuous function and C is a smooth curve divided into n partitions as 

shown in Figure 2.1. 

                                           Im          

                                               ∆𝑧 

              z1         

                               z0                                                 C                        zn     

                            zn-1 

                                                                                                                                                                                    Re 

                          

 

Figure 2.1 Path of Integration and Partitioning of the Path 

 

Equation (2.1) can next be written as, 

∫ 𝑓(𝑧)𝑑𝑧
𝑧𝑛

𝑧0
 = lim

∆𝑍→0
∑ 𝑓(𝑍𝑘)

𝑛
𝑘=1 ∆𝑍𝑘     (2.2) 

 C 

As ∆𝑍 → 0 the number of partitions approaches infinity. Equation (2.1) can be written in terms            

z = x + iy and ∆𝑍 = ∆𝑥 + 𝑖 ∆𝑦. 

 

 ∫ 𝑓(𝑧)𝑑𝑧
𝑧𝑛

𝑧0
 = lim

∆𝑥+𝑖∆𝑦→0
∑ (𝑢𝑘 + 𝑖𝑣𝑘)

𝑛
𝑘=1 (∆𝑥𝑘 + 𝑖∆𝑦𝑘)   

 C 

   = lim
∆𝑥→0 & ∆𝑦→0

∑ (𝑢𝑘∆𝑥𝑘 − 𝑣𝑘∆𝑦𝑘)
𝑛
𝑘=1 + 𝑖(𝑣𝑘∆𝑥𝑘 + 𝑢𝑘∆𝑦𝑘) 

  ∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 ∫ 𝑣𝑑𝑥 + 𝑢𝑑𝑦     (2.3)  
 C              C                              C  



40 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

If curve C is a closed curve, equation (2.3) is simply represented as 

  ∮ 𝑓(𝑧)𝑑𝑧 = ∮𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 ∮ 𝑣𝑑𝑥 + 𝑢𝑑𝑦    (2.4)  
 C              C                              C  

 

One may presume the answer to equation (2.4) is zero, since the lower and upper limits of 

integration are the same. Or, the usual method of integral calculus can be used to evaluate 

equation (2.3) and simply ignore the path of integration. As it will be discussed, this depends on 

whether or not f(z) is analytic in the given domain where path C is.    

There are several methods of evaluating the integral of equation (2.1).  

 

Cartesian Method of Line Integration                   

Equation (2.3) and the Cartesian representation of curve C can be used to evaluate the integral. 

We show this using a simple example. 

 

Example 1: Evaluate ∫   𝑧̅ 2
1+𝑖2

0
dz where path C is shown in Figure 2.2.    

            C     

                                                   Im          

                                                              1+i2 

                                                                                                                          

         C                            

                                                                                                                                                                                     

                        0              Re 

 

Figure 2.2 Path of Integration      

  

C: y = 2x  dy = 2dx  0 ≤ 𝑥 ≤ 1,    0 ≤ 𝑦 ≤ 2    and   

 [ 𝑧̅ ]2 = (x - iy)2 = (x2 - y2) + i(-2xy). 

 Using equation (2.3), we have 

 ∫   𝑧̅ 2
1+𝑖2

0
dz = ∮𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 ∮ 𝑣𝑑𝑥 + 𝑢𝑑𝑦    integrating on C 

 ∫(𝑥2 − 𝑦2)𝑑𝑥 − (−2𝑥𝑦)𝑑𝑦 + 𝑖 ∫(−2𝑥𝑦)𝑑𝑥 + (𝑥2 − 𝑦2)𝑑𝑦 =                             

C                                                          C   
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∫ (𝑥2 − 4𝑥2)𝑑𝑥 −
1

0
(−2𝑥)(2𝑥)(2𝑑𝑥) + 𝑖 ∫ (−2𝑥)(2𝑥)𝑑𝑥 + (𝑥2 − 4𝑥2)(2𝑑𝑥)

1

0
 = 

∫ 5𝑥2𝑑𝑥
1

0
+ 𝑖 ∫ −10𝑥2𝑑𝑥 =

1

0
 
5

3
 - i 

10

3
                 

 

It is of importance to note that even though the procedure shown for this example seems simple 

and not time consuming, as the integrand f(z) and path of integration C become more complex, 

evaluating the integral of f(z) on path C using equation method which is based on using 

equation (2.3) or equation (2.4) as applicable becomes very tedious.  

 

Parametric Method of Line Integration                   

Equation (2.3) and the Cartesian representation of curve C can be written in parametric form in 

terms of parameter t. Consider the original integral form of equation (2.1). 

 ∫ 𝑓(𝑧)𝑑𝑧
𝑧𝑛

𝑧0
           

 C 

First we represent path C in parametric form z(t), unless it is already in that form. 

 C: z(t) = x(t) + iy(t) or  z(t) = r(t) eiθ(t)    𝑎 ≤ 𝑡 ≤ 𝑏  (2.5) 

Next we substitute z(t) in the integrand f(z(t)). Finally we write dz as 

𝑑𝑧 =   
𝑑𝑧(𝑡)

𝑑𝑡
 𝑑𝑡        (2.6) 

where z(t) in equation (2.6) is the same as equation (2.5).      
  

                          Im                       

  

                                                C       z(t) = x(t) + iy(t) 

                          zn=x(b)+iy(b)                                 

z0=x(a) + iy(a)                                                                      

                              

                                                                                                                                                                                    Re 

                          

Figure 2.3 Parametric Path of Integration 

The parametric form of equation (2.1) is 

 ∫ 𝑓(𝑧)𝑑𝑧
𝑧𝑛

𝑧0
 = ∫ f(z(t))

dz(t)

dt
 dt

𝑏

𝑎
     (2.7)  

 C 

The proof of equation (2.7) is rather simple and is considered below. 
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Theorem 2.1 Parametric Method of Line Integration                                      

Let function f(z) be defined on path C represented in parametric form as described by equation 

(2.5), then the integral of f(z) on path C is given by 

            

 ∫ 𝑓(𝑧)𝑑𝑧
𝑧𝑛

𝑧0
 = ∫ f(z(t))

dz(t)

dt
 dt

𝑏

𝑎
                        

 C        

Proof:              

Substituting for f(z(t)) and dz(t)/dt on the right hand side of equation (2.3), we can write 

∫ 𝑓(𝑧)𝑑𝑧
𝑧𝑛

𝑧0
 =∫𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 ∫ 𝑣𝑑𝑥 + 𝑢𝑑𝑦       

 C              C                              C  

With curve C represented as z(t) = x(t) + iy(t). Furthermore dx=(dx/dt)dt and dy=(dy/dt)dt, we 

can write      

∫ 𝑓(𝑧)𝑑𝑧
𝑧𝑛

𝑧0
 =  ∫ [u(x(t), y(t))

dx(t)

dt
dt 

𝑏

𝑎
− v(x(t), y(t))

dy(t)

dt
dt ] +

𝐶                        𝑖 ∫ [v(x(t), y(t))
dx(t)

dt
dt 

𝑏

𝑎
+ u[(x(t), y(t))

dy(t)

dt
dt]   

   =  ∫ [u(x(t), y(t)) + i v(x(t), y(t)]
𝑏

𝑎
[
dx(t)

dt
+ i

dy(t)

dt
]dt               

= ∫ f(z(t))
dz(t)

dt
 dt

𝑏

𝑎
   

Prior to using equation (2.7) in evaluating a line integral using parametric form, it is useful to 

consider some examples of parametric representation of different paths. 

 

Example 2: Write the parametric representation of the following paths 

a) Straight line from z = 0 to z1 = x1 + iy1                      

b) Straight line from z1 = x1 + iy1 to z2 = x2 + iy2                      

c) A circle centered z = 0 with radius ρ in Counterclockwise direction                       

d) An upper semicircle centered at z = 0 with radius ρ in Counterclockwise direction                  

e) A circle centered at the z0 = x0 + iy0 with radius ρ in Counterclockwise direction                

f) An ellipse centered at z = 0 whose Cartesian equation is 

𝑥2

𝑎2
+ 

𝑦2

𝑏2
= 1   

 

g) An ellipse centered at z = h + ik whose Cartesian equation is 

(𝑥−ℎ)2

𝑎2
+ 

(𝑦−𝑘)2

𝑏2
= 1   
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a) C: z(t) = z1t = (x1 + iy1)t = tx1 + ity1   0 ≤ t ≤ 1 

                                                                                                                   z1 

 

 

                                                                                       0 

 

                     

           Figure 2.4 

  

b) C: z(t) = z1 + (z2 – z1)t = (x1 + iy1) + [(x2 + iy2) - (x1 + iy1)]t  0 ≤ t ≤ 1 

                        = [x1 + (x2 - x1)t] + i [y1 + (y2 - y1)t]                                     z2 = x2 + iy2 

 

 

                                                                                       0 

          

   z1 = x1 + iy1 

                     

           Figure 2.5 

  

c) C: z(t) = ρ eit = ρ (cos t + i sin t)    0 ≤ t ≤ 2𝜋 

                                                                                                                   

                                                                                                    z 

                                                                                            ρ                           

                                                                                       0 

 

                     

           Figure 2.6 
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d) C: z(t) = ρ eit = ρ (cos t + i sin t)     0 ≤ t ≤ 𝜋   

  Same equation as in part (c) 

                                                                                                                   

                                                                                     

e) C: z(t) = z0 + ρ eit = z0 + ρ (cos t + i sin t)    0 ≤ t ≤ 2𝜋 

                        = (x0 + ρ cos t) + i (y0 + ρ sin t)                         z                                                                                 

                                                                                                    ρ 

                                                                                                        z0         

                                                                                       0 

 

                     

           Figure 2.7  

f) C:     
𝑥2

𝑎2
+ 

𝑦2

𝑏2
= 1           

          z(t) = a cos t + i b sin t    0 ≤ t ≤ 2𝜋 

                  Center at z = 0                                                                                                 

                                                                                      b                               

                                                                                                                 

                                                                                      0                                   a                            

 

                     

           Figure 2.8  

g) C:    
(𝑥−ℎ)2

𝑎2
+ 

(𝑦−𝑘)2

𝑏2
= 1          

   z(t) = (a cos t + h) + i (b sin t + k)    0 ≤ t ≤ 2𝜋 

                   Center at z0 = h + ik                                                  b + k               

                                                                                                                     

                                                                                                                         a + h  

                                                              z0  =  h + ik                        

                                                                                                                                        

 

                     

           Figure 2.9  
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Example 3: Evaluate ∫   𝑧̅ 2
1+𝑖2

0
dz where path C is shown in Figure 2.3.    

            C     

                                                   Im          

                                                              1+i2 

                                                                                                                          

         C                            

                                                                                                                                                                                     

                        0              Re 

 

Figure 2.10 Path of Integration      

  

C: z(t) = (1 + i2)t = t + i2t  0 ≤ t ≤ 1  and (dz/dt) = (1+i2) 

Using equation (2.7), we have 

 ∫ f(z(t))
dz(t)

dt
 dt

𝑏

𝑎
 = ∫   [(t + 𝑖2t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ]2(1 + i2)dt

1

0
 = (1-i2)2(1+i2) ∫  t2dt

1

0
 

              = 5(1-i2) 
1

3
 = 

5

3
 - i 

10

3
  

 This is the same result obtained in example 1. 

 

If curve C is represented by y = f(x), it suffices to represent the parametric form of this curve as, 

 C: z(t) = t + if(t)        

                          Im                       

  

                                                                         z(t) = t + if(t) 

C                                                              

y = f(x)                                

                                                                                                                                                                                    Re 

                      

     

Figure 2.11 Parametric Path of Integration for y = f(x) 
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Example 4:   ∮ 𝑓(𝑧)𝑑𝑧 = ∮
1

(𝑧−𝑧0)𝑛
𝑑𝑧         

  C            C 

In the above equation, n is an integer and C is a closed circle of radius ρ with 

center at z0 in counterclockwise direction.                                

Using example (2e), we write  z(t) = z0 + ρ eit  0 ≤ t ≤ 2𝜋  

Using equation (2.7), we have    

 ∫ f(z(t))
dz(t)

dt
 dt = ∫

1

(𝑧0+ 𝜌𝑒𝑖𝑡−𝑧0)
𝑛 (iρ) 𝑒𝑖𝑡dt

2𝜋

0
= i𝜌(1−𝑛) ∫  𝑒𝑖(1−𝑛)𝑡dt

2𝜋

0
= 

𝑏

𝑎
 

         

 [(i𝜌(1−𝑛))/𝑖(1 − 𝑛)][𝑒𝑖(1−𝑛)𝑡]0
2𝜋 = 0  for all  n ≠ 1  (2.8) 

                                                                                        = 2𝜋𝑖        for n = 1  ⇒ 

   ∮
1

(𝑧−𝑧0)
𝑑𝑧 = 2πi       (2.9)  

  C             

  Also if z0 = 0 and the center of the circle is at z = 0, we have 

   ∮
1

𝑧
𝑑𝑧 = 2πi        (2.10)  

  C             

 

Theorem 2.2 ML – Inequality                                                 

Let function f(z) be a continuous function for all values of z on curve C and let |f(z)| ≤ M. Let the 

length C from initial to final point of integration be L. Then  

           

 |∫𝑓(𝑧)𝑑𝑧| ≤ ML        (2.11)  

 C                                  

    

Proof:              

Using equation (2.2), we write 

 

∫𝑓(𝑧)𝑑𝑧 = lim
∆𝑍→0

∑ 𝑓(𝑍𝑘)
𝑛
𝑘=1 ∆𝑍𝑘      

 C 

| lim
∆𝑍→0

∑ 𝑓(𝑍𝑘)
𝑛
𝑘=1 ∆𝑍𝑘| ≤ lim

∆𝑍→0
∑ |𝑓(𝑍𝑘)

𝑛
𝑘=1 ∆𝑍𝑘|        

| lim
∆𝑍→0

∑ 𝑓(𝑍𝑘)
𝑛
𝑘=1 ∆𝑍𝑘| ≤ lim

∆𝑍→0
∑ |𝑓(𝑍𝑘)||

𝑛
𝑘=1 ∆𝑍𝑘|  
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  | lim
∆𝑍→0

∑ 𝑓(𝑍𝑘)
𝑛
𝑘=1 ∆𝑍𝑘| ≤ M lim

∆𝑍→0
∑ |∆𝑍𝑘

𝑛
𝑘=1 | 

As ∆𝑍 → 0, we can conclude  

|∫𝑓(𝑧)𝑑𝑧| ≤ M ∫ |𝑑𝑧|         

  C      C  

With L = ∫ |𝑑𝑧| = length of curve C, we now have      

    C          

| ∫ 𝑓(𝑧)𝑑𝑧| ≤𝑀𝐿                                  

C                               

 

Some Properties of Line Integrals         

            

 a)∫𝑘𝑓(𝑧)𝑑𝑧 = 𝑘 ∫𝑓(𝑧)𝑑𝑧      K is a complex constant       (2.12)    

     C                          C         

 b)∫[𝑓1(𝑧) ± 𝑓2(𝑧)]𝑑𝑧 = ∫𝑓1(𝑧)𝑑𝑧 ±∫𝑓2(𝑧)𝑑𝑧    (2.13)             

    C                                      C                      C                                   

 c)∫ 𝑓(𝑧)𝑑𝑧
𝑧3

𝑧1
 = ∫ 𝑓(𝑧)𝑑𝑧

𝑧2

𝑧1
 + ∫ 𝑓(𝑧)𝑑𝑧

𝑧3

𝑧2
    (2.14)  

    C      C1        C2 

Curve C consists of partitions C1 and C2. This rule can be extended to as many partitions that 

make up curve C. 

                                   Im                       

  

                                                 z2                            

                  C1                                z3                                     

                          

                                                                                Re 

                                             z1                                                            C2                                                            

                          

Figure 2.12 Curve C Consisting of partitions C1 and C2 

 

 d)∫ 𝑓(𝑧)𝑑𝑧
𝑧2

𝑧1
 =−∫ 𝑓(𝑧)𝑑𝑧

𝑧1

𝑧2
       (2.15)  

    C1         C2   

Curves C1 and C2 are exactly the same, but in opposite directions.       
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Example 5:  Evaluate ∫ 𝑧 𝑑𝑧
𝑖

0
, where C consists of straight horizontal line from z = 0 to z = 1 

    C                          

and a quarter circle from z = 1 to z = i as shown.  

             Im 

                                     m       z = i                             

                                                                            

                                                                                      

                                  

                                                     z = 1                Re                                                                                                              

                                                             

                    

            Figure 2.13  

 

 C1:  z(t) = t  0 ≤ t ≤ 1  dz/dt = 1 

 C2: z(t) = eit 0 ≤ t ≤ 𝜋/2  dz/dt = i eit 

                              

∫ 𝑧 𝑑𝑧
𝑖

0
 = ∫ 𝑡(1) 𝑑𝑡 

1

0
+ ∫ 𝑒𝑖𝑡(𝑖𝑒𝑖𝑡)𝑑𝑡

𝜋/2

0
 =  

1

2
+ (

1

2
)[𝑒𝑖2𝑡]

0

𝜋/2
= 

1

2
+ (

1

2
) [𝑒𝑖𝜋 − 1] 

C                      

    = -(1/2) 

 

Example 6:  Evaluate ∫ 𝑧 𝑑𝑧
𝑖

0
, where C consists of straight vertical line from z = 0 to z = i.                 

    C 

 C:  z(t) = i t  0 ≤ t ≤ 1  dz/dt = i 

 ∫ 𝑧 𝑑𝑧
𝑖

0
 = ∫ 𝑖𝑡(𝑖) 𝑑𝑡 

1

0
= -(1/2)                         

C 

            

It is not a coincident that the results of examples 5 and 6 are the same. This happens when the 

integrand f(z) is analytic in a simply connected domain. Simply connected set was defined in 

Section 1.3. The line integrals that are independent of the path of integration and its implication 

will be discussed in more detail in Section 2.3. 
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2.2 – Cauchy - Goursat Integral Theorem  

 

Here we consider integrating a complex function f(z) on a simple closed curve C. We begin our 

discussion assuming curve C is in a simply closed domain D and the function f(z) is analytic 

everywhere in domain D.  

The simply and multiply connected sets were defined in Section 1.3. Here we define simple and 

not simple closed paths and review the definitions of simply and multiply connected domains.  

Simple and Not Simple Closed Paths                             

A closed curve C that does not intersect itself at any point is called a Simple closed path. If a 

closed curve C intersects itself at one or more points, it is called Not a Simple closed path. This 

definition is illustrated in Figure 2.14 and Figure 2.15.       

            Im        Im 

                  

                                                       C             C 

                                                                    Re                                                                       Re 

 

    Figure 2.14 Simple Closed Paths      

            Im        Im   

               

                                                            C           C 

                                                                    Re                                                                       Re 

 

    Figure 2.15 Not Simple Closed Paths    

  

Simply and Multiply Connected Domain                                              

A simply connected domain is a set that every simple closed curve in the set only contains 

points of that set. A multiply connected domain is a set that there is at least one simple closed 

curve in the set with one or more points that don’t belong to the set. This definition is illustrated 

in Figure 2.16 and Figure 2.17.                                                

                       Im          Im 

 

                Re           Re                                                                                                                                            

      

      

    Figure 2.16 Simply Connected Domain 
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                                 Im                         Im 

 

                Re             Re                                                                                                                                            

      

      

    Figure 2.17 Not Simply Connected Domain 

                                                                                                                    

Theorem 2.3 Cauchy – Goursat Integral Theorem                                                   

If the complex function f(z) is analytic everywhere in a simply connected domain D and C is any 

simple closed path C in D, then         

  

  ∮ 𝑓(𝑧)𝑑𝑧 = 0         (2.16)  
 C  

                                                          D 

                                                                                                                                                      

                                                                                                         C                        

 

 

 

 

                                       Figure 2.18 Simple Closed Curve in a Simply Connected Domain 

 

Proof:              

The proof of Cauchy – Goursat theorem is based on Green’s theorem and use of Cauchy-

Riemann equations. Green’s theorem relates line integrals and double integrals. Here we simply 

state Green’s theorem and refer the reader to calculus for the proof of the theorem. 

Green’s Theorem:  Let P and Q be functions of (x,y), defined over a region D, bounded by curve 

C and have continuous partial derivatives. Let C be positively oriented, piecewise smooth, and a 

simple closed curve, then                                                                                                     

  

 ∮𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = ∬
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
)𝑑𝑥𝑑𝑦   (2.17)  

 C                                          D          
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Since the function f(z) = u(x,y) + i v(x,y) is assumed to be analytic, the integral of f(z) on a 

closed path C can be written as         

  

  ∮ 𝑓(𝑧)𝑑𝑧 = ∮𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 ∮ 𝑣𝑑𝑥 + 𝑢𝑑𝑦      
 C             C                             C  

Applying Green’s theorem to this integral results in       

             

 ∮𝑓(𝑧)𝑑𝑧 = ∬[(−
𝜕𝑣

𝜕𝑥
) − (

𝜕𝑢

𝜕𝑦
)]𝑑𝑥𝑑𝑦 + i ∬[(

𝜕𝑢

𝜕𝑥
) − (

𝜕𝑣

𝜕𝑦
)]𝑑𝑥𝑑𝑦  (2.18) 

 C             D             D      

                                                             

Using Cauchy-Riemann equations, 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
  and   

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
  in equation (2.18)  

∮𝑓(𝑧)𝑑𝑧 = 0                     
C             

 

Example 7: Evaluate ∮ 𝑓(𝑧)𝑑𝑧 for the given f(z) and the closed path C in CCW direction 

            C             

a) f(z) = z2 + 4z + ez + 10     C: |z – i2| = 10  

   

b) f(z) = 
𝑧+5

(𝑧−5)(𝑧2+9)
   C:    Im 

                   2 

                                                                                      C 

                                                                                      -3                              3               Re 

 

                     -2 

        Figure 2.19 Path C – Example 7b  

  a) ∮𝑓(𝑧)𝑑𝑧 = 0, since f(z) = z2 + 4z + ez + 10 is analytic everywhere in the region         
      C                      enclosed by C. 

  b) ∮𝑓(𝑧)𝑑𝑧 = 0, even though f(z) = 
𝑧+5

(𝑧−5)(𝑧2+9)
 is not analytic at z = 5 and z = ±𝑖3.                          

      C                     However f(z) is analytic everywhere in the region enclosed by C and  

        the points z = 5 and z = ±𝑖3 are all outside this region. 

 

It is important to revisit example 4 of this Chapter. In example 4 we considered the following 

integral 
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 ∮ 𝑓(𝑧)𝑑𝑧 = ∮
1

(𝑧−𝑧0)𝑛
𝑑𝑧  C: z(t) = |z – z0| = ρ  or  z(t) = z0 + ρ eit  

 C             C       CCW direction 

We saw 

∮
1

(𝑧−𝑧0)𝑛
𝑑𝑧 = 0  for all n ≠ 1        

           = 2𝜋𝑖        for n = 1 

Clearly the results for n > 1, does not follow from Cauchy – Goursat Theorem. For example       

f(z) = 
1

(𝑧−𝑧0)2
 is not analytic at z = z0. Hence the condition for f(z) to be analytic in D is sufficient                           

rather than necessary for Cauchy – Goursat Integral Theorem. 

 

 

2.3 – Some Applications of Cauchy - Goursat Theorem 

 

In this section we consider some basic applications of Cauchy – Goursat Integral Theorem. We 

consider a simply connected domain and integration independence of path. We also apply 

Cauchy – Goursat Integral Theorem to multiply connected domains.    

  

Simply Connected Domain                    

We saw, if f(z) is analytic everywhere in a simply connected domain D and C is any simple 

closed path C in D, then           

  ∮ 𝑓(𝑧)𝑑𝑧 = 0          
 C 

We partition the counterclockwise closed curve C into curves C1 and C2 at points z1 and z2 as 

shown at in Figure 2.20. Using Cauchy – Goursat Integral Theorem 

  ∫ 𝑓(𝑧) 𝑑𝑧
𝑧2

𝑧1
 +  ∫ 𝑓(𝑧) 𝑑𝑧

𝑧1

𝑧2
 = 0  ⇒                     

C1                                    C2    

           ∫ 𝑓(𝑧) 𝑑𝑧
𝑧2

𝑧1
 =- ∫ 𝑓(𝑧) 𝑑𝑧

𝑧1

𝑧2
  ⇒                       

C1                                    C2                                         Im 

                                                                          C1                                            z2 

                                                               z1                                                                C2                                               Re 

 

                                                   Figure 2.20 Closed Path C – Partitioned                        
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Considering curve C3 to be the same as C2, but in opposite direction as shown in Figure 2.21, 

we have  

           ∫ 𝑓(𝑧) 𝑑𝑧
𝑧2

𝑧1
 = ∫ 𝑓(𝑧) 𝑑𝑧

𝑧2

𝑧1
          (2.19)                

C1                                    C3                                         Im 

                                                                          C1                                            z2 

                                                               z1                                                                C3                                                Re 

 

                                                      Figure 2.21 Closed Path C – Partitioned                                     

 

Independence of the Path of Integration                   

Based on the above discussion and equation (2.19), we can state the following Theorem. 

Theorem 2.4                                                                                                             

If f(z) is an analytic function everywhere in a simply connected domain D, then the integral 

 ∫𝑓(𝑧)𝑑𝑧           

 C 

is independent of the path of integration C.        

             

  

Theorem 2.5 Existence of Antiderivative of f(z)                                                                                                             

If f(z) is an analytic function everywhere in a simply connected domain D, then   

   

∫ 𝑓(𝑧) 𝑑𝑧
𝑧2

𝑧1
 = F(z2) – F(z1)       (2.20)  

                              

where F(z) defined as antiderivative of f(z) is an analytic function and F΄(z) = f(z) in D.  

  

Proof:              

Let us define F(z) as           

             

 𝐹(𝑧) = ∫ 𝑓(𝑧) 𝑑𝑧
𝑧

𝑧1
       (2.21) 

Using equation (2.3), we have         

                  

 𝐹(𝑧) = ∫ 𝑓(𝑧) 𝑑𝑧
𝑧

𝑧1
= ∫𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 ∫ 𝑣𝑑𝑥 + 𝑢𝑑𝑦   (2.22) 

The limits of the integration are from x1 to x and y1 to y. The real part and imaginary parts of F(z) 

are 
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 Re F(z) = ∫𝑢𝑑𝑥 − 𝑣𝑑𝑦  Im F(z) =∫𝑣𝑑𝑥 + 𝑢𝑑𝑦      

  

Using Cauchy-Riemann equations, we can write 

             

 [Re F(z)] x = [Im F(z)] y  and   [Re F(z)] y = - [Im F(z)] x  ⇒ 

 u(x,y) = u(x,y)   and  -v(x,y) = -v(x,y) 

                     

Hence Cauchy-Riemann equations hold for F(z) and as a result F(z) is an analytic function. 

Using equation (1.62), we can obtain the derivative of F(z) as     

        

  F´(z) = [Re F(z)] x +i [Im F(z)] x = u(x,y) + iv(x,y)   ⇒ 

 F´(z) = f (z)         (2.23)  

                                              

Now let us consider the integral, ∫ 𝑓(𝑧) 𝑑𝑧𝑧
𝑧1

. Using F´(z) = f (z), we can write.   

                C 

∫ 𝑓(𝑧)𝑑𝑧
𝑧2

𝑧1
 =∫ F´(z)𝑑𝑧

𝑧2

𝑧1
  = F(z)]𝑧1

𝑧2
 = F(z2) – F(z1)   (2.24)            

  

Example 8: Evaluate∫ f(z)𝑑𝑧
𝑧2

𝑧1
 for the given f(z) and path C.                    

            C             

a) f(z) = z2 + 2    Path C consists of C1 and C2 as shown below  

                Im 

                                                C2        

                                                z2 = 1 + i 

                                                                           C1 

                                                                                   Re   

                           z1 = -1      

    Figure 2.22   

b) f(z) = sin 2z Path C as shown below                                         

               Im       

                             z2 = 1 + i                             

                                                                                            C 

                                                                              z1 = 0                              Re   

              

        Figure 2.23     
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a) Since f(z) = z2 + 2 is analytic everywhere in the region, the integral of f(z) is 

independent of the path and          
  

∫ (𝑧2 + 2)𝑑𝑧
1+𝑖

−1
 = (1/3)z3 + 2z ]−1

1+𝑖= [(1/3)(1 + i)3 + 2(1 + i)] – [(1/3)(-1)3 + 2(-1)] 

           = 1/3(11 + i 8) 

b) Since f(z) = sin 2z is analytic everywhere in the region, the integral of f(z) is 

independent of the path and        

            

∫ 𝑠𝑖𝑛2𝑧𝑑𝑧
1+𝑖

0
 = (-1/2)Cos 2z]0

1+𝑖 = (-1/2)[cos (2 + i2) -1]     

          = (-1/2)[cos 2 cosh 2 – i sin 2 sinh 2 – 1] = 1.283 + 1.649i 

            

 

Multiply Connected Domain                    

We now apply Cauchy – Goursat Integral Theorem to multiply connected domains. Let us start 

with a doubly connected domain as shown in Figure 2.24. We begin with    

    

  ∮ 𝑓(𝑧)𝑑𝑧 = 0          
 C            

             

               

                    C2                     CB   CA    

 

         C3                                                  

                                           D                                                                                           

             

  

               Figure 2.24 Doubly Connected Domain         

                                                                     

Curve C consists of curves C2, CA, C3, and CB. In other words let us assume we start at any 

point on the lower portion of curve C2 and move the point in counterclockwise direction. Once 

the point gets to the cuts (CA and CB), the point goes on the curve CA and moves to get to curve 

C3. The point then moves on C3 in clockwise direction until it reaches the cuts and gets on CB. 

The point moves on CB until it gets back to C2. The point moves on C2 from where the cuts are 

and completes the contour. Even though the point leaves C2 at the cuts, it gets back on it after 

going on CA, C3, and CB with the directions shown and completes the contour. Function f(z) is 

analytic everywhere in the region enclosed by curve C described here.  

            

 ∮𝑓(𝑧)𝑑𝑧 = ∮𝑓(𝑧)𝑑𝑧 + ∫𝑓(𝑧)𝑑𝑧 + ∮𝑓(𝑧)𝑑𝑧 + ∫𝑓(𝑧)𝑑𝑧 = 0     (2.25) 

 C                     C2            CA                 C3                   CB                 
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The second and fourth integrals on the right hand side of equation (2.25) cancel. Hence we 

have              

            

 ∮𝑓(𝑧)𝑑𝑧 = −∮𝑓(𝑧)𝑑𝑧                             

 C2                 C3     

 ∮𝑓(𝑧)𝑑𝑧 = ∮𝑓(𝑧)𝑑𝑧          (2.26)             

 C2            C1                                                                           

As can be noted, C1 is the same as C3 but in counterclockwise direction as shown below.  

               

             

             C2    

                    

                                                         C1       

            D                      

                                                                                            

                              

               Figure 2.25 Doubly Connected Domain       

 

Referring to example 4 in this Chapter, we saw 

  ∮
1

(𝑧−𝑧0)
𝑑𝑧 = 2πi Where C is a circle of radius ρ and center at z0 in CCW direction 

 C  

                                                                                              

                                                                                                    ρ                 C 

                                                                                                        z0         

                                                                                       0 

 

Figure 2.26 

Based on equation (2.26) and the above discussion 

 

  ∮
1

(𝑍−𝑍0)
𝑑𝑧 = 2πi          

 C 

for any closed curve C in counterclockwise direction which encloses z0.  

Based on Cauchy – Goursat Integral Theorem this integral is zero, if curve C does not enclose 

z0, which implies f(z) is analytic in the region. 
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Obviously the same conclusion can be made, if z0 = 0 

∮
1

𝑍
𝑑𝑧 = 2πi                             

C 

for any closed curve C in counterclockwise direction which encloses z = 0     

Similarly this integral is zero, if curve C does not enclose z = 0.     

  

Let us now consider a triply connected domain as shown in Figure 2.27. Once again we begin 

with        

  ∮ 𝑓(𝑧)𝑑𝑧 = 0  

 

C1         

                       

             C3                                                                                                                                                                       

     C2     

                   

                                                            C5                                  C4     

  

                                                          

                                                             Figure 2.27 Triply Connected Domain     

                                                

Similar to the Figure 2.24 for the case of doubly connected domain, we make cuts in both 

direction from curve C1 to curves C4 and C5. We next apply Cauchy – Goursat Integral Theorem 

with closed curve C consisting of curve C1, C4 (opposite direction of C2), C5 (opposite direction 

of C3), and the four cuts (two from C1 to C4 and two from C1 to C5). We also note the integrals 

over the cuts cancel. It can be shown that 

               

 ∮𝑓(𝑧)𝑑𝑧 = ∮𝑓(𝑧)𝑑𝑧    + ∮𝑓(𝑧)𝑑𝑧        (2.27) 

 C1                   C2             C3                                    

                                              

Similar procedure can be used to extend for the cases higher than triply connected. As will be 

observed similar process will be used in proof of Residue Theorem.  

                                  

Example 9: Evaluate ∮ 𝑓(𝑧)𝑑𝑧 for the given f(z) and path C.                    

           C             

f(z) =  
𝑍+10

𝑍3+4𝑍2−5𝑍
   C: |z| = 4 in counterclockwise direction  
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z3 + 4z2 – 5z = z(z – 1)(z + 5)                                             Im 

                                                                                                                               

                                                                                                     

                                                                                            4                           

                                                                      -5                 0  1   Re 

 

            Figure 2.28 

Using partial fractions, we write         

                      

f(z) = 
𝑍+10

𝑍3+4𝑍2−5𝑍
  =   

𝑍+10

𝑍(𝑍−1)(𝑍+5)
 = 

−2

𝑍
+

11/6

𝑍−1
+

1/6

𝑍+5
     

∮
𝑍+10

𝑍(𝑍−1)(𝑍+5)
𝑑𝑧 = ∮

−2

𝑍
𝑑𝑧 + ∮

11/6

(𝑍−1)
𝑑𝑧 + ∮

1/6

(𝑍+5)
𝑑𝑧 = -2(2πi) + (11/6)(2πi) + 0                     

C                               C               C                    C       

    = -i π/3         

        

         

  

2.4 – Cauchy’s Integral Formulas 

 

In Section 2.3 we saw some applications of Cauchy – Goursat Integral Theorem. Perhaps some 

of the most significant applications of Cauchy – Goursat Integral Theorem is Cauchy’s Integral 

Formulas. These additional applications are presented in this section.  

 

Theorem 2.6 Cauchy’s Integral Formula                                                                                                             

If f(z) is an analytic function everywhere in a simply connected domain D and C is a simple 

closed path in D, then       

∮
𝑓(𝑍)

𝑍−𝑍0
𝑑𝑧 = 2πi f(z0)        (2.28)                      

C                                   

where z0 is any point inside path C and integration is in counterclockwise direction.  

  

Proof:                    

We write f(z) as           

              

  f(z) = f(z0) + f(z) - f(z0)       (2.29) 
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Substituting equation (2.29) in equation (2.28) results in      

            

 ∮
𝑓(𝑍)

𝑍−𝑍0
𝑑𝑧 = ∮

𝑓(𝑍0)

𝑍−𝑍0
𝑑𝑧 + ∮

𝑓(𝑍)−𝑓(𝑍0)

𝑍−𝑍0
𝑑𝑧          

 C                  C                     C   

         = 𝑓(𝑧0) ∮
1

𝑍−𝑍0
𝑑𝑧 + ∮

𝑓(𝑍)−𝑓(𝑍0)

𝑍−𝑍0
𝑑𝑧   (2.30)       

                       C                     C  

From our discussion in Section 2.3, we have        

          

 𝑓(𝑧0) ∮
1

𝑍−𝑍0
𝑑𝑧 = 2πi f(z0)       (2.31)       

            C   

To show the second integral in equation (2.30) is zero, we can replace C by a small circle C1 of 

radius ρ with center at z0 as shown in Figure 2.29.       

 

 

                                                                                                   ρ   z0 

                                                                                           C1                                                                      

     D        

                                                                            C 

 

                                            Figure 2.29 Replacing C by Small Circle C1 Containing z0       

 

The function f(z) is analytic and hence continuous at z0. Based on definition of continuity, for any 

ε > 0, there exists a δ > 0 such that |f(z) – f(z0)| < ε for all z satisfying |z – z0| < δ. By selecting ρ 

to be smaller than δ and using ML – Inequality Theorem of Section 2.1, we can write              

 

| ∮
𝑓(𝑍)−𝑓(𝑍0)

𝑍−𝑍0
𝑑𝑧| ≤ ML                                                       

C1  

Here M = 
𝜀

𝜌
 and L is the length of curve C1 (2πρ). Hence with ML = 

𝜀

𝜌
 (2πρ) = 2πε, we have 

             

| ∮
𝑓(𝑍)−𝑓(𝑍0)

𝑍−𝑍0
𝑑𝑧| ≤  2πε                                                      

C1                                      
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We can select ε > 0 as small as possible (ε → 0+). Hence the second integral on the right hand 

side of equation (2.30) is zero. 

 

Example 10: Evaluate ∮
𝑍2+2

(𝑍2+1)(𝑍2−1)
𝑑𝑧.                      

                         C             

 C: |z –i| = 1 in counterclockwise direction  

                                                                                                 Im 

                                                                                                                               

                                                                                              

                                                                                 1                C                                        

                                                                                                                                        

                                                                          -1                      1            Re  

             

                                                                           -1          

            Figure 2.30 

 (z2 + 1)(z2 - 1) = (z + i)(z - i)(z + 1)(z - 1)  

  Since z = i is the only point enclosed by C          ⇒     

                      

∮
𝑍2+2

(𝑍2+1)(𝑍2−1)
𝑑𝑧 = ∮

(𝑍2+2)/[(𝑍 + 𝑖)(𝑍2−1)]

(𝑍−𝑖)
𝑑𝑧 = 2πi 

(𝑍2+2)

(𝑍 + 𝑖)(𝑍2−1) 
]𝑧=𝑖  =                   

C                                C 

            2πi 
(−1+2)

(2𝑖)(−1−1) 
 = - π/2 

 

An alternate form of Cauchy’s Integral Formula of equation (2.28) can be written as                   

            

                        

f(z0) =  
1

2πi 
∮

𝑓(𝑍)

𝑍−𝑍0
𝑑𝑧       (2.32)                                        

       C           

  

Similar to equation (2.32), we now develop equations for f΄(z0), f΄΄(z0),…,f (n)(z0). This is shown 

explained in the following theorem. 
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Theorem 2.7 Cauchy’s Integral Formula for Derivatives of Analytic Function f(z)                                                                                                             

If f(z) is an analytic function everywhere in a simply connected domain D and C is a simple 

closed path in D, then           

  

f (n)(z0) =  
𝑛!

2πi 
∮

𝑓(𝑍)

(𝑍−𝑍0)𝑛+1
𝑑𝑧      (2.33)                                        

                   C          

                            

where z0 is any point inside path C and integration is in counterclockwise direction.  

  

Proof:                    

The proof for the case of n = 1 is presented here. We start with f΄(z0) using the definition                       

  

 f΄(z0) = lim
∆𝑍→0

𝑓(𝑍0+∆𝑍)−𝑓(𝑍0)

∆𝑍
         

                         

Using equation (2.32), we write         

             

 
𝑓(𝑍0+∆𝑍)−𝑓(𝑍0)

∆𝑍
 =  

1

2πi 
∮

1

∆𝑍
[

𝑓(𝑍)

𝑍−(𝑍0+∆𝑍)
]𝑑𝑧 −

1

2πi 
∮

1

∆𝑍
[
𝑓(𝑍)

𝑍−𝑍0
]𝑑𝑧 =    

      C                                           C 

 
1

2πi∆Z 
∮

(𝑍−𝑍0)𝑓(𝑍)−[(𝑍−(𝑍0+∆𝑍)]𝑓(𝑍)

[𝑍−(𝑍0+∆𝑍)][𝑍−𝑍0]
𝑑𝑧 = 

1

2πi 
∮

𝑓(𝑍)

[𝑍−𝑍0−∆𝑍][𝑍−𝑍0]
𝑑𝑧     (2.34)  

           C                                                                 C     

If we show the integrals of equation (2.33) for n = 1 and (2.34) are the same as ∆𝑍 → 0, the 

theorem is proved. To do so, let us ignore the (1/2πi) factor which is the constant coefficient in 

both and consider the difference between the two. 

 

∮
𝑓(𝑍)

[𝑍−𝑍0−∆𝑍][𝑍−𝑍0]
𝑑𝑧 -  ∮

𝑓(𝑍)

[𝑍−𝑍0]2
𝑑𝑧 = ∮

𝑓(𝑍)(𝑍−𝑍0)−𝑓(𝑍)[𝑍−𝑍0−∆𝑍]

[𝑍−𝑍0−∆𝑍][𝑍−𝑍0]2
𝑑𝑧                 

C                     C                       C  

         = ∮
∆𝑍𝑓(𝑍)

[𝑍−𝑍0−∆𝑍][𝑍−𝑍0]2
𝑑𝑧    (2.35)  

                                  C 

The function f(z) is analytic and hence continuous. Therefore f(z) is bounded (|f(z)| ≤ P). 

Furthermore, the distance between all z on C and zo, is assumed to be greater than some 

positive real number ρ (|z – z0| ≥ ρ). This implies 

 |z – z0|2 ≥ ρ2   ⇒  
1

|𝑍−𝑍0|2
 ≤ 

1

𝜌2
  

We also note that  
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|z – z0| =  |z – z0 - ∆z + ∆z| ≤ |z – z0 - ∆z| + |∆z| ≥ ρ   ⇒ 

 |z – z0 - ∆z| ≥ ρ - |∆z|          

  

We now assume ∆z ≤ ρ/2, we can write        

             

 |z – z0 - ∆z| ≥ ρ - ρ/2  ⇒        

 |z – z0 - ∆z| ≥ ρ/2  ⇒  
1

|Z – 𝑍0 − ∆Z| 
 ≤ 

2

𝜌
    

                               

Let the length of curve C be L. Using ML – Inequality Theorem of Section 2.1 and equation 

(2.35), we have 

 

| ∮
∆𝑍𝑓(𝑍)

[𝑍−𝑍0−∆𝑍][𝑍−𝑍0]2
𝑑𝑧 |  ≤  (∆𝑍)(𝑃) (

2

𝜌
) (

1

𝜌2) 𝐿                                                                                  

C 

As we let ∆z→ 0, the left hand side of equation (2.35) approaches zero and we conclude  

f (1)(z0) =  
1

2πi 
∮

𝑓(𝑍)

(𝑍−𝑍0)2
𝑑𝑧                                               

                   C          

           (2.36)  

 2πi f (1)(z0) =  ∮
𝑓(𝑍)

(𝑍−𝑍0)2
𝑑𝑧                                               

                   C    

Example 11: Evaluate ∮
𝑍2+2𝑍+2

(𝑍2+4)(𝑍−2)2
𝑑𝑧 for the given f(z) and path C.                  

   C             

 C: As shown in Figure 2.31 

                                                                                                 Im 

                                                                                                                               

                                                                                              

                                                                                 2                                                        

                                                                                                            C 

                                                                                                  2                      Re  

             

                                                                     -2          

            Figure 2.31 

 (z2 + 4)(z - 2)2 = (z + i2)(z - i2)(z - 2)(z - 2)  
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  Since z = 2 and z = 2 are the only points enclosed by C, we define f(z) as 

𝑓(𝑧) =  
𝑍2+2𝑍+2

(𝑍2+4)
,  and use equation 2.36                

                        

∮
𝑓(𝑧)

(𝑍−2)2
𝑑𝑧 = 2πi f (1) (2) =2πi 

(2𝑍+2)(𝑍
2
+4)−2𝑍(𝑍2+2𝑍+2)

(𝑍
2
+4)

2 ]𝑧=2 =  i π/4                       

C             

 

Let us examine equation (2.33) in the following form, 

 

|f (n)(z0)| = | 
𝑛!

2πi 
∮

𝑓(𝑍)

(𝑍−𝑍0)𝑛+1
𝑑𝑧| =  

𝑛!

2π 
| ∮

𝑓(𝑍)

(𝑍−𝑍0)𝑛+1
𝑑𝑧|   (2.37)                                        

                      C                                      C 

As discussed in Theorem 2.7, f(z) is bounded (|f(z)| ≤ P). Without loss of generality, let us 

assume C is a circle at z0 and radius ρ. Using equation (2.37), and ML – Inequality Theorem 

with L = 2𝜋ρ, we have  

  |f (n)(z0)| ≤ 
𝑛!𝑃

𝜌𝑛
        (2.38)  

                

Theorem 2.8 Liouville’s Theorem                                                                                                            

If f(z) is bounded and is an entire function for all values of z, then f(z) is constant.   

         

Proof:                    

Using equation (2.38) with n = 1, we have 

|f (1)(z0)| ≤ 
𝑃

𝜌
    

Since we can select ρ arbitrary large, this indicates 

  f (1)(z0) = 0   

for all z0 and proves f(z) is constant.  
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CHAPTER 3 

 

Complex Series and Residue 

Theorem 
 

 

Overview 

Section 3.1 begins with sequences and series along with ratio and root tests for convergence, 

followed by geometric and power series in Section 3.2. Taylor and Maclaurin series are 

discussed in Section 3.3. In Section 3.4 Laurent series and definition of residue are presented. 

Section 3.5 covers the definition of poles and zeros. Evaluation of residue of a simple pole and 

repeated pole is discussed in Section 3.6. Residue Theorem is covered in Section 3.7. Section 

3.8 presents some applications of Residue Theorem to real integrals. 
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3.1 – Sequences and Series of Complex Values  

 
Here we begin with the definition of complex sequences and extend to complex series. Many of 

the definitions, tests, and theorems are similar to what we observed in real calculus.  

  

Complex Sequences  

A complex sequence denoted by {Zn} is a collection of terms. The value of n can be n = 1, 2, 3, 

… or n = 0, 1, 2,… as                            

            

 {Z1, Z2, Z3,….} or {Z0, Z1, Z2,….}      (3.1)  

                                 

The terms of the sequence in general are complex. As an example    

            

 {Zn} = {Z0, Z1, Z2,...} = {(1 – i ), (1 – i)2, (1 – i)3,…}      

    

Depending on the particular application, n can begin with any integer such as n = …,-1, 

or 0, or 1,… . In most application the initial value of n is either 0 or 1. The terms of the sequence 

can be complex or real consisting of a random values or be characterized by an equation or 

pattern.               

                                 

Convergence                  

The sequence {Zn} = {Z0, Z1, Z2,…} converges to a value L and is called convergent sequence, if 

             

 lim Zn = L = L1 + i L2        (3.2)                                                

 n → ∞            

                     

Using the definition of limit, equation (3.2) implies that as n increases, for some n > N we can 

write              

            

 | Zn – L | < ε          (3.3)  

                      . 

The limit L must be unique. Equation (3.3) simply indicates for n  > N, all values of Zn are inside 

the disk whose center is at L and has a radius of ε as shown in Figure 3.1.   

                  

                                                                                       Im 

                                                                                           ε 

                                                                    L      
                                                                                                      Re 

        

Figure 3.1 Sequence {Zn} Converging to L 
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Example 1: Indicate if the given sequences are convergent. If convergent evaluate the limit. 

a) {Zn} = {(2 + i)n}                                     

b)  {Zn} = {(0.5𝑖)𝑛}           

             

  

a) {(2 + i)n} = { (2 + i), (2 + i)2, (2 + i)3, (2 + i)4,… } is divergent 

b) {(0.5𝑖)𝑛} = {0.5i, -0.25, -0.125i, 0.0625,…} is convergent with the limit L = 0   

                                                                                                    

Since the sequence {Zn} = {xn}+ i{yn}, we can state the convergence of a sequence to L = L1 + i 

L2, by considering the convergence of the real and imaginary parts of the sequence to L1 and L2 

respectively. This is presented in the following theorem. 

                      
Theorem 3.1 Convergence of Sequence {Zn} = {xn}+ i{yn} to L = L1 + i L2      

A sequence {Zn} = {xn}+ i{yn} converges to a complex number L = L1 + i L2, if and only if the real 

part of the sequence {xn} converges to L1 and the imaginary part of the sequence {yn} converges 

to L2.                        

                       

Proof:                    

We assume the sequence converges and has a limit L = L1 + i L2   

lim Zn = L = L1 + i L2  ⇒            | Zn – L | < ε                                                                                      

n → ∞                                                           

lim xn = L1   and    lim yn = L2      ⇒    as n→ ∞                                                     

n → ∞                                                 n → ∞            

            | xn – L1 | < ε   and    | yn – L2 | < ε                                                                                                                                                                                                                                                                     

Hence as n→ ∞, the xn and yn will fall in the intervals (L1 – ε,L1 + ε) and (L2 – ε,L2 + ε) 

respectively. This is shown in Figure 3.2.  

        Im 

                                  L2 + ε 

            L2                                L 

       L2 - ε 

             

            L1 - ε   L1   L1 + ε         Re 

      Figure 3.2 Sequence {Zn=xn + iyn} Converging to L = L1 + i L2   

Now we consider the inverse of this theorem. If  

lim xn = L1   and    lim yn = L2      ⇒                     

n → ∞                                                 n → ∞            

                     

for some n large enough | Zn – L | < ε, where {Zn} = {xn}+ i{yn}.     



67 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

Example 2: Indicate if the given sequences are convergent. If convergent evaluate the limit. 

{Zn} = {in/[n + i(n + 1)]}         

                                   

Zn = 
𝑖𝑛

𝑛+𝑖(𝑛+1)
 
𝑛−𝑖(𝑛+1)

𝑛−𝑖(𝑛+1)
 = 

𝑛(𝑛+1)+𝑖𝑛2

𝑛2+(𝑛+1)2
 = 

𝑛2+𝑛

2𝑛2+2𝑛+1
+ 𝑖

𝑛2

2𝑛2+2𝑛+1
   

                                

 Using L’Hopital’s rule, we have,        

             

 lim xn = 0.5   and    lim yn = 0.5      ⇒    lim Zn = 0.5 + i 0.5      

 n→ ∞                    n → ∞                                     n → ∞       

 

Complex Series  

A complex series of complex variable z is define by 

w1(z) + w2(z)+…+wn(z)+….               (3.4)  
                       

The partial sums of this series are defined by 

S1 = w1(z)           

 S2 = w1(z) + w2(z) 

…………………..        (3.5)  

             

 Sn = w1(z) + w2(z)+…+wn(z)         

                     

Consider,            

          

S = ∑ 𝑤𝑛
∞
𝑛=1           (3.6)  

             

                             

A series is convergent if {Sn} converges to S. If a series does not converge, it is called a 

divergent series. If ∑ |𝑤𝑛
∞
𝑛=1 | converges, then the ∑ 𝑤𝑛

∞
𝑛=1  is said to be absolutely convergent. If 

∑ 𝑤𝑛
∞
𝑛=1  converges but it does not converge absolutely, it is called conditionally convergent.  

 

Theorem 3.2                      

if ∑ 𝑤𝑛
∞
𝑛=1  converges, it is necessary that lim wn = 0. If lim wn ≠ 0, the series diverges.   

                       n → ∞      n → ∞ 

The proof of this theorem is similar to real series. 

If |Sn - S| < ε for all n > N, we say Sn converges uniformly to S. Let us define Rn as  

             

 Rn = wn+1(z) + wn+2(z)+ wn+3(z)+….. = S – Sn             (3.7) 
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Then we can say the series converges to S if for any ε> 0 we can find N such that for all n > N 

  

  |Rn| = |S - Sn| < ε          

             

    

Theorem 3.3                      

A necessary and sufficient condition for the series S = ∑ 𝑤𝑛
∞
𝑛=1 = ∑ (𝑢𝑛 + 𝑖𝑣𝑛

∞
𝑛=1 )  to converge to 

S = u + iv is that ∑ 𝑢𝑛
∞
𝑛=1 converges to u and ∑ 𝑣𝑛

∞
𝑛=1 converges to v.  

This can be shown once the complex series S is partitioned to real part and imaginary part. 

  

                      

Theorem 3.4                                     

The series ∑ 𝑤𝑛
∞
𝑛=1  converges absolutely if        

             

 lim |
𝑤𝑛+1

𝑤𝑛
| = 𝑟 < 1,        (3.8)  

 n→ ∞ 

and diverges if 

lim |
𝑤𝑛+1

𝑤𝑛
| = 𝑟 > 1,        (3.9)  

 n→ ∞ 

The proof of this theorem is similar to real series and is based on Comparison Test and 

Geometric series. The complex form of geometric series is discussed in Section 3.2.  

             

             

  

The Ratio Test and the Root Test were utilized in real series. Here we consider the complex 

forms of these two important tests. The proof of these two tests are similar to real series and are 

left as an exercise.  

             

  

Ratio Test  

Given the infinite complex series ∑ 𝑤𝑛
∞
𝑛=1  = w1 + w2 + w3+…, with  

lim |
𝑤𝑛+1

𝑤𝑛
| = L,  then         (3.10)           

n→ ∞  

a) ∑ 𝑤𝑛
∞
𝑛=1  converges absolutely if L < 1 

b) ∑ 𝑤𝑛
∞
𝑛=1  diverges if L > 1 

c) No conclusion can be made if L = 1 
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Root Test  

Given the infinite complex series ∑ 𝑤𝑛
∞
𝑛=1  = w1 + w2 + w3+…, with  

lim √|𝑤𝑛|
𝑛

= L,   then            (3.11)            

n→ ∞  

a) ∑ 𝑤𝑛
∞
𝑛=1  converges absolutely if L < 1 

b) ∑ 𝑤𝑛
∞
𝑛=1  diverges if L > 1 

c) No conclusion can be made if L = 1 

 

 

 

 

 

3.2 – Geometric and Power Series 

 
Geometric Series  

A complex geometric series is defined as        

             

  ∑ 𝑎𝑤𝑛∞
𝑛=0  = a + aw + aw2 + aw3+…. = a(1 + w + w2 + w3 + ….)  (3.12)   

                          

Using equation (3.5), the nth partial sum of this is given by      

            

 Sn = a + aw + aw2 + aw3+…. + awn         (3.13)  

                         

Multiplying equation (3.13) by w results in        

            

 wSn = aw + aw2 + aw3 +…. + awn+1      (3.14)  

                

Let us now consider Sn - wSn          

  

Sn - wSn = a - awn+1              

             

 Sn(1 - w) = a(1 - wn+1)          

             

 𝑠𝑛 = 𝑎
1− 𝑤𝑛+1

1−𝑤
            (3.15)   

                    

As n→ ∞, we can conclude          

             

  ∑ 𝑎𝑤𝑛∞
𝑛=0  = a + aw + aw2 + aw3+…. = 

𝑎

1−𝑤
   if  |w| < 1           

and           (3.16) 

 ∑ 𝑎𝑤𝑛∞
𝑛=0  = a + aw + aw2 + aw3+….    diverges   if  |w| ≥ 1    
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Example 3: Evaluate the sum ∑ (𝑎𝑧−1)𝑛∞
𝑛=0  and indicate the condition for convergence  

                                         

∑ (𝑎𝑧−1)𝑛∞
𝑛=0  = 

1

1−(𝑎𝑧−1)
 = 

𝑧

𝑧−𝑎
  |az-1| < 1  or  |z| > |a|  

Based on our discussion of sets and domains in Chapter 2, the condition for convergence in this 

example for w = az-1 is |az-1| < 1, which includes all the exterior points to a circle with center at z 

= 0 and radius |a|.                             

        

Power Series  

A complex power series is defined as        

             

              

∑ 𝑎𝑛(𝑤 − 𝑤0)
𝑛∞

𝑛=0  = a0 + a1(w – w0) + a2(w – w0)2 + ….    (3.17)   

             

                          

Coefficients an, are complex constant and wo is also a complex constant in general and is called 

the center of the power series. In general power series has what is known as a region of 

convergence defined as interior point of the circle |w – w0| = R. The circle is known as circle of 

convergence with center at w0 and the radius is R. The radius R is referred to as radius of 

convergence.             

                       

It is obvious that for w = w0, equation (3.17) converges to a0. The power series of equation 

(3.17) converges everywhere inside the circle of convergence defined by    

             

 |w – w0| < R         (3.18)  

                        

and diverges outside the circle of convergence defined by      

             

 |w – w0| > R         (3.19)   

Radius of convergence R can be as small or as large as possible. The regions of convergence 

and divergence are show in Figure 3.3. 

                                      Im           Region of Divergence            

                                                                                                            

R                               

            

                                                                                 w0                                                                                                     
                     Region of                                                                                                                                                                   
                                                   Convergence       Re                     

                                               0                                                                          

 

Figure 3.3 Regions of Convergence and Divergence 
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Evaluating Radius of Convergence         

                      

Using the ratio test of equation (3.10), we have        

             

 |
𝑤𝑛+1

𝑤𝑛
| = L as  n→ ∞.          

 |
𝑎𝑛+1(𝑤−𝑤0)𝑛+1

𝑎𝑛(𝑤−𝑤0)𝑛
| = |

𝑎𝑛+1(𝑤−𝑤0)

𝑎𝑛
| = |

𝑎𝑛+1

𝑎𝑛
| |𝑤 − 𝑤0| = L  as  n→ ∞.   

                    

Convergence requires L < 1. This implies |𝑤 − 𝑤0| <  
1

|
𝑎𝑛+1
𝑎𝑛

| 
 or |𝑤 − 𝑤0| < |

𝑎𝑛

𝑎𝑛+1
|.  

                              

Hence we write the radius of convergence as       

            

 R = lim |
𝑎𝑛

𝑎𝑛+1
|  or  

1

R
 = lim |

𝑎𝑛+1

𝑎𝑛
|     (3.20)               

        n→ ∞                    n→ ∞  

We can now consider two extreme cases.  

R = 0 if  |
𝑎𝑛+1

𝑎𝑛
| →  ∞ as n→ ∞ ⇒  Power series converges only at w0  

R = ∞ if  |
𝑎𝑛+1

𝑎𝑛
| →  0 as n→ ∞ ⇒ Power series converges for all values of w 

              

As an alternate approach the root test of equation (3.11) can be used to evaluate radius of 

convergence.             

  

√|𝑎𝑛(𝑤 − 𝑤0)
𝑛|𝑛

 = L  as  n→ ∞       

    

Convergence requires L < 1. This implies  |𝑤 − 𝑤0| = 
1

√|𝑎𝑛|
𝑛  . 

Hence we write the radius of convergence as       

             

 R = lim 
1

√|𝑎𝑛|
𝑛          (3.21)  

        n→ ∞   

 

Example 4: Indicate the center and the radius of convergence for the given power series. 

      a) ∑
(𝑧−2+𝑖3)𝑛

(3+𝑖4)𝑛
∞
𝑛=0     b) ∑

(−2)𝑛(𝑧−𝑖5)𝑛

(𝑛+1)!
∞
𝑛=0  



72 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

a) ∑
(𝑧−2+𝑖3)𝑛

(3+𝑖4)𝑛
∞
𝑛=0                  

The center is at z = 2 - i3. Using equation (3.20)   ⇒             

R = |
𝑎𝑛

𝑎𝑛+1
| = | 

1

(3+𝑖4)𝑛
/

1

(3+𝑖4)𝑛+1 |= |3 + 𝑖4| = 5 as n→ ∞             

Hence radius of convergence R = 5.  

 

We can Use equation (3.21)     ⇒              

R = 
1

√|𝑎𝑛|
𝑛  = 

1

√|
1

(3+𝑖4)𝑛
|

𝑛
 = |3 + 𝑖4| = 5  as n→ ∞  

b) ∑
(−2)𝑛(𝑧−𝑖5)𝑛

(𝑛+1)!
∞
𝑛=0                 

The center is at z = i5. Using equation (3.20)    ⇒            

R = |
𝑎𝑛

𝑎𝑛+1
| = | 

(−2)𝑛

(𝑛+1)!
/

(−2)𝑛+1

(𝑛+2)!
|= | 

(𝑛+2)!

−2
| = ∞ as n→ ∞     

Hence the series converges for all values of z. 

 

 

 

3.3 – Taylor and Maclaurin Series 

 
Taylor Series  

Let us begin with power series         

             

 f(z) = ∑ 𝑎𝑛(𝑧 − 𝑧0)
𝑛∞

𝑛=0  = a0 + a1(z – z0) + a2(z – z0)2 + a3(z – z0)3 + ….   

                        

then,             

                 

 f΄(z) = a1 + 2a2(z – z0) + 3a3(z – z0)2 + ….       

 f΄΄(z) = 2a2 + 6a3(z – z0) + 12a4(z – z0)2 + ….      

 f΄΄΄(z) = 6a3 + 24a4(z – z0) + ….      

 ………………………………………………………….      

                           

We note, f(z0) = a0     f΄(z0) = a1     f΄΄(z0) = 2a2     f΄΄΄(z0) = 6a3  …… f(n)(z0) = n!an ⇒  
            
 f(z) = f(z0) + [f΄(z0)] (z – z0) + [f΄΄(z0)/2!] (z – z0)2 +…. + [f(n)(z0)/n!] (z – z0)n +…. (3.22) 

     

Equation (3.22) is known as Taylor series of a complex function f(z). Using Cauchy’s Integral 

Formula of equation (2.28) and Cauchy’s Integral Formula for derivatives of equation (2.33), we 

have 
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a0 = f(z0) =  
1

2πi 
∮

𝑓(𝑍)

𝑍−𝑍0
𝑑𝑧                

                         C    

a1 = f΄(z0) = 
1

2πi 
∮

𝑓(𝑍)

(𝑍−𝑍0)2
𝑑𝑧                       

                         C 

………………………………… 

 

an = f (n)(z0)/n! = 
1

2πi 
∮

𝑓(𝑍)

(𝑍−𝑍0)𝑛+1 𝑑𝑧      (3.23)                          

C 

Theorem 3.5  Taylor’s Theorem                                       

Let f(z) be an analytic function everywhere in a domain. Let path C be a circle in this domain 

with center at z0 and radius r. Then f(z) can be represented as     

             

 f(z) = ∑
𝑓(𝑛)(𝑧0)

𝑛!
(𝑧 − 𝑧0)

𝑛∞
𝑛=0         (3.24) 

Proof:              

Using Cauchy Integral Formula, we can write 

            f(z0) =   
1

2πi 
∮

𝑓(𝑍)

𝑍−𝑍0
𝑑𝑧                                 

                   C 

We now change some of the variables in Cauchy Integral Formula to have f(z) on the left hand 

side of the equation without altering the actual formula. 

            f(z) =   
1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍
𝑑𝑤         (3.25)       

       C                 

Denominator of the integrand in equation (3.25) can be modified as,     

  

w - z = (w - z0) - (z - z0) = (𝑤 − 𝑧0)[1 −
𝑍−𝑍0 

𝑊−𝑍0
]  ⇒   

 
1

𝑤−𝑧
= 

1

(𝑤−𝑧0)[1− 
𝑍−𝑍0 

𝑊−𝑍0
]
 = 

1

(𝑤−𝑧0)

1

[1− 
𝑍−𝑍0 

𝑊−𝑍0
]
     (3.26) 

                      

Using equation (3.15) of geometric series we have       

             

 1 + ζ + ζ2 + ζ3 + ⋯+ ζ𝑛 = 
1−ζ𝑛+1

1−ζ
    ⇒    

             

 
1

1 − ζ
 = 1 + ζ + ζ2 + ζ3 + ⋯+ ζ𝑛 +

 ζ𝑛+1

1 − ζ
      (3.27) 
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Let us apply equation (3.27) to equation (3.26).       

             

                                

  
1

(𝑤−𝑧)
=

1

[1− 
𝑍−𝑍0 

𝑊−𝑍0
]
 = 

1

(𝑤−𝑧0)
 [1 + 

𝑍−𝑍0 

𝑊−𝑍0
 + (

𝑍−𝑍0 
𝑊−𝑍0

)
2

+ ⋯+ (
𝑍−𝑍0 
𝑊−𝑍0

)
𝑛

] +    

                       

         
1

(𝑤−𝑧0)

( 
𝑍−𝑍0 

𝑊−𝑍0
)𝑛+1

[1− 
𝑍−𝑍0 

𝑊−𝑍0
]
                    

  
1

(𝑤−𝑧)
=

1

(𝑤−𝑧0)

1

[1− 
𝑍−𝑍0 

𝑊−𝑍0
]
 = 

1

(𝑤−𝑧0)
 [1 + 

𝑍−𝑍0 

𝑊−𝑍0
 + (

𝑍−𝑍0 
𝑊−𝑍0

)
2

+ ⋯+ (
𝑍−𝑍0 
𝑊−𝑍0

)
𝑛

] +   

                       

    (
1

𝑊−𝑍
)

(𝑍−𝑍0)𝑛+1

(𝑊−𝑍0)𝑛+1
                       (3.28)       

                        

Substituting equation (3.28) in equation (3.25), we have 

 f(z) =   
1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍
𝑑𝑤 = 

1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍0
{ [1 + 

𝑍−𝑍0 

𝑊−𝑍0
 + (

𝑍−𝑍0 

𝑊−𝑍0
)2 + ⋯+ (

𝑍−𝑍0 

𝑊−𝑍0
)
𝑛

] +   

        C                        C                   

  𝑓(𝑤)(
1

𝑊−𝑍
)

(𝑍−𝑍0)𝑛+1

(𝑊−𝑍0)𝑛+1}𝑑𝑤      (3.29)  

                                          

In equation (3.29), we define Rn(z) as        

             

 Rn(z) = 
1

2πi 
∮𝑓(𝑤) (

1

𝑊−𝑍
)

(𝑍−𝑍0)𝑛+1

(𝑊−𝑍0)𝑛+1 𝑑𝑤      (3.30)  

                  C          

 Rn(z) = 
(𝑍−𝑍0)𝑛+1

2πi 
∮𝑓(𝑤)

1

(𝑊−𝑍)

1

(𝑊−𝑍0)𝑛+1 𝑑𝑤     (3.31)  

      C 

                                                                                               Im            

                                                                                                                  

r            w                   

           

                                                z0                                                                                                        

                                z                                                 

                                                            

               0                                            Re  

                                  Figure 3.4    
                                               

Referring to equation (3.30) and Figure 3.4, we have       

            

 |𝑧 − 𝑧0| <  |𝑤 − 𝑧0|      ⇒   
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 |
𝑍−𝑍0

𝑊−𝑍0
|𝑛+1  < 1.  

With |f(w)| < 1 and length of curve C as 2πr, we can use ML inequality. 

 |Rn(z)| =| 
1

2πi 
∮𝑓(𝑤) (

1

𝑊−𝑍
)

(𝑍−𝑍0)𝑛+1

(𝑊−𝑍0)𝑛+1 𝑑𝑤| ≤ 
1

2π 
M

1

|𝑊−𝑍|
|
𝑍−𝑍0

𝑊−𝑍0
|𝑛+1. 2𝜋𝑟       

          C 

As n→∞, the |
𝑍−𝑍0

𝑊−𝑍0
|𝑛+1 → 0 and as a result Rn(z) approaches zero. Setting Rn(z) = 0 and using 

Cauchy’s Integral formula for derivatives (Theorem 2.7), we obtain the Taylor series expansion 

of equation (3.24).           

  

 

Maclaurin Series  

Maclaurin series is a Taylor series with center at z0 = 0.      

            

 f(z) = ∑
𝑓(𝑛)(0)

𝑛!
𝑧𝑛∞

𝑛=0 = 𝑓(0) +
𝑓(1)(0)

1!
𝑧 + 

𝑓(2)(0)

2!
𝑧2 + 

𝑓(3)(0)

3!
𝑧3 + ⋯  (3.32)  

                           

Example 5: Evaluate Maclaurin series for the given complex functions.  

a) f(z) = 
1

1−𝑍
   b) f(z) = 𝑒𝑍  c) f(z) = cos z  d) f(z) = sin z          

e) f(z) = cosh z            f) f(z) = sinh z        

             

     

a) f(z) = 
1

1−𝑍
= (1 − 𝑧)−1                                                                                

f ΄(z) = (1 − 𝑧)−2     f΄΄(z) = 2(1 − 𝑧)−3     f΄΄΄(z) = (3)(2)(1 − 𝑧)−4
  ....                  

f(0) = 1, f ΄(0) = 1!, f ΄΄(0) = 2!, f΄΄΄(0) = 3!,…  ⇒                 

f(z) = 1 + z + z2 + z3 + … = ∑ 𝑧𝑛∞
𝑛=0   Region of Convergence: |z| < 1 

       

b) f(z) = 𝑒𝑍                      

f ΄(z) = 𝑒𝑍  f΄΄(z) = 𝑒𝑍   f΄΄΄(z) = 𝑒𝑍   ....                                        

f(0) = 1, f ΄(0) = 1, f ΄΄(0) = 1, f΄΄΄(0) = 1,…  ⇒              

f(z) = 1 +
𝑍

1!
 + 

𝑍2

2!
+

𝑍3

3!
+ ⋯ = ∑

𝑍

𝑛!

𝑛
∞
𝑛=0        

            
c) f(z) = cos z 

f ΄(z) = −sin 𝑍     f΄΄(z) = −cos𝑍     f΄΄΄(z) = sin𝑍 f΄΄΄΄(z) = cos 𝑍  ....                        

f(0) = 1, f ΄(0) = 0, f ΄΄(0) = -1, f΄΄΄(0) = 0, f΄΄΄΄(0) = 1,…   ⇒           

f(z) = 1 −
𝑍2

2!
+

𝑍4

4!
+ ⋯ = ∑ (−1)𝑛 𝑍2𝑛

(2𝑛)!
∞
𝑛=0       
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d) f(z) = sin z 

f ΄(z) = cos 𝑍     f΄΄(z) = −sin𝑍     f΄΄΄(z) = −cos𝑍 f΄΄΄΄(z) = sin𝑍  ....                        

f(0) = 0, f ΄(0) = 1, f ΄΄(0) = 0, f΄΄΄(0) = -1, f΄΄΄΄(0) = 0,…   ⇒           

f(z) = 
𝑍

1!
−

𝑍3

3!
+

𝑍5

5!
+ ⋯ = ∑ (−1)𝑛 𝑍2𝑛+1

(2𝑛+1)!
∞
𝑛=0       

  
e) f(z) = cosh z                     

f ΄(z) = sinh 𝑍     f΄΄(z) = cosh𝑍     f΄΄΄(z) = sinh𝑍 f΄΄΄΄(z) = cosh𝑍 ....                        

f(0) = 1, f ΄(0) = 0, f ΄΄(0) = 1, f΄΄΄(0) = 0, f΄΄΄΄(0) = 1,…   ⇒           

f(z) = 1 +
𝑍2

2!
+

𝑍4

4!
+ ⋯ = ∑

𝑍2𝑛

(2𝑛)!
∞
𝑛=0        

  

f) f(z) = sinh z 

f ΄(z) = cosh 𝑍     f΄΄(z) = sinh𝑍     f΄΄΄(z) = cosh𝑍 f΄΄΄΄(z) = sinh𝑍 ....                        

f(0) = 0, f ΄(0) = 1, f ΄΄(0) = 0, f΄΄΄(0) = 1, f΄΄΄΄(0) = 0,…   ⇒           

f(z) = 
𝑍

1!
+

𝑍3

3!
+

𝑍5

5!
+ ⋯ = ∑

𝑍2𝑛+1

(2𝑛+1)!
∞
𝑛=0         

      

 

 

3.4 – Laurent Series and Residue 

 
Laurent Series  

There are many applications where power series expansion of f(z) may have a center at which 

f(z) be singular. If functions f(z) ceases to be analytic at a point z0, then z0 is referred to as a 

point of singularity.  In such cases Taylor Series expansion does not apply. Instead a different 

series known as Laurent series is utilized.         

             

 f(z) = ∑ 𝑎𝑛(𝑧 − 𝑧0)
𝑛 = ∑ 𝑎𝑛(𝑧 − 𝑧0)

𝑛−1
𝑛=−∞ + ∑ 𝑎𝑛(𝑧 − 𝑧0)

𝑛∞
𝑛=0 = ∞

𝑛=−∞   

           …+
𝑎−3

(𝑍−𝑍0)3
+

𝑎−2

(𝑍−𝑍0)2
+

𝑎−1

𝑍−𝑍0
+ 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)

2 + ⋯   

                                     

It is noted that Laurent series is an extension of Taylor series which includes negative powers of 

(z - z0). 

Theorem 3.6  Laurent’s Theorem                                       

Let f(z) be an analytic function everywhere in a closed domain D as shown in Figure 3.5. The 

function f(z) can be represented by 

 f(z) = ∑ 𝑎𝑛(𝑧 − 𝑧0)
𝑛 = ∑ 𝑎𝑛(𝑧 − 𝑧0)

𝑛−1
𝑛=−∞ + ∑ 𝑎𝑛(𝑧 − 𝑧0)

𝑛∞
𝑛=0 = ∞

𝑛=−∞   

 …+
𝑎−3

(𝑍−𝑍0)3
+

𝑎−2

(𝑍−𝑍0)2
+

𝑎−1

𝑍−𝑍0
+ 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)

2 + ⋯  (3.33)     

where  
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 an =   
1

2πi 
∮

𝑓(𝑍)

(𝑍−𝑍0)𝑛+1 𝑑𝑧        (3.34)                        

    C          

C is any closed curve which is completely in D and in counterclockwise direction. 

 

 

                                                     D 

                                                                   z0 

 

                               C        

   

Figure 3.5 Domain D and Point of Singularity z0      

Proof:              

Let us consider two concentric circles C1 and C3 with center at z0 and radii r1 and r2 as shown in 

Figure 3.6. We also consider cuts between C1 and C3 as we did for the case of doubly 

connected domain (Figure 2.24). Based on Cauchy’s Integral formula, we have   

  

f(z) =   
1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍
𝑑𝑤 + 

1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍
𝑑𝑤                             

       C1         C3    

                                       

                                                         C1  r1 

                                                          C3        r2 

                                                          z0 

           

 

Figure 3.6 Laurent Series-Applying Cauchy’s Integral Formula      

 

With curve C2 the same as C3 but in opposite direction (counterclockwise), we have  

     

f(z) =   
1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍
𝑑𝑤 − 

1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍
𝑑𝑤 = 

1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍
𝑑𝑤 + 

1

2πi 
∮

𝑓(𝑊)

𝑍−𝑊
𝑑𝑤 (3.35)               

      C1         C2               C1               C2     

Following similar procedure as for the case of Taylor’s Theorem and using geometric series of 

equation (3.27), for the first integral we write 
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1

(𝑤−𝑧)
=

1

(𝑤−𝑧0)

1

[1− 
𝑍−𝑍0 

𝑊−𝑍0
]
 = 

1

(𝑤−𝑧0)
 [1 + 

𝑍−𝑍0 

𝑊−𝑍0
 + (

𝑍−𝑍0 
𝑊−𝑍0

)
2

+ ⋯+ (
𝑍−𝑍0 
𝑊−𝑍0

)
𝑛

] +   

                       

  (
1

𝑊−𝑍
)

(𝑍−𝑍0)𝑛+1

(𝑊−𝑍0)𝑛+1
                         (3.36)       

and for the second integral  

 
1

(𝑧−𝑤)
=

1

(𝑧−𝑧0)

1

[1− 
𝑊−𝑍0 

𝑍−𝑍0
]
 = 

1

(𝑧−𝑧0)
 [1 + 

𝑊−𝑍0 

𝑍−𝑍0
 + (

𝑊−𝑍0 
𝑍−𝑍0

)
2

+ ⋯+ (
𝑊−𝑍0 
𝑍−𝑍0

)
𝑛

] +  

                       

   (
1

𝑍−𝑊
)

(𝑊−𝑍0)𝑛+1

(𝑍−𝑍0)𝑛+1
                        (3.37)       

Substituting equations (3.36) and (3.37) in equation (3.35) results in 

 f(z) = 
1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍0
{ [1 + 

𝑍−𝑍0 

𝑊−𝑍0
 + (

𝑍−𝑍0 

𝑊−𝑍0
)2 + ⋯+ (

𝑍−𝑍0 

𝑊−𝑍0
)
𝑛

] + 𝑓(𝑤)(
1

𝑊−𝑍
)

(𝑍−𝑍0)𝑛+1

(𝑊−𝑍0)𝑛+1}𝑑𝑤 

      C1                  

        +
1

2πi 
∮

𝑓(𝑊)

𝑍−𝑍0
{ [1 + 

𝑊−𝑍0 

𝑍−𝑍0
 + (

𝑊−𝑍0 

𝑍−𝑍0
)2 + ⋯+ (

𝑊−𝑍0 

𝑍−𝑍0
)
𝑛

] + 𝑓(𝑤)(
1

𝑍−𝑊
)

(𝑊−𝑍0)𝑛+1

(𝑍−𝑍0)𝑛+1 }𝑑𝑤 

      C2                  

                    (3.38)                      

In f(z) above, we define Rn1(z) and Rn2(z) as        

             

 Rn1(z) = 
1

2πi 
∮𝑓(𝑤) (

1

𝑊−𝑍
)

(𝑍−𝑍0)𝑛+1

(𝑊−𝑍0)𝑛+1 𝑑𝑤      (3.39)  

                   C1          

 Rn1(z) = 
(𝑍−𝑍0)𝑛+1

2πi 
∮𝑓(𝑤)

1

(𝑊−𝑍)

1

(𝑊−𝑍0)𝑛+1 𝑑𝑤    (3.40)  

                     C1 

Rn2(z) = 
1

2πi 
∮𝑓(𝑤) (

1

𝑍−𝑊
)

(𝑊−𝑍0)𝑛+1

(𝑍−𝑍0)𝑛+1 𝑑𝑤      (3.41)  

                   C2                                    

 Rn2(z) = 
1

2πi(𝑍−𝑍0)𝑛+1 
∮𝑓(𝑤)

(𝑊−𝑍0)𝑛+1

(𝑍−𝑊)
𝑑𝑤     (3.42)                                   

                               C2 

Referring to equation (3.39) and Figure 3.5 with z located between concentric circles and w on 

curve C1, we have            

 |𝑧 − 𝑧0| <  |𝑤 − 𝑧0|      ⇒   

 |
𝑍−𝑍0

𝑊−𝑍0
|𝑛+1  < 1.  

With |f(w)| < M and length of curve C1 as 2πr1, we can use ML inequality.    

   



79 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

 |Rn1(z)| =| 
1

2πi 
∮𝑓(𝑤) (

1

𝑊−𝑍
)

(𝑍−𝑍0)𝑛+1

(𝑊−𝑍0)𝑛+1
𝑑𝑤| ≤ 

1

2π 
M

1

|𝑊−𝑍|
|
𝑍−𝑍0

𝑊−𝑍0
|𝑛+1. 2𝜋𝑟1   

           C1 

As n→∞, the |
𝑍−𝑍0

𝑊−𝑍0
|𝑛+1 → 0 and as a result Rn1(z) approaches zero.  

Referring to equation (3.41) and Figure 3.5 with z located between concentric circles and w on 

curve C2, we have            

 |𝑤 − 𝑧0| <  |𝑧 − 𝑧0|      ⇒   

 |
𝑊−𝑍0

𝑍−𝑍0
|𝑛+1  < 1.  

With |f(w)| < M and length of curve C2 as 2πr2, we can use ML inequality. 

 |Rn1(z)| =| 
1

2πi 
∮𝑓(𝑤) (

1

𝑊−𝑍
)

(𝑍−𝑍0)𝑛+1

(𝑊−𝑍0)𝑛+1 𝑑𝑤| ≤ 
1

2π 
M

1

|𝑍−𝑊|
|
𝑊−𝑍0

𝑍−𝑍0
|𝑛+1. 2𝜋𝑟2      

           C2 

As n→∞, the |
𝑊−𝑍0

𝑍−𝑍0
|𝑛+1 → 0 and as a result Rn2(z) approaches zero.  

 

Hence from equation (3.38) we have 

f(z) = 
1

2πi 
∮

𝑓(𝑊)

𝑊−𝑍0
[1 + 

𝑍−𝑍0 

𝑊−𝑍0
 + (

𝑍−𝑍0 

𝑊−𝑍0
)2 + ⋯+ (

𝑍−𝑍0 

𝑊−𝑍0
)
𝑛

] 𝑑𝑤                     

     C           

       +
1

2πi 
∮

𝑓(𝑊)

𝑍−𝑍0
[1 + 

𝑊−𝑍0 

𝑍−𝑍0
 + (

𝑊−𝑍0 

𝑍−𝑍0
)2 + ⋯+ (

𝑊−𝑍0 

𝑍−𝑍0
)
𝑛

] 𝑑𝑤   (3.43)      

                C                               

This proves the Laurent’s theorem. Furthermore since f(z) is analytic in domain D everywhere 

between the concentric circles C1 and C2, these curves can be replaced by a closed 

counterclockwise curve C as shown in Figure 3.5. 

It is important to note that equation (3.34) is hardly used to evaluate the coefficient of Laurent 

series. We usually acquire Laurent series by employing other series for which we are familiar 

with their power series expansion. Furthermore a given function f(z) can be represented by 

different Laurent series depending on how the region of convergence is defined for that 

particular f(z). This is illustrated in the following examples. 

 

Example 6: Evaluate Laurent series for the given complex functions.  

a) f(z) = 
𝑍+ cos 𝑍

𝑍2
   b) f(z) =  𝑍𝑒2/𝑍  c) f(z) = 

−𝑍+26

𝑍2+2𝑍−8
 

a) f(z) = 
𝑍+ cos𝑍

𝑍2
                                                                                          

f(z) = 
1

𝑍2 (𝑍 +  1 −
𝑍2

2!
+

𝑍4

4!
+ ⋯ ) =

1

𝑍
+

1

𝑍2 −
1

2!
+

𝑍2

4!
+ ⋯     |z| > 0   
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b) f(z) =  𝑍𝑒2/𝑍 = 𝑍 [1 +
(
2

𝑍
)

1!
+ 

(
4

𝑍2)

2!
+

(
8

𝑍3)

3!
+ ⋯ ] = 𝑍 +  2 + 

4

2!𝑍
+  

8

3!𝑍2
+ ⋯ |z| > 0 

                   

c) f(z) =  
−𝑍+26

𝑍2+2𝑍−8
  applying partial fractions       

f(z) = 
4

𝑍−2
−

5

𝑍+4
 

We can consider variety of regions of convergence for which Laurent series can be 

represented. 

i) 2 < |z| < 4                  

4

𝑍−2
=

4

𝑍(1 − 
2

𝑍
)
= 

4

𝑍
 [1 + (

2

𝑍
) + (

2

𝑍
)
2

+ (
2

𝑍
)
3

+ ⋯] =
4

𝑍
+

8

𝑍2
+

16

𝑍3
+ ⋯    

−5

𝑍+4
=

−5

4(1+ 
𝑍

4
)
= 

−5

4
 [1 − (

𝑍

4
) + (

𝑍

4
)
2

− (
𝑍

4
)
3

+ ⋯] = −
5

4
+

5𝑍

16
−

5𝑍2

64
+ ⋯  

f(z) = …+
16

𝑍3 +
8

𝑍2 +
4

𝑍
−

5

4
+

5𝑍

16
−

5𝑍2

64
+ ⋯   

ii) |z| < 2                  

4

𝑍−2
=

4

−2(1− 
𝑍

2
)
= −2 [1 + (

𝑍

2
) + (

𝑍

2
)
2

+ (
𝑍

2
)
3

+ ⋯] = −2 − 𝑧 −
𝑍2

2
+ ⋯    

−5

𝑍+4
 = same as (i)               

f(z) = −2 − 𝑧 −
𝑍2

2
+ ⋯ −

5

4
+

5𝑍

16
−

5𝑍2

64
+ ⋯ = −

13

4
−

11𝑍

16
− 

37𝑍2

64
+ ⋯                  

  

iii) |z| > 4                  
4

𝑍−2
= same as (i)                                  

−5

𝑍+4
=

−5

𝑍(1+ 
4

𝑍
)
= −

5

𝑍
[1 − (

4

𝑍
) + (

4

𝑍
)
2

− (
4

𝑍
)
3

+ ⋯] =
−5

𝑍
+

20

𝑍2 −
80

𝑍3 + ⋯      

f(z) = 
4

𝑍
+

8

𝑍2 +
16

𝑍3 + ⋯− 
5

𝑍
+

20

𝑍2 −
80

𝑍3 + ⋯  = − 
1

𝑍
+

28

𝑍2 −
64

𝑍3 + ⋯    

 

Example 7: Evaluate Laurent series for f(z) = 
1

1−𝑍
 in the annulus 0 < |z + 1| < 2.  

f(z) =   
1

1−𝑍
= 

1

2−(𝑍+1)
=

1

2[1−(
𝑍+1

2
)]

=
1

2
 [1 + (

𝑍+1

2
) + (

𝑍+1

2
)2 + ⋯]                                                                                          

 

Residue  

We discussed Laurent series expansion in the previous section.  

 f(z) = ∑ 𝑎𝑛(𝑧 − 𝑧0)
𝑛 = ∑ 𝑎𝑛(𝑧 − 𝑧0)

𝑛−1
𝑛=−∞ + ∑ 𝑎𝑛(𝑧 − 𝑧0)

𝑛∞
𝑛=0 = ∞

𝑛=−∞   

 …+
𝑎−3

(𝑍−𝑍0)3
+

𝑎−2

(𝑍−𝑍0)2
+

𝑎−1

𝑍−𝑍0
+ 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)

2 + ⋯   

The coefficient of Laurent series is given as 
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            an =  
1

2πi 
∮

𝑓(𝑍)

(𝑍−𝑍0)𝑛+1 𝑑𝑧. We also note                     

C                

            a-1 = 
1

2πi 
∮𝑓(𝑧)𝑑𝑧              (3.44)            

C                                                

The coefficient a-1 is defined as the residue of f(z) at the point of singularity z0. We also note 

residue of f(z) is simply the coefficient of 
1

𝑍−𝑍0
 in Laurent series. The importance of residue 

should be clear from equation (3.44) and will be fully utilized.   

  

 

 

3.5 – Poles and Zeros 

 
Points of Singularity and Poles of f(z)                                                 

We saw in Section 3.4 that when a function f(z) ceases to be analytic at a point z0, then z0 is 

referred to as a point of singularity and we say f(z) is singular at z0. If f(z) has a singular point at 

z0, but there are no other singular points of f(z) in some neighborhood of z0, then z0 is known as 

an isolated singular point. Essential singularity is when Laurent series contains infinite negative 

powers of z – z0. When Laurent series contains a finite number of negative powers of z – z0 as 

shown below, then z = z0 is defined as the pole of f(z).      

  

 f(z) = 
𝑎−𝑚

(𝑍−𝑍0)𝑚
+ …+

𝑎−3

(𝑍−𝑍0)3
+

𝑎−2

(𝑍−𝑍0)2
+

𝑎−1

𝑍−𝑍0
+ 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)

2 + ⋯ (3.45) 

  

If a-m ≠ 0 in equation (3.45), the pole at z0 is said to be of order m or repeated m times. A simple 

pole or a pole of order 1 is when all the coefficients of negative powers of (z – z0) in a Laurent 

series are zero, except a -1 as shown in equation (3.46). 

             

 f(z) = 
𝑎−1

𝑍−𝑍0
+ 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)

2 + ⋯    (3.46)  

  

Zeros of f(z)                                                                                                                                        

The function f(z) is said to have a zero at z0, if f(z0) = 0. Similar to poles, zeros can be simple or 

of order 1 or repeated m times or of order m. A function f(z) has a zero of order m at z= z0 if 

             

            

 f (z0) = 0,  f (1)(z0) = 0,  f (2)(z0) = 0, …. ,f (m -1)(z0) = 0,   but f (m)(z0) ≠ 0  

  

The poles and zeros have many different applications in science and engineering. Some such 

examples include Control Systems, Robotics, Filter Design, etc.  
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Example 8: Evaluate all the poles and the zeros of H(z) and indicate the order of each. 

a) H(z) = 
(𝑍2+4)(𝑍−1)2

𝑍2(𝑍2+6𝑍+25)3(𝑍+ 5)
   b) H(z) =

𝑍−1

𝑒𝑍 − 1
                                                                                       

  

 a) H(z) = 
(𝑍2+ 4)(𝑍−1)2

𝑍2(𝑍2+6𝑍+25)3(𝑍+ 5)
         

     Zeros: ±𝑖2 (𝑜𝑟𝑑𝑒𝑟 1 𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑒), 1 (𝑜𝑟𝑑𝑒𝑟 2)      

      Poles: 0 (𝑜𝑟𝑑𝑒𝑟 2), −3 ± 𝑖4 (𝑜𝑟𝑑𝑒𝑟 3), −5 (𝑜𝑟𝑑𝑒𝑟 1 𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑒) 

 b) H(z) =
𝑍−1

𝑒𝑍 − 1
          

    Zeros: 1 (𝑜𝑟𝑑𝑒𝑟 1 𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑒)            

     Poles: ±𝑖2𝑛𝜋 (𝑜𝑟𝑑𝑒𝑟 1 𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑒) 

 

 

3.6 – Evaluation of Residue 

                                                                                                                  
In Section 3.4 we saw Laurent series as 

 f(z) = ∑ 𝑎𝑛(𝑧 − 𝑧0)
𝑛 = ∑ 𝑎𝑛(𝑧 − 𝑧0)

𝑛−1
𝑛=−∞ + ∑ 𝑎𝑛(𝑧 − 𝑧0)

𝑛∞
𝑛=0 = ∞

𝑛=−∞   

 …+
𝑎−3

(𝑍−𝑍0)3
+

𝑎−2

(𝑍−𝑍0)2
+

𝑎−1

𝑍−𝑍0
+ 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)

2 + ⋯   

and defined residue of f(z) at z0 as         

  

a-1 = 
1

2πi 
∮𝑓(𝑧)𝑑𝑧                                 

C 

We also noted residue of f(z) to be the coefficient of 
1

𝑍−𝑍0
 . To evaluate residue of f(z), we must 

consider two cases. In Case 1, we consider f(z) to have a simple pole at z0. In Case 2, we 

consider f(z) to have a repeated pole of order m at z0. In either case the objective is to evaluate 

a-1.               

                       

Case 1 – Residue of f(z) with a Simple Pole                  

Using Laurent series, we have         

             

 f(z) = 
𝑎−1

𝑍−𝑍0
+ 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)

2 + ⋯    (3.47)  

                          

Multiplying both sides of equation (3.47) by (z – z0) results in     

             

 (𝑧 − 𝑧0)𝑓(𝑧) =  𝑎−1  + 𝑎0(𝑧 − 𝑧0) + 𝑎1(𝑧 − 𝑧0)
2 + 𝑎2(𝑧 − 𝑧0)

3 + ⋯    
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After substituting z = z0 on both sides, we have       

             

           

 𝑅𝑒𝑠 𝑓(𝑧)|𝑍=𝑍0
= lim

𝑍→𝑍0

(𝑍 − 𝑍0)𝑓(𝑧)      (3.48)  

  

This process is not so much different from partial fractions. We now consider an alternate 

method of evaluation residue of f(z) at z0.        

             

                          

An Alternate Approach:                                                                     

Consider f(z) represented as 𝑓(𝑍) =  
𝑁(𝑍)

𝐷(𝑍)
. Consider expanding D(z) in Taylor series at z0. 

 𝑓(𝑍) =  
𝑁(𝑍)

𝐷(𝑍)
 = 

𝑁(𝑍)

𝐷(𝑍0)+(𝑍− 𝑍0)𝐷′(𝑍0)+(
1

2!
)(𝑍−𝑍0)2𝐷′′(𝑍0)+⋯

     

                                  

Since f(z) has a simple pole at z = z0, this implies D(z0) = 0. Applying equation (3.48), we write 

             

 𝑅𝑒𝑠 𝑓(𝑧)|𝑍=𝑍0
= lim

𝑍→𝑍0

(𝑍 − 𝑍0)
𝑁(𝑍)

(𝑍− 𝑍0)𝐷′
(𝑍0)+(

1
2!

)(𝑍−𝑍0)
2
𝐷′′

(𝑍0)+⋯
          

   = lim
𝑍→𝑍0

𝑁(𝑍)

𝐷′
(𝑍0)+(

1
2!

)(𝑍−𝑍0)𝐷′′
(𝑍0)+⋯

       

             

           

 𝑅𝑒𝑠 𝑓(𝑧)|𝑍=𝑍0
=

𝑁(𝑍0)

𝐷′
(𝑍0)

        (3.49)  

  

Equations (3.48) or (3.49) can be used to evaluate the residue of f(z) at z0. The preference of 

using one or the other has to do with how the denominator is represented. If the denominator is 

already in factored form, perhaps equation (3.48) is easier to use. However if denominator is not 

written in factored form, but all the simple poles are known, perhaps equation (3.49) should be 

utilized. For example if D(z) = z4 - 1 with roots as -1, 1, -i, and i either of the equations can be 

used in finding the residues. However if D(z) = eZ - 1 (with roots as ±𝑖2𝑛𝜋), using equation 

(3.49) should be considered.          

                      

Case 2 – Residue of f(z) with a Repeated Pole of Order m                          

Using Laurent series, we have         

             

 f(z) =  
𝑎−𝑚

(𝑍−𝑍0)𝑚
+

𝑎−(𝑚−1)

(𝑍−𝑍0)(𝑚−1) + ⋯+
𝑎−2

(𝑍−𝑍0)2
+

𝑎−1

𝑍−𝑍0
+ 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)

2 + ⋯ 

             

           (3.50)  

                                  

Multiplying both sides of equation (3.50) by (z – z0)m results in  
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 (𝑧 − 𝑧0)
𝑚𝑓(𝑧) =  𝑎−𝑚  + 𝑎−(𝑚−1)(𝑧 − 𝑧0) + ⋯+ 𝑎−2(𝑧 − 𝑧0)

𝑚−2+ 𝑎−1(𝑧 − 𝑧0)
𝑚−1 +

                                                 𝑎0(𝑧 − 𝑧0)
𝑚 + 𝑎1(𝑧 − 𝑧0)

𝑚+1 + 𝑎2(𝑧 − 𝑧0)
𝑚+2 + ⋯    

                                                                                                   

If we substitute z = z0 at this stage, we obtain a-m. To evaluate a-1 we take the derivative of both 

sides with respect to z, (m-1) times and then let z = z0 on both sides. All the terms prior to a-1 

vanish and all the terms after a-1 contain (z - z0) to a power 1 or higher and as a result are 

eliminated when z = z0 is substituted. Hence we have      

             

            

 
𝑑(𝑚−1)

𝑑𝑍𝑚−1 (𝑧 − 𝑧0)
𝑚𝑓(𝑧)|𝑍=𝑍0

= (𝑚 − 1)! 𝑎−1 = (𝑚 − 1)! 𝑅𝑒𝑠 𝑓(𝑧)|𝑍=𝑍0
  or  

     

 𝑅𝑒𝑠 𝑓(𝑧)|𝑍=𝑍0
= 

1

(𝑚−1)!
  lim

𝑍→𝑍0

𝑑(𝑚−1)

𝑑𝑍𝑚−1 [(𝑧 − 𝑧0)
𝑚𝑓(𝑧)]    (3.51) 

 

Example 9: Evaluate the residues at all the poles of f(z). 

a) f(z) = 
(𝑍2+4)

𝑍(𝑍2+1)
   b) f(z) =

(𝑍+1)
2

𝑍(𝑍
2
−4𝑍+4)

                                                                                        

  

 a) f(z) = 
(𝑍2+4)

𝑍(𝑍2+1)
= 

(𝑍2+4)

𝑍(𝑍−𝑖)(𝑍+𝑖)
=

(𝑍2+4)

(𝑍3+𝑍)
            

      Poles: 0 (𝑜𝑟𝑑𝑒𝑟 1), −𝑖 (𝑜𝑟𝑑𝑒𝑟 1), 𝑖 (𝑜𝑟𝑑𝑒𝑟 1)      
      Using equation (3.48)         

      𝑅𝑒𝑠 𝑓(𝑧)|𝑍=0 =  lim
𝑍→0

𝑍𝑓(𝑧) = lim
𝑍→0

(𝑍2+4)

(𝑍2+1)
 = 4      

      𝑅𝑒𝑠 𝑓(𝑧)|𝑍=𝑖 = lim
𝑍→𝑖

(𝑍 − 𝑖)𝑓(𝑧) =  lim
𝑍→𝑖

(𝑍2+4)

𝑍(𝑍+𝑖)
 = −

3

2
     

      𝑅𝑒𝑠 𝑓(𝑧)|𝑍=−𝑖 = lim
𝑍→−𝑖

(𝑍 + 𝑖)𝑓(𝑧) =  lim
𝑍→−𝑖

(𝑍2+4)

𝑍(𝑍−𝑖)
 = −

3

2
     

             
      Using equation (3.49)         

       
𝑁(𝑧)

𝐷′(𝑍)
= 

(𝑍2+4)

(3𝑍2+1)
          

      𝑅𝑒𝑠 𝑓(𝑧)|𝑍=0 =  
𝑁(0)

𝐷′(0)
= 4         

      𝑅𝑒𝑠 𝑓(𝑧)|𝑍=𝑖 =  
𝑁(𝑖)

𝐷′(𝑖)
 = −

3

2
        

      𝑅𝑒𝑠 𝑓(𝑧)|𝑍=−𝑖 =  
𝑁(−𝑖)

𝐷′(−𝑖)
 = −

3

2
  

 b) f(z) =
(𝑍+1)

2

𝑍(𝑍
2
−4𝑍+4)

=
(𝑍+1)

2

𝑍(𝑍−2)
2               

      Poles: 0 (𝑜𝑟𝑑𝑒𝑟 1), 2 (𝑜𝑟𝑑𝑒𝑟 2)        

      Using equation (3.48)             
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      𝑅𝑒𝑠 𝑓(𝑧)|𝑍=0 =  lim
𝑍→0

𝑍𝑓(𝑧) = lim 
𝑍→0

(𝑍+1)2

(𝑍−2)2
 = 

1

4
      

      Using equation (3.51)           

                      𝑅𝑒𝑠 𝑓(𝑧)|𝑍=2 = 
1

(2−1)!
  lim

𝑍→2

𝑑

𝑑𝑧
[(𝑧 − 2)2𝑓(𝑧)] =lim

𝑍→2

𝑑

𝑑𝑧
[
(𝑍+1)

2

𝑍
]    

                            = lim 
𝑍→2

[
2𝑍(𝑍+1)−(𝑍+1)

2

𝑍2 ] =
3

4
       

 

Example 10: Evaluate residue of f(z) =
𝑍2+2𝑍+10

𝑒𝑍−1
  at z = 0.                                                                                     

  

 Using equation (3.49)               

 
𝑁(𝑧)

𝐷′(𝑍)
=

𝑍2+2𝑍+10

𝑒𝑍
           

 𝑅𝑒𝑠 𝑓(𝑧)|𝑍=0 = 
𝑁(0)

𝐷′(0)
= 10 

 

             

  

3.7 – Residue Theorem 

                                                                                                                  
Theorem 3.7  Residue Theorem                                       

Let C be a simple closed path in counterclockwise direction entirely in a simply closed domain 

D. If f(z) is analytic everywhere on and inside C except at a finite number of points of 

singularities at z1, z2,….,zm all located inside C, then      

     

 ∮ 𝑓(𝑧)𝑑𝑍 = 2𝜋𝑖 ∑ 𝑅𝑒𝑠 𝑓(𝑧)|𝑧𝑙
𝑚
𝑙=0        (3.52)       

 C                 

 

 

                     C 

                                                         z2                     …..….           zm 

            z1 

 

 

 

Figure 3.7 Closed Path Containing Singularity Points z1, z2,….,zm        
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Proof:              

Let us enclose each point of singularity 𝑍𝑙 with a circle 𝐶𝑙
∗ as shown in Figure 3.8. The radius of 

each circle is selected small enough such that all the m circles are inside curve C and are 

completely separated. These m circles (C1*, C2*, …. , Cm*) are in clockwise direction as shown. 

Let us now consider a cut from curve C to each of these m circles in both directions.  

                      

 

                      D 

                                B1    A1                      B2     A2                                            Bm     Am 

C                               z2                     …..….           zm 

              z1            

 

 

 

Figure 3.8 Closed Path C Containing Singularity Points z1, z2,….,zm         

             

                                                             

The function f(z) is analytic everywhere in the multiply connected region which bounded by C, 

Am, Cm*, Bm, …. , A2, C2*, B2, A1, C1* B1. Applying Cauchy’s Integral theorem and considering 

the line integrals due to the cuts cancel each out, we have  

  

  ∮𝑓(𝑧)𝑑𝑧 + ∮ 𝑓(𝑧)𝑑𝑧 + ⋯+ ∮𝑓(𝑧)𝑑𝑧 + ∮𝑓(𝑧)𝑑𝑧 = 0              ⇒   

 C               Cm*                   C2*         C1*       

  ∮𝑓(𝑧)𝑑𝑧 = − ∮𝑓(𝑧)𝑑𝑧 − ⋯− ∮𝑓(𝑧)𝑑𝑧 − ∮𝑓(𝑧)𝑑𝑧                  ⇒  

 C                    Cm*                   C2*              C1*      

  

  ∮𝑓(𝑧)𝑑𝑧 = ∮ 𝑓(𝑧)𝑑𝑧 + ⋯+ ∮𝑓(𝑧)𝑑𝑧 + ∮𝑓(𝑧)𝑑𝑧               (3.53)  

 C                Cm                     C2          C1 

In equation (3.53), Cm, … , C2, and C1 are the same as Cm*, …. , C2*, and C1* respectively but in 

counterclockwise direction. Using Laurent series and results obtained in Section 3.5, we write 

             

  ∮𝑓(𝑧)𝑑𝑧 =  2𝜋𝑖𝑅𝑒𝑠  𝑓(𝑧)|𝑧 = 𝑧𝑚 + ⋯+ 2𝜋𝑖𝑅𝑒𝑠  𝑓(𝑧)|𝑧 = 𝑧2 +  2𝜋𝑖𝑅𝑒𝑠  𝑓(𝑧)|𝑧 = 𝑧1                

 C                 

∮𝑓(𝑧)𝑑𝑍 = 2𝜋𝑖 ∑ 𝑅𝑒𝑠 𝑓(𝑧)|𝑧 = 𝑧𝑙
𝑚
𝑙=0              

 C                 

 

         

         

         

         

         C2*                                       Cm*  
 C1*            
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Example 11: Evaluate the following integrals. 

a) ∮
𝑍2+4𝑍+5

(𝑍−3)2(𝑍2+16)
𝑑𝑧  C: |z - 1| = 1.5  Counterclockwise            

C         

b) ∮
𝑧+2

𝑍2(𝑍−5)
𝑑𝑧   C: |z – i| = 1.5  Counterclockwise                                                                                     

C   

c) ∮
10

𝑍(𝑍3−8)
𝑑𝑧   C: |z - 1| = 1.5  Counterclockwise                        

C  

d) ∮
cos𝑍

𝑍3
𝑑𝑧   C: |z | = 5  Clockwise                        

C  

a) ∮
𝑍2+4𝑍+5

(𝑍−3)2(𝑍2+16)
𝑑𝑧 = 0                    

C               
poles at z = 3, 3, –i4, i4 are all outside C                                                                                                           

         

b) ∮
𝑧+2

𝑍2(𝑍−5)
𝑑𝑧                                          

C                                    

pole of order 2 at z =0 is inside C and simple pole at z = 5 is outside C  

∮
𝑧+2

𝑍2(𝑍−5)
𝑑𝑧  = 2𝜋𝑖 𝑅𝑒𝑠𝑓(𝑧)|𝑧 = 0         

   =  2𝜋𝑖 
1

(2−1)!
  lim

𝑍→0

𝑑

𝑑𝑧
[𝑧2 𝑍+2

𝑍2(𝑍−5)
] = 2𝜋𝑖 (

−7

25
) =

−14𝜋𝑖

25
                                       

c) ∮
10

𝑍(𝑍3−8)
𝑑𝑧  𝑧(𝑧3 − 8) = 0 ⇒    simple poles at: 𝑧 = 0, 2, 2𝑒𝑖2𝜋/3, 2𝑒𝑖4𝜋/3                                                                      

C                                    

simple poles at z = 0, 2 are inside C and simple poles at z = 2𝑒𝑖2𝜋/3 and 2𝑒𝑖4𝜋/3 are 

outside C               

∮
10

𝑍(𝑍3−8)
𝑑𝑧  = 2𝜋𝑖{[𝑅𝑒𝑠𝑓(𝑧)|𝑧 = 0 +[𝑅𝑒𝑠𝑓(𝑧)|𝑧 = 2}                                          

C                            

   = 2𝜋𝑖 [ lim 
𝑍→0

10

4𝑍3−8
 +  lim 

𝑍→2

10

4𝑍3−8
 ] = 2𝜋𝑖(−

5

4
 + 

5

12
) =  −

𝑖5𝜋

3
     

d) ∮
cos𝑍

𝑍3
𝑑𝑧                                           

C                                    

pole of order 3 at z =0 is inside C.        

                       

∮
cos𝑍

𝑍3 𝑑𝑧 =  −2𝜋𝑖[𝑅𝑒𝑠𝑓(𝑧)|𝑧 = 0] = −2𝜋𝑖 
1

(3−1)!
  lim

𝑍→0

𝑑2

𝑑𝑍2 [𝑧3 cos 𝑍

𝑍3 ] = −2𝜋𝑖 (−
1

2
) = 𝜋𝑖        

C                                                                                                                                                  

one should note,  
cos𝑍

𝑍3 = 
1

𝑍3 (1 −
𝑍2

2!
+

𝑍4

4!
+ ⋯) ⇒ (𝑅𝑒𝑠𝑓(𝑧)|𝑧 = 0) = −

1

2!
= −

1

2
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3.8 – Applications of Residue Theorem to Real Integrals 

                                                                                                               
In this section, we consider a few applications of Residue Theorem involving real integrals.  

 

I - Integral of a rational function of cos θ and sin θ from 0 to 2𝜋                                                      

Consider the following integral         

             

 ∫ 𝑅(cos 𝜃, sin 𝜃)𝑑𝜃
2𝜋

0
        (3.54)   

                         

The integrand is a rational function of cos θ and sin θ and the lower and upper limits of 

integration are from 0 to 2𝜋 respectively. To apply Residue Theorem, we define z as  

             

 z = eiθ          (3.55)  

                           

We note that as θ is varied from 0 to 2𝜋, the variable z as defined by equation (3.55) represents 

one complete revolution of a closed circle of radius 1 with center at the origin starting at z = 1. 

Furthermore cos θ, sin θ, and dθ in equation (3.54) can be written as    

             

 cos θ = 
1

2
(𝑒𝑖𝜃 + 𝑒−𝑖𝜃) =  

1

2
(𝑍 + 𝑍−1)         

 sin θ = 
1

2𝑖
(𝑒𝑖𝜃 − 𝑒−𝑖𝜃) =  

1

2𝑖
(𝑍 − 𝑍−1)      (3.56)  

 dθ = 𝑑𝑍/𝑖𝑒𝑖𝜃 =  𝑑𝑍/𝑖𝑍          

                          

Substituting equation (3.56) in equation (3.54) results in      

             

 ∮𝑓(𝑧)𝑑𝑧  C: |Z| = 1 in counterclockwise direction                                 

 C            

                         

Example 12: Evaluate the following integrals. 

∫
𝑑𝜃

10−6cos𝜃

2𝜋

0
           

∫
𝑑𝜃

10−6cos𝜃

2𝜋

0
= ∮

1

10−3(𝑍+𝑍−1)

1

𝑖𝑍
𝑑𝑧 =

1

−𝑖
 ∮

1

3𝑍2−10𝑍+3
𝑑𝑧 = 

1

−𝑖3
∮

1

𝑍2−(
10

3
)𝑍+1

𝑑𝑧   

                    C                                                                C            

𝑧2 − (
10

3
) 𝑧 + 1 = 0        ⇒     simple poles at: z = 1/3, 3                                                  

∫
𝑑𝜃

10−6cos𝜃

2𝜋

0
=

1

−𝑖3
2𝜋𝑖[𝑅𝑒𝑠𝑓(𝑧)|𝑧 =

1

3
]  =

−2𝜋

3
[lim
𝑍→

1

3

1

2𝑧−
10

3

] =
𝜋

4
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II – Improper integral of a rational function f(x) with degree of denominator at least 2 more than 

the degree of numerator. Furthermore denominator of f(x) contains no real roots.                                                      

Consider the following integral         

             

 ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
          (3.57)   

                         

The integrand is a rational function x and the lower and upper limits of integration are from −∞ 

to ∞ respectively. To apply Residue Theorem, consider the following integral with closed path C 

consisting of real axis from -r to +r and upper semicircle with radius r (curve C1) as shown in 

Figure 3.8. We consider r→ ∞ and as a result path C encloses the entire upper half plane. 

             

             

 ∮𝑓(𝑧)𝑑𝑧 =∫𝑓(𝑧)𝑑𝑧 + lim
𝑟→∞

∫ 𝑓(𝑧)𝑑𝑧
𝑟

−𝑟
        

 C             C1                (3.58)  

               = 2𝜋𝑖∑𝑅𝑒𝑠 𝑓(𝑧)|@𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑝𝑙𝑎𝑛𝑒      

                      

                                                                            Im   

                                        C1 

 

 

 

             

                                -r                                                           r         Re 

     Figure 3.8 Closed Path C 

                              

Referring to the integral on semicircle portion of equation (3.58), we have    

             

 |f(z)| < 
𝑀1

𝑟2
           

                      

Since degree of denominator is at least 2 more than the degree of numerator and M1 is a 

constant. We also have          

             

 L = length of semicircle = 𝜋𝑟         
                  

Using ML inequality, we have          

           

 | ∫ 𝑓(𝑧)𝑑𝑧 | <  
𝑀1

𝑟2 . 𝜋𝑟           

  C1                       

As r→ ∞, this integral approaches zero. This implies      
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 lim
𝑟→∞

∫ 𝑓(𝑧)𝑑𝑧
𝑟

−𝑟
 = ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞
= 2𝜋𝑖∑𝑅𝑒𝑠 𝑓(𝑧)|@𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑝𝑙𝑎𝑛𝑒    (3.59) 

   

                         

Example 13: Evaluate the following integrals. 

∫
𝑑𝑥

(𝑥2+2𝑥+2)(𝑥2+4)2

∞

−∞
  ⇒  𝑓(𝑧) =

1

(𝑍2+2𝑍+2)(𝑍2+4)2
   

Poles in the upper half plane: -1 + i (simple), i2 (order 2) 

𝑅𝑒𝑠 𝑓(𝑧)|𝑍=−1+𝑖 = lim
𝑍→−1+𝑖

(𝑧 + 1 − 𝑖)𝑓(𝑧) = lim 
𝑍→−1+𝑖

 
1

(𝑍+1+𝑖)(𝑍2+4)2
 = 

1

(32+𝑖24)
    

𝑅𝑒𝑠 𝑓(𝑧)|𝑍=𝑖2 = 
1

(2−1)!
  lim

𝑍→𝑖2

𝑑

𝑑𝑧
[(𝑧 − 𝑖2)2𝑓(𝑧)] = lim

𝑍→𝑖2

𝑑

𝑑𝑧
[

1

(𝑍2+2𝑍+2)(𝑍+𝑖2)2
]   

     = − lim
𝑍→𝑖2

[
(2𝑍+2)(𝑍+𝑖2)+2(𝑍2+2𝑍+2)

(𝑍2+2𝑍+2)
2
(𝑍+𝑖2)3

] =
20−𝑖16

(64)(−16+𝑖12)
              

∫
𝑑𝑥

(𝑥2+2𝑥+2)(𝑥2+4)2

∞

−∞
 = 2𝜋𝑖 [

1

(32+𝑖24)
+

20−𝑖16

(64)(−16+𝑖12)
 ] =

23𝜋

800
    

     

 

III – Improper integral of functions f(x) cos 𝜔𝑥 and f(x) sin 𝜔𝑥, where f(x) is a rational function 

with degree of denominator at least 2 more than the degree of numerator. Furthermore  

denominator of f(x) contains no real roots.                                                                                                                                 

Consider the following integrals         

             

 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝜔𝑥 𝑑𝑥
∞

−∞
           

           (3.60)   

 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝜔𝑥 𝑑𝑥
∞

−∞
          

                               

To simplify the problem, let us consider the following integral that contains both integrals of 

equation (3.60) as noted below.         

             

 ∫ 𝑓(𝑥) 𝑒𝑖𝜔𝑥 𝑑𝑥
∞

−∞
 = ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝜔𝑥 𝑑𝑥 + 𝑖

∞

−∞ ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝜔𝑥 𝑑𝑥
∞

−∞
   (3.61)     

                       

One may note that equation (3.61) represents Fourier Transform. We follow the same exact 

procedure as the previous case except replacing 𝑓(𝑧) by 𝑓(𝑧) 𝑒𝑖𝜔𝑧. Furthermore |𝑒𝑖𝜔𝑧| ≤ 1 and 

using ML inequality, we have          

          

 | ∫ 𝑓(𝑧)𝑒𝑖𝜔𝑧𝑑𝑧 | <
𝑀1

𝑟2 (1). 𝜋𝑟          

 C1               

                     

As r→ ∞, this integral approaches zero and we have      

             

           

 lim
𝑟→∞

∫ 𝑓(𝑧)𝑒𝑖𝜔𝑧𝑑𝑧
𝑟

−𝑟
 = ∫ 𝑓(𝑥)𝑒𝑖𝜔𝑥𝑑𝑥

∞

−∞
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          = 2𝜋𝑖 ∑ 𝑅𝑒𝑠 𝑓(𝑧)𝑒𝑖𝜔𝑧|@𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑝𝑙𝑎𝑛𝑒  (3.62)  

                           

Using Euler’s equation and equating both sides of equation (3.62) results in   

             

 ∫ 𝑓(𝑥) 𝑐𝑜𝑠𝜔𝑥 𝑑𝑥
∞

−∞
 = −2𝜋∑ 𝐼𝑚[𝑅𝑒𝑠 𝑓(𝑧)𝑒𝑖𝜔𝑧|@𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑝𝑙𝑎𝑛𝑒]    

            (3.63) 

 ∫ 𝑓(𝑥) 𝑠𝑖𝑛𝜔𝑥 𝑑𝑥
∞

−∞
 =    2𝜋∑𝑅𝑒[𝑅𝑒𝑠 𝑓(𝑧)𝑒𝑖𝜔𝑧|@𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑝𝑙𝑎𝑛𝑒]   

             

             

                     

Example 14: Evaluate the following integrals. 

∫
𝑥𝑠𝑖𝑛𝑥 𝑑𝑥

(𝑥2+1)(𝑥2+4)

∞

−∞
  ⇒  𝑓(𝑧)𝑒𝑖𝑧 =

𝑍𝑒𝑖𝑧

(𝑍2+1)(𝑍2+4)
   

Poles in the upper half plane:  i (simple), i2 (simple )      

𝑅𝑒𝑠 𝑓(𝑧)𝑒𝑖𝑧|𝑍=𝑖 = lim
𝑍→𝑖

(𝑧 − 𝑖)𝑓(𝑧) 𝑒𝑖𝑧 = lim 
𝑍→ 𝑖

 
𝑍𝑒𝑖𝑧

(𝑍+𝑖)(𝑍2+4)
 = 

𝑖 𝑒−1

𝑖2(3)
 =  

𝑒−1

6
                      

      𝑅𝑒𝑠 𝑓(𝑧)𝑒𝑖𝑧|𝑍=𝑖2 = lim
𝑍→𝑖

(𝑧 − 𝑖2)𝑓(𝑧) 𝑒𝑖𝑧 = lim 
𝑍→ 𝑖

 
𝑍𝑒𝑖𝑧

(𝑍2+1)(𝑍+𝑖2)
 = 

𝑖2 𝑒−2

(−3)𝑖4
 =  −

𝑒−2

6
   

                                         

∫
𝑥𝑠𝑖𝑛𝑥 𝑑𝑥

(𝑥2+1)(𝑥2+4)

∞

−∞
 =     2𝜋∑𝑅𝑒[𝑅𝑒𝑠 𝑓(𝑧)𝑒𝑖𝜔𝑧|@𝑝𝑜𝑙𝑒𝑠 𝑖𝑛 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑝𝑙𝑎𝑛𝑒] = 

𝜋

3
(𝑒−1 − 𝑒−2) 

             

                        

From example 14, we note ∫
𝑥𝑐𝑜𝑠𝑥 𝑑𝑥

(𝑥2+1)(𝑥2+4)

∞

−∞
 = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

CHAPTER 4 

 

Linear Algebra  

Matrix Theory 
 

Overview 

Section 4.1 begins with definition of matrices and basic operations. Determinant of a square 

matrix is discussed in Section 4.2. System of linear equations is covered in section 4.3 and 

solutions are obtained using Gaussian elimination method. Linear independence and 

dependence and rank of a matrix is presented in Section 4.4. In section 4.5, inverse of a matrix 

is discussed. Section 4.6 presents solving linear system of equations using inverse of a matrix 

and Cramer’s rule. Section 4.7 defines orthogonal matrices. 
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4.1 – Matrices and Basic Operations  

 
We begin with the definition of matrices and extend to other definitions related to matrices. The 

fundamental operations of matrices are also discussed in this section.    

Matrices  

A matrix is a rectangular array of elements, numbers, or functions defined as   

   

 A = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑚1

⋮     ⋮
𝑎𝑚2 …

⋮
𝑎𝑚𝑛

] = (𝑎𝑖𝑗)𝑚𝑛      (4.1) 

                    

Matrix A is an mxn matrix (m rows and n columns). This indicates the size of the matrix. The 

elements of the matrix are designated by 𝑎𝑖𝑗, where i is the row number and j is the column 

number. In other words 𝑎𝑖𝑗 is the element of the matrix which is in the i-th row and j-th column of 

the matrix.             

             

 A = [
−1 2
5 7

]    is a 2x2 matrix 

 B = [
6 9

−2 3
−7 4

]    is a 3x2 matrix 

 C = [
2 𝑥 −1

sin𝑥
0

4
𝑥3  

12
cos 𝑥

]  is a 3x3 matrix       

  

Square Matrix                     

If m = n, the matrix is referred to as an mxm square matrix or a matrix of order m.   

             

 A = [

𝑎11 𝑎12 … 𝑎1𝑚

𝑎21 𝑎22 … 𝑎2𝑚

⋮
𝑎𝑚1

⋮     ⋮
𝑎𝑚2 …

⋮
𝑎𝑚𝑚

] = (𝑎𝑖𝑗)𝑚𝑚     (4.2)  

     

The main diagonal of a square matrix is the one that contains elements a11, a22, … , amm. For 

example            

            

 A1 = [
3 2 −1
4 1 8
4 2 10

] A2 = [
1 0 0
0 1 0
0 0 1

]   A3 = [

1  2     4   1
1.5
9
11

3
4.7
−1

0
1

−3

8
1
3

]   

                                                             

A1 and A2 are square matrices of order 3 and A3 is a square matrix of order 4.                
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Row Vector and Column Vector                               

If m = 1, the matrix is referred to as a 1xn or simply a row vector. If n = 1, the matrix is referred 

to as a mx1 or simply a column vector.         

             

 Row Vector:   [𝑎11 𝑎12 ⋯ 𝑎1𝑛]     (4.3) 

 Column Vector:  [

𝑎11
𝑎21

⋮
𝑎𝑚1

]       (4.4)  

             

 Example of a row vector: [1 0 −2]       

           

 Example of a column vector: 

[
 
 
 
 

6
9

−1
3
10]

 
 
 
 

        

             

  

Basic Matrix Operations  

Equality                                                                                                                                          

Two mxn matrices A = (𝑎𝑖𝑗)𝑚𝑛 and B = (𝑏𝑖𝑗)𝑚𝑛 are equal if and only if    

             

 (𝑎𝑖𝑗)𝑚𝑛 = (𝑏𝑖𝑗)𝑚𝑛         (4.5)  

             

                            

Example 1: Given A = B, evaluate a, b, c 

      A = [
𝑎 + 3 4 10 + 𝑐

0 𝑏 − 2 9
] B = [

15 4 −5
0 12    9

]      

                                        

A = B    ⇒         

 a + 3 = 15 a = 12          

 b – 2 = 12 b = 14         

 10 + c = -5 c = -15 

             

             

Addition               

Given A = (𝑎𝑖𝑗)𝑚𝑛 and B = (𝑏𝑖𝑗)𝑚𝑛, then         

             

 C = A + B  (𝑐𝑖𝑗)𝑚𝑛 = (𝑎𝑖𝑗 + 𝑏𝑖𝑗)𝑚𝑛    (4.6)  

              

Example 2:                           

a) Evaluate A + B                         

b) Evaluate A + A                       

c) Evaluate A + C 
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A = [
1 3

−2 3
0 9

]  B = [
−4 2.3
8 1
5 3.4

]    C = [
1 2

−3 8
]                              

a) A + B = [
−3 5.3
6 4
5 12.4

]           

  

b) A + A = [
2 6

−4 6
0 18

]           

  

c) A + C    Cannot be added. A is 3x2 and C is 2x2     

  

 

Subtraction               

Given A = (𝑎𝑖𝑗)𝑚𝑛 and B = (𝑏𝑖𝑗)𝑚𝑛, then         

             

 C = A - B  (𝑐𝑖𝑗)𝑚𝑛 = (𝑎𝑖𝑗 − 𝑏𝑖𝑗)𝑚𝑛    (4.7)  

             

    

Example 3: Evaluate A - B          

                         

A = [
−3 3 7 −1
   4 2 3    8
−5 8 1 −6

]  B = [
0 1 −10   −5
2  6    20   −2
8 10   3     −1

]        

                   

 A – B = [
−3     2    17       4
   2 −4 −17    10
−13 −2 −2      −5

]        

             

  

Multiplication of a Matrix by a Scalar                        

Given A = (𝑎𝑖𝑗)𝑚𝑛 and a scalar k, then         

             

 kA =[

𝑘𝑎11 𝑘𝑎12 … 𝑘𝑎1𝑛

𝑘𝑎21 𝑘𝑎22 … 𝑘𝑎2𝑛

⋮
𝑘𝑎𝑚1

⋮     ⋮
𝑘𝑎𝑚2 …

⋮
𝑘𝑎𝑚𝑛

] = (𝑘𝑎𝑖𝑗)𝑚𝑛     (4.8)  

             

                               

Example 4: Evaluate -2A  

A = [
1 3 −4
2 −5    6

] 

 -2A = -2 [
1 3 −4
2 −5    6

] = [
−2 −6        8
−4 10   −12

]    
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Multiplication of Matrices                 

Let A be an mxn matrix and B be a nxp matrix, then C = AB can be evaluated and C is a mxp 

matrix and is defined as          

             

             

 C = AB  with i = 1, 2,…, m and  j = 1, 2, … , p     

            

 𝑐𝑖𝑗  = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑛
𝑘=1 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯+ 𝑎𝑖𝑛𝑏𝑛𝑗     (4.9)  

                               

The number of columns of matrix A(p) must be the same as the number of rows of matrix B(p) 

to multiply A by B. Furthermore it should be clear to evaluate 𝑐𝑖𝑗, the i-th row of matrix A is 

multiplied by the corresponding elements in the j-th column of matrix B as shown below  

             

 𝑐𝑖𝑗  = [𝑎𝑖1 𝑎𝑖2 ⋯ 𝑎𝑖𝑛]

[
 
 
 
𝑏1𝑗

𝑏2𝑗

⋮
𝑏𝑛𝑗]

 
 
 
 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯+ 𝑎𝑖𝑛𝑏𝑛𝑗  (4.10) 

We can conclude that matrix multiplication is not commutative. Also two square matrices are 

multiplied, they have to be of the same order.         

                    

Let A be an mxn matrix and B be a nxp matrix       

            

 A = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑚1

⋮     ⋮
𝑎𝑚2 …

⋮
𝑎𝑚𝑛

] = (𝑎𝑖𝑗)𝑚𝑛  B = 

[
 
 
 
𝑏11 𝑏12 … 𝑏1𝑝

𝑏21 𝑏22 … 𝑏2𝑝

⋮
𝑏𝑛1

⋮     ⋮
𝑏𝑛2 …

⋮
𝑏𝑛𝑝]

 
 
 

= (𝑏𝑖𝑗)𝑛𝑝  

             

                           

then AB can be written as 

 AB = [Ab1 Ab2 …. Abp]       (4.11)  

                           

where b1, b2, …., bp are column vectors of B matrix as shown below.    

             

             

 b1 = [

𝑏11

𝑏21

⋮
𝑏𝑛1

] b2 = [

𝑏12

𝑏22

⋮
𝑏𝑛2

] ….. bp = 

[
 
 
 
𝑏1𝑝

𝑏2𝑝

⋮
𝑏𝑛𝑝]

 
 
 

    (4.12)  

             

                         

Example 5: Evaluate AB  

a) A = [
1 3 −4
2 −5    6

] B = [
1 3

−2 3
0 9

] 
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 AB = [
1 3 −4
2 −5    6

] [
1 3

−2 3
0 9

]            

        = [
(1)(1) + (3)(−2) + (−4)(0) (1)(3) + (3)(3) + (−4)(9)
(2)(1) + (−5)(−2) + (6)(0) (2)(3) + (−5)(3) + (6)(9)

] = [
−5 −24
12    45

]  

  

b) A = [
1
2
5
]   B = [2 −4 3]       

                      

AB = [
1
2
5
] [2 −4 3] = [

2 −4 3
4 −8 6
10 −20 15

]       

  

c) A = [
1 3

−2 7
] B = [

1 3
−2 3
0 9

]         

                     

AB cannot be performed. A is a 2x2 and B is a 3x2. Number of columns of A is not the 

same as the number of rows of B.         

            

   

Transpose of a Matrix                                  

Let A be an mxn matrix as shown in equation (4.1). Transpose of A is denoted by AT and is 

defined as            

             

 AT = [

𝑎11 𝑎21 … 𝑎𝑚1

𝑎12 𝑎22 … 𝑎𝑚2

⋮
𝑎1𝑛

⋮     ⋮
𝑎2𝑛 …

⋮
𝑎𝑚𝑛

]       (4.13)  

    

 As can be observed the first column of A is the first row of AT, second column of A is the 

second row of AT and so on. Hence the rows and columns are exchanged between A and AT. 

From this definition it should be clear that         

             

 (AT)T = A         (4.14) 

                         

Example 6: Evaluate AT  

a) A = [
10 −5 −7
12 −9    16

]         

                        

AT = [
10
−5
−7

12
−9
16

]          

  

b) A = [
10
−2
5

]           
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AT = [10 −2 5]          

  

c)  A = [
2 −4 3
4 −8 6
10 −20 15

]         

                          

      AT = [
   2    4    10
−4 −8 −20
   3    6    15

]         

                                     

Conjugate of a Matrix                 

Let A be an mxn matrix. The conjugate of A is denoted by 𝐀 and is defined as   

             

 A = (𝑎𝑖𝑗)𝑚𝑛  

 𝐀 = (𝑎𝑖𝑗)𝑚𝑛         (4.15) 

This indicates the elements of A and 𝐀 are complex conjugate of each other. Furthermore if      

A = 𝐀, then A is a real matrix.                                                                                                         

    

Example 7: Evaluate 𝑨 

A = [
5 − 𝑖 𝑖3 −7 − 𝑖2
12 2 + 𝑖3   −1 + 𝑖

]         

  

 𝐀 = [
5 + 𝑖 −𝑖3 −7 + 𝑖2
12 2 − 𝑖3   −1 − 𝑖

]  

 

Tranjugate of a Matrix                 

Let A be an mxn matrix. The Tranjugate of A is defined as(𝐀)𝑇and is defined as   

             

 A = (𝑎𝑖𝑗)𝑚𝑛  

 (𝐀)𝑇 = (𝑎𝑗𝑖)𝑛𝑚         (4.16) 

We note that (𝐀)𝑇 = 𝐀𝑇.          

    

Example 8: Evaluate (𝑨)𝑇 

A = [
5 − 𝑖 𝑖3 −7 − 𝑖2
12 2 + 𝑖3   −1 + 𝑖

]         

  

(𝐀)𝑇 = 𝐀𝑇 = [
5 + 𝑖 12
−𝑖3 2 − 𝑖3

−7 + 𝑖2 −1 − 𝑖
]        
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Properties of Matrix Addition                                                                                                          

Let A, B, and C be mxn matrices and 0 designate a zero mxn matrix.    

            

 A + B = B + A     Commutative     

 (A + B) + C = A + (B + C)   Associative     

 A + 0 = A             Additive Identity 

 A + (-A) = 0     Additive Inverse   

 (A + B) T = AT + BT     Transpose of Sum    

             

                                                    

Properties of Matrix and Scalar Multiplication                                                                                                          

Let k1 and k2 be a scalars. Let A, B, and C be of the proper size so each operation can be 

performed. For example for addition matrices must be of the same exact size and for 

multiplication the columns of the first matrix must be equal to the rows of the second matrix.  

               

 (k1 + k2)A = k1A+ k2A               Distributive     

 k1(A + B) = k1A+ k1B               Distributive     

 (k1k2)A = k1(k2A) = k2(k1A)           

 1A = A   

 k1(AB) = (k1A)B = A(k1B) 

 AB ≠ BA     Commutative 

 A(BC) = (AB)C    Associative 

 A(B + C) = AB + AC    Distributive     

 (A + B)C = AC + BC    Distributive 

 (AB)T = BTAT     Transpose of Product  

 (k1A)T = k1AT           

 

It is already indicated that AB ≠ BA. One can make up an example that commutative law of 

multiplication applies. However as an example if A is 3x4 and B is 4x2, AB can be evaluated, 

but BA cannot even be calculated. Another rule of algebra that does not apply to linear algebra 

is AB = 0 does not suggest that either A = 0 or B = 0. In fact neither A nor B need to be a zero 

for the product to be a zero matrix.           

             

                    

Definition of Some Important Matrices  

Zero or Null Matrix                     

A zero or a null matrix is a matrix whose elements are all zero. This matrix is denoted by 0.Here 

are some examples           

             

 0 = [0 0 0]   

0 = [
0 0 0
0 0 0
0 0 0

]            

0 = [
0 0
0 0
0 0

]                 
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Diagonal Matrix                     

A square matrix whose elements above or below the main diagonal are all zero. Here are some 

examples  

   [
1 0
0 −2

]   

[
3 0 0
0 0 0
0 0 4

]             

                 

    

Scalar  Matrix                     

A diagonal matrix whose diagonal elements are the same scalar a. This matrix is denoted by S. 

Here are some examples  

   S = [
𝑎 0
0 𝑎

]   

S = [
𝑎 0 0
0 𝑎 0
0 0 𝑎

]            

                              

The pre-multiplication or post-multiplication of a matrix A by a scalar matrix when the matrix 

sizes allow it is the same as multiplying matrix A by a constant. For example            

            

 SA = [
𝑎 0
0 𝑎

] [
1 5 2
3 8 9

] = [
𝑎 5𝑎 2𝑎
3𝑎 8𝑎 9𝑎

] = aA  

AS = [
1 3 5
6 7 2

−1 −2 9
] [

𝑎 0 0
0 𝑎 0
0 0 𝑎

] = [
𝑎 3𝑎 5𝑎
6𝑎 7𝑎 2𝑎
−𝑎 −2𝑎 9𝑎

] = aA     

  

If A and S are square matrices of the same order, then      

             

 SA = AS = aA         (4.17)  

             

             

Identity or Unit  Matrix                     

A diagonal matrix whose diagonal elements are all 1. This matrix is denoted by I. Here are 

some examples 

   I = [
1 0
0 1

]   

I = [
1 0 0
0 1 0
0 0 1

]        

    

 I =[

1 0 0 0
0
0
0

1
0
0

0 0
1 0
0 1

]  
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Similar conclusions can be made as for the case of scalar matrix with a = 1. Furthermore if A 

and I are square matrices of the same order, then       

             

 IA = AI = A         (4.18)  

             

                  

Symmetric Matrix                     

Matrix A is symmetric if transpose of the matrix is the same as the matrix (AT = A or 𝑎𝑖𝑗 = 𝑎𝑗𝑖). 

Clearly this requires the matrix to be a square matrix. Here are some examples 

 A = [
   2 −6
−6    1

]      

A = [
    0 −3 4
−3  0  0
   4   0  0

]            

             

                            

Skew-Symmetric Matrix                                   

Matrix A is skew-symmetric if the transpose of the matrix is the same as the negative of matrix 

(AT = - A or 𝑎𝑖𝑗 = −𝑎𝑗𝑖). Clearly this requires the matrix to be a square matrix and the elements 

on the main diagonal to be zero. Here are some examples 

 A =  [

   0    2 −8    5
−2
   8
−5

   0
−4
   4

  4 −4
   0    0
   0    0

] 

A = [
    0  3 −4
−3   0   0
   4   0   0

]            

             

                          

Hermitian Matrix                                   

Matrix A is hermitian if transpose of the matrix is the same as the conjugate of matrix (AT =  𝐀 or 

𝑎𝑗𝑖 = 𝑎𝑖𝑗). Clearly this requires the matrix to be a square matrix and the elements on the main 

diagonal to be real. Here are some examples 

 A = [
   2 −3 + 𝑖2

−3 − 𝑖2    10
]      

A = [
    2  𝑖3 2 + 𝑖4
−𝑖3 11 0

   2 − 𝑖4   0 17
]           

             

                                          

Skew-Hermitian Matrix                                   

Matrix A is skew-hermitian if transpose of the matrix is the same as the negative of the 

conjugate of matrix (AT =  −𝐀 or 𝑎𝑗𝑖 = −𝑎𝑖𝑗). Clearly this requires the matrix to be a square 

matrix and the elements on the main diagonal to be pure imaginary or zero. Here are some 

examples            
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 A = [
   𝑖2 3 + 𝑖2

−3 + 𝑖2    0
]   

A = [
𝑖2 5 + 𝑖 𝑖5

−5 + 𝑖 𝑖11 −2
𝑖5   2 −𝑖17

]           

                     

               

Upper Triangular Matrix                                   

Square matrix A is an upper triangular matrix if all its elements below the main diagonal are 

zero (𝑎𝑖𝑗  = 0 for i > j). Here are some examples 

 A = [
2 5 −4
0 11   0
0   0 17

]            

            

 A =  [

10 2 −8    5
 0
 0
 0

0
0
0

      0 −14
   6    0
   0    4

]         

             

                

Lower Triangular Matrix                                   

Square matrix A is a lower triangular matrix if all its elements above the main diagonal are zero 

(𝑎𝑖𝑗 = 0 for i < j). Here are some examples 

 A = [
2 0
2 3

]             

            

 A =  [
−1    0 0
   2    9 0
   6 −3 8

]          

             

                   

Submatrices of a Matrix                    

Submatrix of a matrix is any matrix obtained by omitting some rows or columns of the matrix. An 

example of all submatrices of a 3x2 matrix A is shown below.     

             

 A = [
 10 8
−2 5
  4 9

]               

 Submatrices:           

 3x2  [
 10 8
−2 5
  4 9

]              

            

 3x1  [
10
−2
4

],  [
8
5
9
]          

             

 2x2  [
10 8
−2 5

] , [
10 8
4 9

] , [
−2 5
4 9

]       



103 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

             

 2x1  [
10
−2

],  [
−2
   4

] , [
10
4

] , [
8
5
] , [

5
9
] , [

8
9
]      

             

 1x2  [10 8], [−2 5], [4 9]       

             

 1x1  [10], [8], [−2], [5], [4], [9] 

  

              

 

4.2 – Determinants 

 
Given an nxn square matrix A         

              

 A = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

]        (4.19)  

     

the determinant of A is represented by det A or |A| and is a single number.   

             

             

 det A = |A| =  |

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

|      (4.20)  

  

Although the vertical lines in equation (4.2) are used to denote absolute value as well, this does 

not imply that det A is positive. Determinant of an nxn square matrix A is written as  

             

  det A = |A| =  ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝐶𝑖𝑗  i = 1, or 2, …, or n  (4.21) 

or 

  det A = |A| =  ∑ 𝑎𝑖𝑗
𝑛
𝑖=1 𝐶𝑖𝑗  j = 1, or 2, …, or n  (4.22)  

                       

The term 𝐶𝑖𝑗 is known as the cofactor of 𝑎𝑖𝑗and is equal to      

             

   𝐶𝑖𝑗 = (−1)𝑖+𝑗𝑀𝑖𝑗       (4.23)    

                          

𝑀𝑖𝑗 is called the minor of 𝑎𝑖𝑗 and is the determinant of remaining square submatrix of A after 

deleting the i-th row and the j-th column of A. Hence equations (4.21) and (4.22) can be written 

as 
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 det A = |A| =  ∑ (−1)𝑖+𝑗𝑎𝑖𝑗
𝑛
𝑗=1 𝑀𝑖𝑗  i = 1, or 2, …, or n  (4.24) 

or 

 det A = |A| =  ∑ (−1)𝑖+𝑗𝑎𝑖𝑗
𝑛
𝑖=1 𝑀𝑖𝑗  j = 1, or 2, …, or n  (4.25)  

                     

Equations (4.21) and (4.24) are referred to as evaluating det A by row expansion and equations 

(4.22) and (4.25) are referred to as evaluating det A by column expansion. To better understand 

these equations, let i = 1 in equations (4.21) and (4.24).      

             

 det A = 𝑎11𝐶11 + 𝑎12𝐶12+⋯+ 𝑎1𝑛𝐶1𝑛               (4.26)  

           = 𝑎11𝑀11−𝑎12𝑀12+⋯+ 𝑎1𝑛(−1)1+𝑛𝑀1𝑛       

As can be observed 𝑎11, 𝑎12, … , 𝑎1𝑛 are elements of the first row of A and 𝑀11, 𝑀12, … ,𝑀1𝑛 are 

the corresponding minors of these elements respectively. Similarly, let j = 2 in equations (4.22) 

and (4.25).            

             

 det A = 𝑎12𝐶12 + 𝑎22𝐶22+⋯+ 𝑎𝑛2𝐶1𝑛               (4.27)  

           = −𝑎12𝑀12+𝑎22𝑀22+⋯+ 𝑎𝑛2(−1)2+𝑛𝑀𝑛2 

As can be observed 𝑎12, 𝑎22, … , 𝑎2𝑛 are elements of the second column of A and 𝑀12,
𝑀22, … ,𝑀2𝑛 are the corresponding minors of these elements respectively. Clearly in computation 

of determinants one should expand about a row or column with most number of zeros.  

                   

We now consider determinants of some square matrices.      

                       

Determinant of 1x1 Matrix         

 A = [𝑎11]           

 det A = |A| = 𝑎11           

  

Determinant of 2x2 Matrix         

 A = [
𝑎11 𝑎12

𝑎21 𝑎22
]           

 using equation (4.24) and i = 1       

 det A = |A| = |
𝑎11 𝑎12

𝑎21 𝑎22
| = (−1)1+1𝑎11𝑀11 + (−1)1+2𝑎12𝑀12= 𝑎11𝑎22−𝑎12𝑎21 

 using equation (4.24) and i = 2       

 det A = |A| = |
𝑎11 𝑎12

𝑎21 𝑎22
| = (−1)2+1𝑎21𝑀21+(−1)2+2𝑎22𝑀22= −𝑎21𝑎12+𝑎22𝑎11 

 using equation (4.25) and j = 1       

 det A = |A| = |
𝑎11 𝑎12

𝑎21 𝑎22
| = (−1)1+1𝑎11𝑀11+(−1)2+1𝑎21𝑀21= 𝑎11𝑎22−𝑎21𝑎12  

             

 using equation (4.25) and j = 2       

 det A = |A| = |
𝑎11 𝑎12

𝑎21 𝑎22
| = (−1)1+2𝑎12𝑀12+(−1)2+2𝑎22𝑀22= −𝑎12𝑎21+𝑎22𝑎11 

As can be observed equations (4.24) and (4.25) provide the same results regardless of what 

values of i (1 or 2) or j (1 or 2) is selected.                     



105 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

Determinant of 3x3 Matrix         

 A = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]                   

using equation (4.24) and i = 1        

 det A = |A| = |

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

| = (−1)1+1𝑎11𝑀11 + (−1)1+2𝑎12𝑀12 + (−1)1+3𝑎13𝑀13 

             

           = 𝑎11 |
𝑎22 𝑎23

𝑎32 𝑎33
| − 𝑎12 |

𝑎21 𝑎23

𝑎31 𝑎33
| + 𝑎13 |

𝑎21 𝑎22

𝑎31 𝑎32
|     

             

           = 𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎12(𝑎21𝑎33 − 𝑎23𝑎31) + 𝑎13(𝑎21𝑎32 − 𝑎22𝑎31)    

One can use i = 2 or 3 in equation (4.24) or j = 1, or 2, or 3 in equation (4.25) and the results 

would be the same. As observed a 3x3 determinant breaks down into three 2x2 determinants. 

Similarly a 4x4 determinant breaks down into four 3x3 determinants and so on. 

 

Example 9: Evaluate det A  

a) A = [
5 4
5 −2

]  

det A = |
5    4
5 −2

| = (5)(-2) – (4)(5) = -30 

b) A = [
  2 −1 3
  4   5 1
−2   0 7

]  

det A = |
  2 −1 3
  4   5 1
−2   0 7

| =(2) |
5  1
0  7

| – (– 1) |
  4  1
−2  7

| + 3|
4   5

−2    0
| = (2)(35) + (28+2) + 3(10) 

     = 130 

             

  

From equations (4.24) and (4.25) we can make some simple observations. 

a) The determinant of a diagonal matrix is the product of the main diagonal elements. 

b) The determinant of an identity matrix is 1.    

c) The determinant of a triangular matrix is the product of the main diagonal elements.   

                      

|
2 0 0
0 5 0
0 0 3

| = 30     |

1 0 0 0
0 1 0 0
0
0

0 1 0
0 0 1

| = 1  |
10 −2 50
0 −5 0
0    0 3

| = – 150 

 

 

For (a) and (b), we can simply consider evaluating the determinant by expansion about any row 

or column. For (c), we can consider evaluating the determinant by expansion about the first 

column for an upper triangle and expansion about the first for a lower triangle.  
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Properties of Determinants   

1) Determinant of square matrix A is equal to determinant of AT ( |A|=|AT| ).  

2) If all elements of a row or a column of a square matrix A is zero, then det A = 0  

3) If all elements of one row or column of a square matrix A are multiplied by k, then the 

value of the determinant is multiplied by k. 

4) If all elements of a square matrix A are multiplied by k, then the value of the determinant 

is multiplied by kn.     

5) If elements of two rows or columns of a square matrix A are proportional or the same, 

the value of det A = 0.  

6) If any two rows or columns of a square matrix A are interchanged, the value of 

determinant of the new matrix is negative of determinant of original matrix A.    

7) If any row of a determinant is multiplied by a constant and added to the corresponding 

elements of any other row, the value of a determinant is not altered. Similarly if any 

column of a determinant is multiplied by a constant and added to the corresponding 

elements of any other column, the value of a determinant is not altered.  

8) If A and B are nxn square matrices, then det (AB)= (det A)(det B).    

                                              

We now consider some examples applied to each of these properties.  

 

Example 10:  

a) A =[
  2 −1  4
  3   2   1
−2   0 −1

] det A = 2(–2) – ( –1)(–3 + 2) + 4(4) = 11    

                          

AT =[
   2   3 −2
−1   2    0
  4   1 −1

] det AT = 2(–2) – ( 3)(1) – 2(–1 –8) = 11    

  

b) A = |
2   10 −2
0   0    0
4   1 −1

| Using equation (4.24) with i = 2 (expansion about the 2nd row) 

  

det A = 0 

c) A = [
  2 −1  4
  3   2   1
−2   0 −1

] det A = 11 from part (a)      

                         

B = [
  10 −5  20
  3   2   1
−2   0 −1

]  First row of A is multiplied by 5  ⇒   

                     
det B = 10(–2) – ( –5)(–3 + 2) + 20(4) = 55       

  

d) A = [
5 −4
3 −2

]  det A = 2       B = 5A = [
25 −20
15 −10

]    

                   

det B = – 250 + 300 = 50 = 2(5)2         
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e) A = [
  2 −1  3
  4  −2   6
−2    4 −1

]  rows 1 and 2 are proportional     

                   

det A = 2(2 – 24) + 1(– 4 + 12) + 3(16 – 4) = – 44 + 8 + 36 = 0    

  

f) A =[
  2 −1  4
  3   2   1
−2   0 −1

]  det A = 11 from part (a). Interchanging 1st and 3rd column. 

             

B =[
  4 −1  2
  1   2   3
−1   0 −2

]  expanding about the 3rd row      

                     

det B = –1(–3 – 4) + ( –2)(8 + 1) = 7 – 18 = –11       

      

g) A =[
  2 −1  4
  3   2   1
−2   0 −1

]  det A = 11 from part (a).                       

Replacing the 3rd row by multiplying the 1st row by 2 and adding it to the 3rd row.  

                        

B =[
2 −1  4
3   2   1
2 −2  7

]  det B = 2(14 + 2) –(–1)(21 – 2) + 4 (– 6 – 4) = 11  

  

h) A = [
  2 −5
−3   9

] and B = [
4 −2
3 −2

]        

                         

det A = 18 – 15 = 3  det B = – 8 + 6 = – 2  (det A)(det B) = – 6   

                   

AB = [
  2 −5
−3   9

] [
4 −2
3 −2

] = [
−7    6
15 −12

]    det (AB) = 84–90 = – 6 

            

            

            

            

            

            

           

4.3 – Systems of Linear Equations 

 
A linear set of equations with unknown x1, x2, … , xn and known constant coefficients 𝑎𝑖𝑗(i = 1, 2, 

…, m and j = 1, 2, … , n) and known constants 𝑏𝑖 (i = 1, 2, …, m) is described by  

 `            

 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1        

 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2      (4.28)  

 ……………………………………        

 𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚        

 



108 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

If all 𝑏𝑖 (i = 1, 2, …, m) are zero, the linear system of equations is called homogeneous. If there 

is at least one 𝑏𝑖  ≠ 0, the linear system of equations is referred to as nonhomogeneous. Clearly 

a homogeneous linear system of equations with n variables x1, x2, … , xn is satisfied if 𝑥𝑖 = 0 for 

all i = 1, 2, …, n. This solution is referred to as the trivial solution of linear system of 

homogeneous equations.          

               

Solution of equation (4.28) consists of x1, x2, … , xn that satisfy every single equation of equation 

(4.28). If there is no solution, then the linear system is called inconsistent. If there is at least one 

set of x1, x2, … , xn that satisfies equation (4.28), then the linear system is said to be consistent. 

It is possible that a consistent linear system can have infinite solutions.   

Let us consider some simple example of a linear system of equations with a unique solution, 

infinite solution, and no solution         

             

 a)  3x1 + 2x2 = 2            

   – 4x1 + 2x2 = –12   ⇒                                                                                                                                               

                   

      x1 = 2 and x2 = – 2  unique solution satisfying both equations   

            

 b)  x1 – 4x2 = 5                  

   – 2x1+ 8x2 = –10    ⇒         

             

      x1 = 4x2 + 5          select any value for evaluate x1, then evaluate x2  

     infinite solutions satisfying both equations   

            

 c)  x1 + 2x2 = 4               

     5x1 + 10x2 = –12   ⇒ no solutions exist      

             

              
Defining matrices A, x, and B as         

     

 A = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑚1

⋮     ⋮
𝑎𝑚2 …

⋮
𝑎𝑚𝑛

]  x =[

𝑥1
𝑥2

⋮
𝑥𝑛

]  B = [

𝑏1

𝑏2

⋮
𝑏𝑚

]   

                     

then equation (4.28) can be written in matrix form as      

             

 Ax = B          (4.29)  

                    

We also define the augmented matrix of the system which consists of matrix A and matrix B 

placed in the last column to the right of A as        

             

 [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑚1

⋮     ⋮
𝑎𝑚2 …

⋮
𝑎𝑚𝑛

   

𝑏1

𝑏2

⋮
𝑏𝑚

 ]       (4.30)  
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This augmented matrix simply represents equation (4.28) with 𝑎𝑖𝑗 as the coefficients of 𝑥𝑗 and 

 𝑏𝑖 as the known constants. Since the augmented matrix of equation (4.30) represents the linear 

system of equations and based on properties of equality, the following row operations can be 

performed 

1) Any row can be multiplied or divided by a nonzero constant. 

2) Location of any row can be interchanged with any other row. 

3) Any row can be replaced by multiplying any other row by a constant and adding it to that 

row.              

            

            

    

Gaussian Elimination Method  

Gaussian elimination method can be used to solve equation (4.28). The procedure is to use the 

augmented matrix of equation (4.30) and through row operations indicated above, write the 

augmented matrix in what is referred to as row echelon form. The main objective is by using row 

operations, transform the augmented matrix into a matrix with zeros below or above its diagonal 

elements. This is to transform the augmented matrix to a matrix resembling an upper or a lower 

triangular matrices. For the sake of understanding, let us assume that using row operations we 

have managed to transform an augmented matrix for a linear system of equations with three 

unknown variables 𝑥1, 𝑥2, and 𝑥3  into the following form       

             

          

 [
1 3 −2
0 1    3
0 0    1

    
−9
  5
 2

 ]    [modified A | modified B]  (4.31)  

             

                                   

This modified augmented matrix is known as row echelon form. Staring with the last row, we 

write             

 x3 = 2        x3 = 2    

 x2 + 3x3 = 5  ⇒ x2 + 3(2) = 5   x2 = –1    

 x1 + 3x2 – 2x3 = –9   x1 + 3(–1) – 2(2) = –9  x1 = –2      

                                                

Once the row echelon form is obtained, this last step is referred to a back substitution. 

Depending on if there is unique solution, infinite solutions, or no solution the row echelon form 

may appear different. Let us assume we are given m equations with m unknown.   

           

a) All zero rows are below any nonzero rows 

b) The first nonzero entry in any row is 1. This entry of 1 should appear with m – 1 zeros in 

the columns to the left in the same row. 

c) In the next row, the leading entry of 1 appears to the right of the 1 in the row above it. 

          

In the modified augmented matrix of equation (4.31), it is for convenient in computations to have 

the diagonal elements of modified A as 1. Certainly any nonzero constants in these positions 

serve the same purpose and the final solutions don’t change.   
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Example 11: Using Gaussian elimination method solve for x1, x2, and x3.        

                                

x1 + x2 + x3 = 2                                     

2x1 – x2 + x3 = –1                             

5x1 + x2 + 6x3 = 8           

                      

The augmented matrix is          

                             

[
1    1    1
2 −1    1
5    1    6

    
   2
 −1
    8

 ]           

                                                 

replace row 3 by multiplying row 1 by -5 and adding to row 3: (3) → −5(1) + (3)  ⇒             

replace row 2 by multiplying row 1 by -2 and adding to row 2: (2) → −2(1) + (2)  ⇒ 

                                 

[
1    1    1
0 −3 −1
0 −4    1

    
    2
 −5
 −2

 ]       (3) →  −
4

3
(2) + (3) ⇒ 

                         

[
1    1    1
0 −3 −1
0   0    7/3

    
    2
 −5

    14/3
 ]     (2) → −

1

3
(2) and (3) →

3

7
(3) ⇒   

                           

[
1    1    1
0    1 1/3
0   0    1

    
    2
 5/3
    2

 ] This is in row echelon form. Performing back substitution  ⇒ 

                                                   
x1 + x2 + x3 = 2                                            

x2 +(1/3)x3 = 5/3                                                

x3 = 2             
               

x3 = 2                                                

x2 = –(2/3) + 5/3 = 1                                  

x1 = – 2 – 1 + 2 = – 1           

                                                 

                                

The problem in example 11 has a unique solution. We now consider two examples, one with 

infinite solutions and one with no solution.        

             

                                                                               

Example 12: Using Gaussian elimination method solve for x1, x2, and x3.      

  

x1 + x2 + x3 = 2                                                          

2x1 – x2 + x3 = –1                             

4x1 + x2 + 3x3 = 3           

                                                         

The augmented matrix is          
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[
1    1    1
2 −1    1
4    1    3

    
   2
 −1
    3

 ]           

                                   

replace row 3 by multiplying row 1 by -4 and adding to row 3:         (3) → −4(1) + (3) ⇒             

replace row 2 by multiplying row 1 by -2 and adding to row 2: (2) → −2(1) + (2)  ⇒ 

                                 

[
1    1    1
0 −3 −1
0 −3 −1

    
    2
 −5
 −5

 ]       (3) →  −1(2) + (3) ⇒ 

                         

[
1    1    1
0 −3 −1
0   0    0

    
    2
 −5
    0

 ]       (2) → −
1

3
(2)   ⇒ 

                   

[
1    1    1
0    1 1/3
0   0    0

    
    2
 5/3
    0

 ]            This is in row echelon form. Performing back substitution ⇒ 

                      
x1 + x2 + x3 = 2                                            

x2 +(1/3)x3 = 5/3                                                

                                       

The problem in example 12 has infinite solutions. In the above two equations, any arbitrary 

value for x1 can be selected and x2 and x3 can then be evaluated.     

             

                                                

Example 13: Using Gaussian elimination method solve for x1, x2, and x3.      

  

x1 + x2 + x3 = 2                       

2x1 – x2 + x3 = –1                             

4x1 + x2 + 3x3 = 5           

                      

The augmented matrix is          

                             

[
1    1    1
2 −1    1
4    1    3

    
   2
 −1
    5

 ]           

                                   

replace row 3 by multiplying row 1 by -4 and adding to row 3: (3) → −4(1) + (3)  ⇒             

replace row 2 by multiplying row 1 by -2 and adding to row 2: (2) → −2(1) + (2)  ⇒ 

                                 

[
1    1    1
0 −3 −1
0 −3 −1

    
    2
 −5
 −3

 ]       (3) →  −1(2) + (3) ⇒ 
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[
1    1    1
0 −3 −1
0   0    0

    
    2
 −5
    2

 ]  The last two rows of the modified augmented matrix  ⇒ 

                                         

– 3x2 – x3 = –5                                        

– 3x2 – x3 = –3            

   

The problem in example 13 has no solution. This is clear from the above two equations or can 

be observed from the last row of the modified augmented matrix indicating    

                                

0x1 + 0x2 + 0x3 = 2   or   0 = 2       

             

                                 

Example 14: Using Gaussian elimination method solve the following homogenous equations for 

x1, x2, and x3.              

  

3x1 – 2x2 + 5x3 = 0                        

x1 + 2x2 – x3 = 0                              

             

                      

The augmented matrix is          

                             

[
3 −2
1    2

   5 0
−1 0

 ]       (1) ↔ (2)   ⇒             

                            

[
1    2
3 −2

−1 0
   5 0

 ]                           (2) → −3(1) + (2)  ⇒ 

                

[
1    2
0 −8

−1 0
   8 0

 ]       (2) → −
1

8
(2)  ⇒     

                      

[
1  2
0  1

−1 0
−1 0

 ]                     ⇒  

x1 + 2x2 – x3 = 0                       

x2 – x3 = 0             ⇒ 
                     
x2 = x3  and  x1 = – x2                  

It can be observed that even though problem of example 14 is homogeneous, it has other 

solutions besides the trivial solution discussed earlier (x1 = 0, x2 = 0, x3 = 0). In this example x2 

and x3 are equal and x1 = – x2. This provides infinite solutions.            
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4.4 – Linear Independence and Dependence and  

 Rank of a Matrix  

 
Linear Independence and Dependence  

Let us assume we are given m row vectors (1xn) or m column vectors (nx1) as shown below 

            

 v1 = [𝑣11 𝑣12 … 𝑣1𝑛]        

 v2 = [𝑣21 𝑣22 … 𝑣2𝑛]        

 ………………………….       (4.32)  

 vm = [𝑣𝑚1 𝑣𝑚2 … 𝑣𝑚𝑛]          

                            

or            

 v1 = [

𝑣11

𝑣21

⋮
𝑣𝑛1

]   v2 = [

𝑣12

𝑣22

⋮
𝑣𝑛2

]      ……………….      vm = [

𝑣1𝑚

𝑣2𝑚

⋮
𝑣𝑛𝑚

]         (4.33)  

                              

Vectors v1, v2, …, vm are linearly dependent if and only if for given scalars k1, k2, … , km not all 

zero, the following equation is satisfied.        

             

 k1v1 + k2v2+ …+ kmvm = 0       (4.34)  

                     

Similarly vectors v1, v2, …, vm are said to be linearly independent if and only if the only way for 

equation (4.34) to be satisfied is to have k1 = k2 = … = km = 0.       

             

                            

As an example the following row vectors v1, v1, v3 are linearly dependent.     

             

 v1 = [−2  1       4 −8]         

 v2 = [   1  0       2 −3]         

 v3 = [−1  2     14 −25]         

                                                  

The linear combination of these three vectors k1v1 + k2v2+ k3v3 is a 1x4 zero vector for k1 = 2,   

k2 = 3, k3 = – 1.           

             

 2v1 + 3v2 – v3 = 2[−2  1       4  −8] + 3[ 1    0       2  −3] − [−1 2    14 −25]  
             = [ 0 0    0 0]        

                           

Below is an example of three column vectors that are linearly independent.    

             

 v1 =[
1
5
4
],     v2 =[

   2
−2
   0

],     v3 =[
3
1
3
]  k1v1 + k2v2+ k3v3 ≠ [

0
0
0
]   

                             

In other words, the only way the linear combination of these three vectors results in a column 

vector of 0 is if k1 = 0, k2 = 0, and k3 = 0.                  
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As can be observed from the examples, it is not obvious to detect if a given set of row vectors or 

column vectors are linearly independent or dependent. However after rank of a matrix is 

defined, more methodical approaches are used for this purpose.     

             

                   

Rank of a Matrix  

Rank of an mxn matrix A is denoted by rank A. The rank of A is the maximum number of 

linearly independent row vectors of A. It can also be stated that the rank of A is the maximum 

number of linearly independent column vectors of A. This indicates that rank of A is the same as 

rank of AT. Poof of rank A = rank AT is left as an exercise. We proceed to evaluate rank of a 

matrix using two different method: 1) Row Reduction and 2) Determinant.    

             

                

Evaluating Rank A by Row Reduction            

Using row reduction and after transforming a given matrix to row echelon form, the rank of 

matrix can be determined by examining the number of nonzero rows. As an example consider 

matrix A whose rows consists of v1, v2, and v3 examined in an earlier example where we found 

out the three row vectors were linearly dependent.        

             

 A = [
−2  1    4
   1  0    2
−1  2   14

    
  −8
 −3

   −25
 ]                     (1) ↔ (2)       ⇒              

                  [
1  0    2

−2  1    4
−1  2  14

    
  −3
 −8

  −25
 ]             (2) → 2(1) + (2) & (3) → (1) + (3) ⇒  

        [
1 0    2
0 1    8
0 2   16

    
  −3
 −14
−28

 ]     (3) → −2(2) + (3) ⇒ 

                       [
1 0   2
0 1   8
0 0   0

    
−3
−14
    0

 ]                     

                     

The rank of matrix A is 2 which is equal to the number of nonzero rows after A is transformed to 

row echelon form.            

                          

We now consider AT.           

             

 AT = [

−2 1 −1
  1 0 2
  4
−8

2
−3

14
−25

]                     (1) ↔ (2)  ⇒                                          

        [

   1 0 2
 −2 1 −1
  4
−8

2
−3

14
−25

]    (2) → 2(1) + (2) & (3) → −4(1) + (3) & (4) → 8(1) + (4) ⇒   
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       [

 1    0    2
 0    1    3
 0
0

   2
−3

   6
−9

]  (3) → −2(2) + (3) & (4) → 3(2) + (4)   ⇒    

       [

 1 0 2
 0 1 3
 0
0

0
0

0
0

]           

The rank of matrix AT is 2 which is equal to the number of nonzero rows after AT is transformed 

to row echelon form. As expected rank of A is the same as rank of AT.     

             

                             

Evaluating Rank of A Using Determinant of A                                                                    

Let A be an mxn matrix. The rank of A is k, if and only if there exists at least one kxk submatrix 

of A whose determinant is not zero, while every square submatrix of A with the order greater 

than k has a determinant equal to zero. This implies that rank of an mxm square matrix A is m, if 

det A is not zero. In the previous two examples, it was noted that      

             

 rank A = 𝑟𝑎𝑛𝑘 [
−2  1    4
   1  0    2
−1  2   14

    
  −8
 −3

   −25
 ] = rank [

1 0   2
0 1   8
0 0   0

    
−3
−14
    0

 ] = 2    

                    

Rank of a matrix is the same as the rank of row echelon form of that matrix. It is true that row 

operation changes the determinant of submatrices of a matrix to a zero value. Hence when an 

entire row in a row echelon form becomes zero such as in the example shown, the rank of the 

original Matrix is one less than the highest order. If two rows row in a row echelon form become 

zero, the rank of the original Matrix is two less than the highest order and so on.    

             
                         
Example 15: Evaluate rank A. 

     A =[
 1 −1  2
 3   1   1
1   3 −3

]   

 det A = 1(– 3– 3) – (– 1)( –9–1) + 2(9 – 1) =– 6 – 10 + 16 = 0  ⇒ rank A ≠ 3 

             

 Consider the 2x2 submatrix [
1 −1
3    1

] of A and note det [
1 −1
3    1

] = |
1 −1
3    1

| ≠ 0. Hence 

 rank A = 2           
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4.5 – Inverse of a Matrix        

 

                
Given an nxn matrix A, another nxn matrix B, and an nxn identity matrix I such that  

                    

 AB = BA = I           (4.35)   

                             

then matrix B is defined as the inverse of matrix A and is denoted by A–1. Hence we write 

             

 AA–1 = A–1A = I         (4.36)  

               

Matrix A is said to be nonsingular if its inverse exist and singular if matrix A does not have an 

inverse. The term – 1 in A–1 should not be mistaken for power or exponent. It is simply a 

notation. The inverse of an mxm matrix exists, if and only if the rank of the matrix in m or det A 

≠ 0 . This is based on our discussion in the previous section of rank of A and using determinant 

of a matrix to evaluate it. We now present two methods for evaluating A–1.    

             

                      

Evaluating A–1 Using Row Operations-Reductions           

This method is based on Section 4.3 and is very much similar to Gaussian elimination method. 

The objective is to evaluate B such that AB = I. Since the unknown is B, we set up an mx2m 

augmented matrix consisting of the known matrix A and the known identity matrix I as shown 

below.              

             

 [ A | I ]            

                                                 

Using row operations and reductions as described in Section 4.3, we transform the augmented 

matrix to             

             

 [ I | C ]            

                                                             

The Matrix C is the same as the unknown matrix B which is A–1. Let us consider an example. 

             

                                                      

Example 16: Evaluate A–1. 

     A =[
 2 −1  2
 3   2   1
−2   0 −1

]   

             

 [
2 −1    2
3    2    1

−2    0 −1
     

1 0 0
0 1 0
0 0 1

]     (1) ↔ (3)   ⇒       

                                              

 [
−2  0   −1
   3  2     1
   2 −1     2

     
0 0 1
0 1 0
1 0 0

]     (1) → −
1

2
(1)  ⇒ 
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 [
1  0   1/2
3  2     1
2 −1     2

     
0 0 −1/2
0 1 0
1 0 0

]        (2) → −3(1) + (2) & (3) → −2(1) + (3) ⇒ 

           

 [
1  0   1/2
0  2 −1/2
0 −1    1

     
0 0 −1/2
0 1    3/2
1 0 1

]            (3) →
1

2
(2) + (3) ⇒ 

             

 [

1 0   1/2
0 2 −1/2
0 0   3/4

     

0 0 −1/2
0 1    3/2
1 1/2    7/4

]           (2) →
1

2
(2) & (3) →

4

3
(3) ⇒ 

             

 [
1 0   1/2
0 1 −1/4
0 0   1

     

0 0 −1/2
0 1/2    3/4

4/3 2/3   7/3
]      (2) →

1

4
(3) + (2) & (1) → −

1

2
(3) + (1) ⇒  

             

 [
1 0 0
0 1 0
0 0 1

     

−2/3 −1/3 −5/3
   1/3    2/3  4/3
   4/3     2/3   7/3

]            ⇒ 

             

 A–1 = [

−2/3 −1/3 −5/3
 1/3   2/3   4/3
4/3   2/3   7/3

]         

             

 This answer can be easily verified by confirming AA–1 = I or A–1A = I.   

             

                      

Evaluating A–1 Using Determinant and Adjoint of A           

Before evaluating the inverse of a matrix, we define adjoint of a matrix as    

             

                                               

 Adj A = [𝐶𝑜𝑓 𝑨]𝑇 = [

𝐶11 𝐶12 … 𝐶1𝑛

𝐶21 𝐶22 … 𝐶2𝑛

⋮
𝐶𝑛1

⋮     ⋮
𝐶𝑛2 …

⋮
𝐶𝑛𝑛

]

𝑇

  =  [

𝐶11 𝐶21 … 𝐶𝑛1

𝐶12 𝐶22 … 𝐶𝑛2

⋮
𝐶1𝑛

⋮     ⋮
𝐶2𝑛 …

⋮
𝐶𝑛𝑛

]    (4.37)       

             

                                 

Cofactor Cij of the element aij was defined in Section 4.2. The method evaluating A–1 is 

presented in the following theorem.          

             

                                            

Theorem 4.1                                                                                 

Let A be an nxn nonsingular matrix as shown        

             

 A = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

]                   
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Then A–1 is             

            

 A–1 = 
[𝑪𝒐𝒇 𝑨]𝑻

|𝑨|
= 

𝑨𝒅𝒋 𝑨

|𝑨|
        (4.38)   

             

                                                                                               

Proof:              

The proof of this theorem is based on using the procedure for row expansion of equation (4.21) 

in Section 4.2 in evaluating determinant as well as recognizing that sum of product of elements 

of any row of A and the corresponding cofactors of any other row of A is zero. In other words we 

have              

              

 a11C11 + a12C12 + … + a1nC1n = |A|       

 a21C21 + a22C22 + … + a2nC2n = |A|        

 ……………………………………..      (4.39)  

 an1Cn1 + an2Cn2 + … + annCnn = |A|        

              

             

 ai1Cj1 + ai2Cj2 + … + ainCjn = 0   𝑖 ≠ 𝑗 𝑖 = 1, 2, … , 𝑛 & 𝑗 = 1, 2,… , 𝑛 (4.40)  

                      

As indicated, equation (4.39) is simply determinant of A using row expansion. Clearly any of the 

n-rows can be used. Equation (4.40) is true because in evaluating Cj1, Cj2,…,Cjn the elements of 

the i-th row of A (ai1, ai2,…,ain) are utilized again. Since ai1, ai2,…,ain are also the coefficients in 

equation (4.40), this is simply the same as finding the determinant of a matrix with two identical 

rows. The determinant of a matrix with two identical row is zero. Using equations (4.39) and 

(4.40), we can write           

               

           

 [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

] [

𝐶11 𝐶21 … 𝐶𝑛1

𝐶12 𝐶22 … 𝐶𝑛2

⋮
𝐶1𝑛

⋮     ⋮
𝐶2𝑛 …

⋮
𝐶𝑛𝑛

] = [

|𝐴| 0 … 0

0 |𝐴| … 0
⋮
0

⋮     ⋮
0 …

⋮
|𝐴|

]     (4.41)   

              

                                  

It is observed that A is post multiplied by adoint of A or [Cof A]T in equation (4.41). Hence we 

have              

              

 A Adj A = |A| I          ⇒ 

            

 𝑨 [
𝑨𝒅𝒋 𝑨

|𝑨|
] = 𝑰              (4.42)  

              

Equation (4.42) implies           

              

 A–1 = 
[𝑪𝒐𝒇 𝑨]𝑻

|𝑨|
= 

𝑨𝒅𝒋 𝑨

|𝑨|
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Example 17: Evaluate A–1. 

     A =[
 2 −1  2
 3   2   1
−2   0 −1

]           

  

 |A| = –2(–1 – 4) –1(4 + 3) = 3 

 Adj A = [Cof A]T = 

[
 
 
 
 
 

−

|
2       1
0    −1

| − |
   3    1
−2 −1

|     |
   3    2
−2    0

|

|
−1    2
0 −1

|     |
2 2

−2 −1
| − |

2 −1
−2    0

|

|
−1     2
2     1

| − |
2        2
3        1

|     |
2    −1
3       2

|]
 
 
 
 
 
𝑇

= [
−2 1 4
−1 2 2
−5 4 7

]

𝑇

  

             

 Adj A = [
−2 −1 −5
   1    2    4
   4    2    7

] 

 A–1 = 
[𝑪𝒐𝒇 𝑨]𝑻

|𝑨|
= 

𝑨𝒅𝒋 𝑨

|𝑨|
 = (1/3) [

−2 −1 −5
   1    2    4
   4    2    7

] = [

−2/3 −1/3 −5/3
   1/3    2/3    4/3
   4/3    2/3    7/3

] 

 Once again the answer can be easily verified by confirming AA–1 = I or A–1A = I.    

             

                                   

In many applications one is required to evaluate inverse of a 2x2 matrix. The method of 

determinant and adjoint is now applied for this particular case.     

             

 A–1 = 
[𝑪𝒐𝒇 𝑨]𝑻

|𝑨|
= 

𝑨𝒅𝒋 𝑨

|𝑨|
 = 

1

|𝐴|
[
   𝑎22 −𝑎21

−𝑎12    𝑎11
]
𝑇

      

             

 A–1 = 
1

(𝑎11𝑎22−𝑎12𝑎21)
[
   𝑎22 −𝑎12

−𝑎21    𝑎11
]                 (4.43)  

                       

In summary, the inverse of a 2x2 matrix is obtained by changing the position of diagonal 

elements, changing the sign of non-diagonal elements, and dividing each element by the 

determinant of the matrix.           

             

                                  

Example 18: Evaluate A–1. 

     A = [
3 −4
1 − 2

]           

 |A| = –6 + 4 = –2 

      A–1 = (
  1

−2
) [

−2 4
−1 3

] = [
1 −2

1/2 −3/2
]        
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Some Properties of Inverse of a Matrix                  

a) Inverse of a nonsingular diagonal matrix                         

             

 A = [

𝑎11 0 … 0
0 𝑎22 … 0
⋮
0

⋮     ⋮
0 …

⋮
𝑎𝑛𝑛

]                    

              

 A–1 = [

1/𝑎11 0 … 0

0 1/𝑎22 … 0
⋮
0

⋮     ⋮
0 …

⋮
1/𝑎𝑛𝑛

]                (4.44)   

                                  

b) Inverse of an inverse          

              

 (A–1)–1 = A         (4.45)  

                      

c) Inverse of a product           

              

 (AB)–1 = B–1A–1          (4.46)   

                                       

This property can be extended to n matrices.       

              

 (𝑨𝟏𝑨𝟐 … 𝑨𝒏)−1 = 𝑨𝒏
−𝟏 … 𝑨𝟐

−𝟏𝑨𝟏
−𝟏       (4.47)       

              

                                

              

              

               

               

4.6 – Solving Linear System of Equations Using Inverse of a 

    Matrix and Cramer’s Rule       

              

                                                                                                 
A linear set of n equations with n unknown x1, x2, … , xn and known constant coefficients 𝑎𝑖𝑗(i = 

1, 2, …, n and j = 1, 2, … , n) and known constants 𝑏𝑖 (i = 1, 2, …, n) is described by  

             

 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1        

 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2      (4.48)  

 ……………………………………        

 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛        

                                  

Equation (4.48) can be written as          

              

 AX = B          (4.49)  
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where              

              

 A = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

], X = [

𝑥1
𝑥2

⋮
𝑥𝑛

], B = [

𝑏1

𝑏2

⋮
𝑏𝑛

]   (4.50)  

                     

Pre-multiplying both sides of equation (4.49), we have               

              

  X = A–1B         (4.51)  

              

                         

Theorem 4.2                                                                                 

Given AX = B as in equation (4.49) and if det A = |A| ≠ 0, the unknown variables x1, x2, … , xn is 

given by             

              

 x1 = 
|𝑨𝟏|

|𝑨|
, x2 = 

|𝑨𝟐|

|𝑨|
, … , xn = 

|𝑨𝒏|

|𝑨|
      (4.52)                       

where              

 A1 = [

𝑏1 𝑎12 … 𝑎1𝑛

𝑏2 𝑎22 … 𝑎2𝑛

⋮
𝑏𝑛

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

], A2 = [

𝑎11 𝑏1 … 𝑎1𝑛

𝑎21 𝑏2 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑏𝑛 …

⋮
𝑎𝑛𝑛

], …………….   

              

 An = [

𝑎11 𝑎12 … 𝑏1

𝑎21 𝑎22 … 𝑏2

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑏𝑛

]       (4.53)  

                                                                                                      

Proof:              
The proof of this theorem is based on using equation (4.51) and utilizing the procedure outlined 

in the previous section in evaluating inverse of a matrix.      

             

 [

𝑥1
𝑥2

⋮
𝑥𝑛

] = 
1

|𝑨|
 [

𝐶11 𝐶21 … 𝐶𝑛1

𝐶12 𝐶22 … 𝐶𝑛2

⋮
𝐶1𝑛

⋮     ⋮
𝐶2𝑛 …

⋮
𝐶𝑛𝑛

] [

𝑏1

𝑏2

⋮
𝑏𝑛

]          (4.54)  

                                                                                                                                            

Setting the two sides of equation (4.54) equal and remembering column expansion for 

evaluating determinants of A1, A2, … , An we have         

            

 𝑥1 = 
1

|𝑨|
 [𝑏1𝐶11 + 𝑏2𝐶21 + ⋯+ 𝑏𝑛𝐶𝑛1]  = 

|𝑨𝟏|

|𝑨|
       

 𝑥2 = 
1

|𝑨|
 [𝑏1𝐶12 + 𝑏2𝐶22 + ⋯+ 𝑏𝑛𝐶𝑛2]  = 

|𝑨𝟐|

|𝑨|
     (4.55)  

 ………………………………………...       

 𝑥𝑛 = 
1

|𝑨|
 [𝑏1𝐶1𝑛 + 𝑏2𝐶2𝑛 + ⋯+ 𝑏𝑛𝐶𝑛𝑛] = 

|𝑨𝒏|

|𝑨|
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Example 19: Solve the system of equations shown using                       

a) Inverse – equation (4.51)                  

b) Cramer’s rule – equation (4.52) 

x1 + x2 + x3 = 0                   

2x1 - x3 = 5                    

x1 - 2x2 + 2x3 = -9              

            

 a) [
1    1    1
2    0 −1
1 −2    2

] [

𝒙𝟏

𝒙𝟐

𝒙𝟑

]= [
   0
   5
−9

]    X = A–1B = 
𝑨𝒅𝒋 𝑨

|𝑨|
 𝑩  ⇒ 

             

     [

𝒙𝟏

𝒙𝟐

𝒙𝟑

]= [
1    1    1
2    0 −1
1 −2    2

]

−𝟏

[
   0
   5
−9

]  = 
   1

−11
[
−2   −5   −4
−4      1      3
−1      3   −2

]

𝑻

[
   0
   5
−9

]  =
   1

−11
[
−2 −4 −1
−5     1    3
−4     3 −2

] [
   0
   5
−9

] 

              

     [

𝒙𝟏

𝒙𝟐

𝒙𝟑

]= [
   𝟏
   𝟐
−𝟑

]                 

        

 b) |A| = –11 

      x1= 
|𝑨𝟏|

|𝑨|
 = (

  1

−11
) |

   0    1    1
   5    0 −1
−9 −2    2

| = (
  1

−11
) [1(10 − 9) − 1(−10)] = 1    

            

 x2= 
|𝑨𝟐|

|𝑨|
 = (

  1

−11
) |

1    0    1
2    5 −1
1 −9    2

| = (
  1

−11
) [1(10 − 9) + 1(−18 − 5)] = 2  

              

 x3= 
|𝑨𝟑|

|𝑨|
 = (

  1

−11
) |

1    1    0
2    0    5
1 −2 −9

| = (
  1

−11
) [1(10) − 1(−18 − 5)] = −3    

              

 

Using Theorem 4.2, it can be observed if equation (4.48) is homogeneous and det A ≠ 0, the 

solution is simply x1 = 0, x2 = 0, … , xn = 0. Furthermore, if equation (4.48) is homogeneous and 

det A = 0, we have nontrivial solutions. 
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4.7 – Orthogonal Matrices        

              

                                                                 
Having defined inverse of a matrix, we can now define orthogonal matrices. Matrix A is 

orthogonal if inverse of A is equal to transpose of A       

             

 AT = A–1         (4.56)  

                          

An example of an orthogonal matrix is        

              

 A = [
0.6 −0.8
0.8    0.6

]          

                      

where              

              

 AT = [
   0.6 0.8
−0.8 0.6

]  and   A–1 = 
1

0.36+0.64
  [

   0.6 0.8
−0.8 0.6

]= [
   0.6 0.8
−0.8 0.6

] 

                            

The determinant of A is 1. This is not  coincidental. The determinant of an orthogonal matrix is 1 

or –1. To show this, we write          

              

 |AA–1| = | I | = 1          

                  

Since AT = A–1            

              

 |AAT| = 1           

                              

Referring to the properties of determinant; |AB| =|A|.|B| and |A| = |AT| we write   

              

 |AAT| = |A|.|AT| = (|A|)2 = 1  ⇒  |A| = ± 1     
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CHAPTER 5 

 

Linear Algebra  

Eigenvalue-Eigenvector 

State Variable Equations 
 

Overview 

Section 5.1 starts with the discussion of eigenvalues and eigenvectors. Similarity transformation 

and diagonalization is addressed in Section 5.2. Section 5.3 explains bilinear and quadratic 

from. As application to linear algebra, Section 5.3 introduces state variable equations and 

different realization block diagrams. Solution of state variable equations in time-domain and in s-

domain are covered in Sections 5.5 and 5.6 respectively. The idea and details of linear 

transformation and diagonalization applied to state variable equations is presented in Section 

5.7.  
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5.1 – Eigenvalues and Eigenvectors  

 
In many engineering and practical applications we deal with problems modeled by the following 

system of linear equations.           

             

 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 =  𝜆𝑥1        

 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 =  𝜆𝑥2      (5.1)  

 ……………………………………        

 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛𝑥𝑛 =  𝜆𝑥𝑛        

                  

Equation (5.1) can be written as          

            

 (𝑎11 − 𝜆)𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 =  0        

 𝑎21𝑥1 + (𝑎22 − 𝜆)𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 =  0     (5.2) 

 ……………………………………        

 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ (𝑎𝑛𝑛 − 𝜆)𝑥𝑛 =  0        

                                                   

and in matrix form equations (5.1) and (5.2) can be written as     

            

 (A – λ I)X = 0  or   AX = λX    (5.3)  

                          

where I is an nxn identity matrix and         

             

 A = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

]     X = [

𝑥1
𝑥2

⋮
𝑥𝑛

]    (5.4)  

                       

Based on what was presented in Sections 4.3 and 4.6, the nontrivial solution of the 

homogeneous linear system of equations exists if        

            

 det (A – λ I) = |A – λ I| = |

𝑎11 − 𝜆 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 − 𝜆 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛 − 𝜆

| = 0  (5.5)  

             

             

Important Definitions and Concepts                                                     

In the equations presented above, λ (a scalar) is referred to as eigenvalue or characteristic 

value of matrix A and the corresponding vector X is known as eigenvector or characteristic 

vector. Equation (5.5) results in a polynomial of degree n in terms of λ. This polynomial is known 

as characteristic equation or characteristic polynomial. Hence equation (5.5) results in n 

eigenvalues. Clearly these eigenvalues can be real or complex, distinct or repeated. Note if X is 

an eigenvector of A corresponding to an eigenvalue of A, then kX (k ≠ 0) represents the same 

eigenvector. Also for a real matrix A, if equation (5.5) results in a complex eigenvalue, there will 

be a complex conjugate of the same eigenvalue. Furthermore if eigenvector X corresponds to a 

complex eigenvalue, then �̅� (complex conjugate of X) correspond to the complex conjugate of 

the eigenvalue. This can be easily shown by considering the complex conjugate of both sides of 
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AX = λX which is the same as equation (5.3) and remembering the complex conjugate of a 

product is the product of complex conjugate.        

                               

For repeated eigenvalue of matrix A, we define algebraic multiplicity and geometric multiplicity 

as follows. Algebraic multiplicity of eigenvalue λ is multiplicity of λ. Geometric multiplicity of 

repeated eigenvalue λ is the number of linearly independent eigenvectors corresponding to λ. 

                                

Using equation (5.5), it can be shown the eigenvalues of a diagonal or triangular matrix are the 

diagonal elements (see example 4 on page 129).       

                                  

     From the properties of determinant discussed in Chapter 4 (det A = det AT), we can 

write the eigenvalues of a matrix A is the same as the eigenvalues of transpose of A.    

                       

Using equation (5.3), we have         

             

 AX = λX           

                         

Pre-multiplying both side by A–1         

             

 A–1AX = λA–1X  ⇒        
            
 A–1X = (1/λ)X                   (5.6)  

                          

Equation (5.6) implies that the eigenvalues of the inverse of a nonsingular matrix A is the 

inverse of the eigenvalues of A. However the corresponding eigenvectors are the same.  

             

                    

Example 1: Evaluate the eigenvalues and eigenvectors of A  

A = [
2 1
3 4

]                                      

         

|A – λ I| = 0            
           

 |
2 − 𝜆 1

3 4 − 𝜆
| = 0  ⇒ 𝜆2 − 6𝜆 + 5 = 0 ⇒ λ = 1, 5   

 (A – λ I)X = 0           

             

 [2 − 𝜆 1
3 4 − 𝜆

] [
𝑥1

𝑥2
] = [

0
0
] ⇒        

             

 (2 – λ)x1 + x2 = 0          

 3x1 + (4 – λ)x2 = 0          

             

 λ1 = 1            

 x1 + x2 = 0          

 3x1 + 3x2 = 0           
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 X1 = [
   1
−1

]           

             

 λ2 = 5            

 -3x1 + x2 = 0          

 3x1 – x2 = 0           

 X2 = [
1
3
]           

             

                          

Example 2: Evaluate the eigenvalues and eigenvectors of A 

A = [
−2 −1
   5 −4

]                                      

         

|A – λ I| = 0            
           

 |
−2 − 𝜆 −1

5 −4 − 𝜆
| = 0 ⇒ 𝜆2 + 6𝜆 + 13 = 0 ⇒ λ =−3 ± 𝑖2    

 (A – λ I)X = 0           

             

 [
−2 − 𝜆 −1

5 −4 − 𝜆
] [

𝑥1

𝑥2
] = [

0
0
] ⇒        

             

 (–2 – λ)x1 – x2 = 0          

 5x1 + (–4 – λ)x2 = 0          

             

 λ1 =−3 + 𝑖2              

 (1 − 𝑖2)x1 – x2 = 0          

 5x1 + (−1 − 𝑖2)x2 = 0          

 X1 = [
   1

1 − 𝑖2
]           

             

 λ2 = −3 − 𝑖2              

 (1 + 𝑖2)x1 – x2 = 0          

 5x1 + (−1 + 𝑖2)x2 = 0          

 X2 = [
1

1 + 𝑖2
]           

             

 As discussed above, the eigenvalues and eigenvectors are complex conjugate of one 

 another.           

             

                         

Example 3: Evaluate the eigenvalues and eigenvectors of A  

A = [
−5 −10    9
   2   3 −1
   1   2 −1

]                                      
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|A – λ I| = 0            
           

 |
−5 − 𝜆 −10 9

2 3 − 𝜆 −1
1 2 −1 − 𝜆

| = 0       ⇒ 

             
 (−5 − 𝜆)[(3 − 𝜆)(−1 − 𝜆) + 2] + 10[−2 − 2𝜆 + 1] + 9[4 − 3 + 𝜆] = 0 ⇒ 
             

 𝜆3 + 3𝜆2 − 4 = 0   ⇒ λ =1,−2,−2    

 (A – λ I)X = 0           

             

 [
−5 − 𝜆 −10 9

2 3 − 𝜆 −1
1 2 −1 − 𝜆

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0
]       ⇒ 

             

 (–5 – λ)x1 – 10x2 + 9x3 = 0         

 2x1 + (3 – λ)x2 – x3 = 0          

 x1 + 2x2 + (–1 – λ)x3 = 0         

  

            λ1 = 1            

 – 6x1 – 10x2 + 9x3 = 0         

 2x1 + 2x2 – x3 = 0          

 x1 + 2x2 – 2x3 = 0          

            

 Let x1 = 1          ⇒ 
 – 10x2 + 9x3 = 6            

  2x2 – x3 = – 2           

 2x2 – 2x3 = –1     using any two equations   ⇒ 

             

 X1 = [
1

−3/2
−1

]           

             

 λ2 = λ3 = – 2            

 – 3x1 – 10x2 + 9x3 = 0         

 2x1 + 5x2 – x3 = 0          

 x1 + 2x2 + x3 = 0          

            

 Let x1 = 1          ⇒ 
 – 10x2 + 9x3 = 3            

  5x2 – x3 = – 2           

 2x2 + x3 = –1     using any two equations   ⇒ 

             

 X2 = [

1
−3/7
−1/7

]                                                          
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In example 3, the algebraic multiplicity is 2 for λ = – 2. However the geometric multiplicity which 

is the number of linearly independent eigenvector for λ = – 2 is 1.      

             

                                                

Example 4: Evaluate the eigenvalues and eigenvectors of A 

A = [
−1    0    0
   0 −2    0
   0    0 −3

]           

                              

|A – λ I| = 0            
           

 |
−1 − 𝜆    0    0

   0 −2 − 𝜆    0
   0    0 −3 − 𝜆

| = 0 ⇒ (−1 − 𝜆)(−2 − 𝜆)(−3 − 𝜆) = 0 ⇒

 λ =−1,−2,−3    

 (A – λ I)X = 0           

             

 [
−1 − 𝜆    0    0

   0 −2 − 𝜆    0
   0    0 −3 − 𝜆

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0
] ⇒      

             

 (–1 – λ)x1 + 0x2 + 0x3 = 0         

 0x1 + (– 2 – λ)x2 + 0x3 = 0         

 0x1 + 0x2 + (–3 – λ)x3 = 0         

            

 λ1 =−1              

 0x1 + 0x2 + 0x3 = 0         

 0x1 – x2 + 0x3 = 0         

 0x1 + 0x2 – 2x3 = 0          

 X1 = [
1
0
0
]           

             

 λ2 =−2              

 x1 + 0x2 + 0x3 = 0         

 0x1 + 0x2 + 0x3 = 0         

 0x1 + 0x2 – x3 = 0          

 X2 = [
0
1
0
]           

             

 λ3 =−3              

 2x1 + 0x2 + 0x3 = 0         

 0x1 + x2 + 0x3 = 0         

 0x1 + 0x2 + 0x3 = 0          

 X3 = [
0
0
1
]            
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5.2 – Similarity Transformation and Diagonalization  

 
Given an nxn nonsingular matrix T and an nxn matrix A, we define an nxn matrix AT to be 

similar to A such that           

            

 AT = T–1AT         (5.7)   

                           

Transformation from A to AT is referred to as the similarity transformation. The notation T is 

used here to designate transformation matrix.       

             

                             

Theorem 5.1                                                                                 

Eigenvalues of the similar matrix AT are the same as those of A and the corresponding 

eigenvector of AT is XT = T–1X, where X is the eigenvector of matrix A.    

             

                         

Proof:              

We begin with equation (5.3)          

            

 AX = λX           

                  

Pre-multiplying both sides by T–1 results in        

             

  T–1AX = λ T–1X          

               

Placing an nxn identity matrix between A and X on the left and then writing I as T.T–1  

            

 T–1AIX = λ T–1X          

 T–1AT.T–1X = λ T–1X         ⇒ 
             
 ATXT = λXT           

             

                           

Example 5: Evaluate AT for the given A and T.  

A = [
−1 −3
   1 −5

]  T = [
1 −2
1    3

]                                    

         

T–1 = (1/5) [
   3 2
−1 1

]           

            

 AT = T–1AT = (1/5) [
   3 2
−1 1

] [
−1 −3
   1 −5

] [
1 −2
1    3

] = [
−4 −11
   0   −2

]       

             

 |A – λ I| = 0 [
−1 − 𝜆 −3

   1 −5 − 𝜆
] ⇒ 𝜆2 + 6𝜆 + 8 = 0 ⇒ λ = – 2 , – 4  
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 |AT – λ I| = 0 [
−4 − 𝜆 −11

   0 −2 − 𝜆
] ⇒ (𝜆 + 4)(𝜆 + 2) = 0 ⇒ λ = – 2 , – 4 

                       

Using Theorem 5.1, eigenvectors XT of AT can be evaluated and it can be verified that               

XT = T–1X for the corresponding eigenvalues.       

             

             

                                  

Theorem 5.2   Diagonalization                                                                                 

If an nxn matrix A has n distinct eigenvalues and n linearly independent eigenvectors and the 

columns of the transformation matrix in the equation AT = T–1AT are made up of the 

eigenvectors of matrix A, then the resulting AT is a diagonal matrix whose diagonal elements 

are the eigenvalues of A.          

             

                       

Proof:              

Let λ1, λ2, … , λn be the eigenvalue of A and X1, X2, … , Xn be the corresponding eigenvectors of 

A. Using equation (5.3), we have         

             

 AX1 = λ1X1           

 AX2 = λ2X2           

 ………….           

             

 AXn = λnXn           

                

These equations can be written as         

             

 A.[ X1 | X2 | … | Xn | ] = [ X1 | X2 | … | Xn | ].[

𝜆1 0 … 0

0 𝜆2 … 0
⋮
0

⋮     ⋮
0 …

⋮
𝜆𝑛

]        (5.8)    

                                      

We define T as           

             

 T = [ X1 | X2 | … | Xn | ]       (5.9)    

                    

Hence equation (5.8) can be written as        

             

 AT = T. [

𝜆1 0 … 0

0 𝜆2 … 0
⋮
0

⋮     ⋮
0 …

⋮
𝜆𝑛

]              (5.10)  

                         

Pre-multiplying both sides of (5.10) by T–1 gives        

             

 T–1AT = [

𝜆1 0 … 0

0 𝜆2 … 0
⋮
0

⋮     ⋮
0 …

⋮
𝜆𝑛

]              (5.11)                
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It is important to understand the difference between Theorem (5.1) and (5.2). In applying 

Theorem (5.1) any nonsingular transformation matrix T can be utilized and AT will have same 

exact eigenvalues as A. Theorem (5.2) takes this one step further and indicates if columns of 

transformation matrix T consists of the n independent eigenvectors of A, then AT will be a 

diagonal matrix whose diagonal elements consist of the n distinct eigenvalues of A. We already 

know the diagonal elements of a diagonal matrix are the eigenvalues of that matrix.   

             

             

             

             

              

 

5.3 – Bilinear and Quadratic Forms  

 
In this section the bilinear and quadratic forms are defined. These forms are encountered in 

some engineering applications such as optimal control and stochastic processing as applied to 

optimization and multivariable parameters. In many engineering and practical applications we 

deal with problems modeled by the following system of linear equations.     

             

                            

Bilinear Form                        

Bilinear form in terms of 2n variables x1, x2, … , xn and y1, y2, … , yn is described by the equation 

             

            

 B = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖
𝑛
𝑗=1 𝑦𝑗 

𝑛
𝑖=1          (5.12)  

                          

Expanding equation (5.12) gives         

            

 B = a11x1y1 + a12x1y2 + … + a1nx1yn        

       +a21x2y1 + a22x2y2 + … + a2nx2yn         

       +………………………………….        

       +an1xny1 + an2xny2 + … + annxnyn       (5.13)  

                             

Equation (5.13) in matrix form can be written as       

             

 B = [𝑥1 𝑥2   ⋯ 𝑥𝑛] [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

] [

𝑦1

𝑦2

⋮
𝑦𝑛

]      (5.14)  

                             

Or simply written as           

             

 B = XTAY         (5.15)   
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Example 6: Write the given bilinear equation in matrix form of equation (5.15).    

     

      B = 2x1y1 + 6x1y3 – 2x2y1 + 7x2y2 + 10x2y3 – 8x3y1 + 4x3y3                            

             

  B = [𝑥1 𝑥2 𝑥3] [
   2 0 6
−2 7 10
−8 0 4

] [

𝑦1

𝑦2

𝑦3

] 

              

             

                                            

Quadratic Form                        

Quadratic form in terms of n variables x1, x2, … , xn is a special case of bilinear form described 

above with Y = X.            

             

             

 Q = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖
𝑛
𝑗=1 𝑥𝑗 

𝑛
𝑖=1          (5.16)  

             

 Q = a11x1x1 + a12x1x2 + … + a1nx1xn        

       + a21x2x1 + a22x2x2 + … + a2nx2xn         

       ………………………………….        

       + an1xnx1 + an2xnx2 + … + annxnxn       (5.17)  

                          

Grouping terms results in          

            

 Q = 𝑎11𝑥1
2 + (𝑎12 + 𝑎21)𝑥1𝑥2 + ⋯+ (𝑎1𝑛 + 𝑎𝑛1)𝑥1𝑥𝑛       

        + 𝑎22𝑥2
2 + (𝑎23 + 𝑎32)𝑥2𝑥3 + ⋯+ (𝑎2𝑛 + 𝑎𝑛2)𝑥2𝑥𝑛      

        +⋯+ 𝑎𝑛𝑛𝑥𝑛
2          (5.18)  

            

 Q = XTAX         (5.19)   

                    

From equation (5.18) it should be clear there are infinite possibilities to determine A given a 

quadratic equation. The only elements of this matrix which cannot change are the diagonal 

elements (a11, a22, … , ann). In many applications matrix A is simply written as a triangular matrix 

or a symmetrical matrix. To illustrate this point, let us consider an example.    

             

                              

Example 7: Write the given quadratic equation in matrix form of equation (5.19) 

Q = 3𝑥1
2 + 6𝑥1𝑥2 − 14𝑥1𝑥3 + 11𝑥2

2 − 2𝑥2𝑥3 + 5𝑥3
2              

             

 Here are a few ways representing this quadratic in matrix form.  

 

 Q = [𝑥1 𝑥2 𝑥3] [
3 6 −14
0 11 −2
0 0     5

] [

𝑥1

𝑥2

𝑥3

]        

             

 or            
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 Q = [𝑥1 𝑥2 𝑥3] [
  3 0 0
  6 11 0

−14 −2 5
] [

𝑥1

𝑥2

𝑥3

]       

             

  or           

             

 Q = [𝑥1 𝑥2 𝑥3] [
  3 3 −7
  3 11 −1
−7 −1    5

] [

𝑥1

𝑥2

𝑥3

]       

                       

As observed for the first two representations matrix A is triangular. In the last case matrix A is 

symmetrical. From equation (5.18) it should be clear that coefficients of 𝑥1
2, 𝑥2

2, … 𝑥𝑛
2 are the 

diagonal elements. And coefficient of 𝑥𝑖𝑥𝑗 (𝑖 ≠ 𝑗) are sum of the elements in the ith row jth 

column and jth row ith column of A. As an example coefficient of 𝑥1𝑥2 is a12 + a21 which provides 

infinite possibilities. Hence for triangular representation of A, one of these coefficients is 

assumed zero (either the first or the second element). For symmetrical representation of A, half 

of coefficient of 𝑥𝑖𝑥𝑗 (𝑖 ≠ 𝑗) is placed in 𝑎𝑖𝑗 position and half is placed in 𝑎𝑗𝑖 position.   

             

             

             

             

             

   

5.4 – State Variable Equations  

 
As an application of linear algebra, state variable for continuous time domain system is 

discussed in this section. As systems become more complex and the use of computers 

becomes vital in solving these complex systems with multiple inputs and multiple outputs, 

modeling and solving systems using state variables becomes essential.      

                      

The most general form of state variable equation is represented by    

            

 𝒙 ̇ (𝑡) = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡)          (5.20)  

 𝒚(𝑡) = 𝒈(𝒙(𝑡), 𝒖(𝑡), 𝑡)        (5.21)  

                           

x(t) is an nx1 state vector consisting of elements x1(t), x2(t), … , xn(t), and 𝒙 ̇ (𝑡) =
𝑑𝑥

𝑑𝑡
 is the 

corresponding derivative of the state vector. 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡) is an nx1 vector function and u(t) is 

an mx1 input vector consisting of elements u1(t), u2(t), … , um(t). y(t) is a px1 vector consisting of 

elements y1(t), y2(t), … , yp(t) and 𝒈(𝒙(𝑡), 𝒖(𝑡), 𝑡) is an mx1 vector function. In our discussion we 

consider the general form of linear time-invariant system of state variable equation described by 

             

 �̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡)        (5.22)  

 𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡)        (5.23)  

                                                                         

Where  
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State Vector:  𝒙(𝑡) =  [

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛(𝑡)

]  �̇�(𝑡) = [

�̇�1(𝑡)
�̇�2(𝑡)

⋮
�̇�𝑛(𝑡)

]      

                                        

Input Vector:  𝒖(𝑡) = [

𝑢1(𝑡)
𝑢2(𝑡)

⋮
𝑢𝑚(𝑡)

]         

                        

Output Vector:  𝒚(𝑡) = [

𝑦1(𝑡)
𝑦2(𝑡)

⋮
𝑦𝑝(𝑡)

]    

A = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

]   B = [

𝑏11 𝑏12 … 𝑏1𝑚

𝑏21 𝑏22 … 𝑏2𝑚

⋮
𝑏𝑛1

⋮     ⋮
𝑏𝑛2 …

⋮
𝑏𝑛𝑚

] 

 

C = [

𝑐11 𝑐12 … 𝑎1𝑛

𝑐21 𝑐22 … 𝑐2𝑛

⋮
𝑐𝑝1

⋮     ⋮
𝑐𝑝2 …

⋮
𝑐𝑝𝑛

]   D = [

𝑑11 𝑑12 … 𝑑1𝑚

𝑑21 𝑑22 … 𝑑2𝑚

⋮
𝑑𝑝1

⋮     ⋮
𝑑𝑝2 …

⋮
𝑑𝑝𝑚

]  

             

                                                                                                              

For the sake of simplicity and without loss of generality we assume single input u(t) in our 

discussion. There are many methods and possible procedures that can be used to write state 

variable system of equations for a linear time-invariant system in the form of equations (5.22) 

and (5.23). The most popular of these are controllable canonical form, observable canonical 

form, diagonal from, and Jordan canonical form. Diagonal form is for the case when matrix A 

has distinct eigenvalues. Diagonalization will also be presented in Section 5.7 when we discuss 

linear transformation. Jordan canonical form is when matrix A has repeated eigenvalues.   

Jordan canonical form of state variable modeling is not discussed in this chapter and is left as 

an exercise. Hence we begin with state variable modeling using controllable canonical form, 

observable canonical form, and diagonal form. To do so we first begin by basic components 

utilized in system realizations and simulations.        

                                    

                                         

Summing Point            

                                         

            x1        +                     x1 + x2 

                            + 

                            x2           
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Comparator             

                                        

            x1        +                     x1 – x2 

                            _ 

                            x2           

             

                      

Amplifier/Attenuator            

             

                             

            x                   A                 Ax         

  

                            

Integrator             

                                       

         x(t)                 ∫𝑑𝑡                ∫𝑥(𝑡)𝑑𝑡                    

 

         X(s)                1/s                 X(s)/s                

           

                          

Integrators are used in place of differentiators for realizations and simulations, since they are 

less susceptible to noise, especially at higher frequencies.      

             

                         

Controllable Canonical Form                        

Consider a linear constant coefficient nonhomogeneous n-th order system with input u(t) and 

output y(t) described by differential equation        

             

 
𝑑𝑛𝑦

𝑑𝑡𝑛 + 𝑎𝑛−1
𝑑𝑛−1𝑦

𝑑𝑡𝑛−1 + ⋯+ 𝑎1
𝑑𝑦

𝑑𝑡
+ 𝑎0𝑦 = 𝑏𝑛

𝑑𝑛𝑢

𝑑𝑡𝑛 + 𝑏𝑛−1
𝑑𝑛−1𝑢

𝑑𝑡𝑛−1 + ⋯+ 𝑏1
𝑑𝑢

𝑑𝑡
+ 𝑏0𝑢    

             

           (5.24)  

                                                

The corresponding system transfer function H(s) = Y(s)/U(s) is      

             

 𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
= 

𝑏𝑛𝑠𝑛+𝑏𝑛−1𝑠𝑛−1+⋯+ 𝑏1𝑠+ 𝑏0

𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+ 𝑎1𝑠+ 𝑎0
     (5.25)  

                    

We now define X(s) as           

             

 𝑋(𝑠) = [ 
1

𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+ 𝑎1𝑠+ 𝑎0
]𝑈(𝑠)     (5.26)  
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Hence Y(s) can be written as          

             

 𝑌(𝑠) = [𝑏𝑛𝑠𝑛 + 𝑏𝑛−1𝑠
𝑛−1 + ⋯+ 𝑏1𝑠 + 𝑏0]𝑋(𝑠)    (5.27)  

                     

Using equation (5.26), we have         

             

 snX(s) = – a0X(s) – a1sX(s) – … –  an-1sn-1X(s) + U(s)    (5.28)  

                          

The block diagram of Equation (5.28) is shown in Figure 5.1.       

                                    snX           sn-1X         sn-2X                           sX                X 

         U(s)                             1/s            1/s            ….    1/s       1/s    

         +       - - - -                     

             

             an-1         

             

                   an-2            ….       

             

     ⋮        

           a1     

             

                a0    

             

       Figure 5.1 Block Diagram Realization of Equations (5.26) and (5.28)  

                           

Using equation (5.27), the simulation diagram of the entire system as defined by equations 

(5.24) and (5.25) can shown as          

             

              bn 

                                                bn-1 

                  ….              b1         +  + +  
                                  b0  +                Y(s) 

                                     snX            sn-1X         sn-2X                           sX             X  

         U(s)                             1/s            1/s            ….    1/s       1/s      

         +       - - - -                     

             

             an-1         

             

                   an-2            ….       

             

     ⋮        

           a1     

             

                a0            

                            Figure 5.2 Block Diagram Realization of Equations (5.24) and (5.25) 
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Using the realization diagram of Figure 5.2, we define      

             

 X1(s) = X(s)           

 sX1(s) = X2(s) = sX(s)          

 sX2(s) = X3(s) = s2X(s)         

 ……………….         (5.29)  

 sXn-1(s) = Xn(s) = sn-1X(s)         

 sXn(s) = – a0X1(s) – a1X2(s) – … – an-1Xn(s) + U(s)      

                         

and based on the above equation and the realization diagram we write    

             

 Y(s) = b0X1(s) + b1X2(s) + … + bn-1Xn(s) + bnsXn(s)    (5.30)  

                   

We now substitute sXn(s) from (5.29)         

             

 Y(s) = b0X1(s) + b1X2(s) + … + bn-1Xn(s) + bn[– a0X1(s) – a1X2(s) – … – an-1Xn(s) + U(s)] 

             

 Y(s) = (b0 – a0bn)X1(s) + (b1 – a1bn)X2(s) + …. + (bn-1 – an-1bn)Xn(s) + bnU(s)   

             

           (5.31)          

Outputs of integrators from the right side are defined as X1, X2, … , Xn with inputs sX1, sX2, … , 

sXn respectively. Converting equations (5.29) and (5.31) from s-domain to time domain gives 

            

 �̇�1(𝑡) =  𝑥2(𝑡)           

 �̇�2(𝑡) =  𝑥3(𝑡)           

 ………..         (5.32)  

 �̇�𝑛−1(𝑡) =  𝑥𝑛(𝑡)          

 �̇�𝑛(𝑡) =  −𝑎0𝑥1(𝑡)−𝑎1𝑥2(𝑡) − ⋯− 𝑎𝑛−1𝑥𝑛(𝑡) + 𝑢(𝑡)     

             

 𝑦(𝑡) = (𝑏0 − 𝑎0 𝑏𝑛)𝑥1(𝑡) + (𝑏1 − 𝑎1 𝑏𝑛)𝑥2(𝑡) + ⋯+ (𝑏𝑛−1 − 𝑎𝑛−1 𝑏𝑛)𝑥𝑛(𝑡) + 𝑏𝑛𝑢(𝑡) 
                      

These equations can be written in matrix form as        

             

             

 [

�̇�1(𝑡)
�̇�2(𝑡)

⋮
�̇�𝑛(𝑡)

] = 

[
 
 
 
 

0   1     0 … 0
0   0     1 … 0
⋮
0

−𝑎0

     ⋮
     0
−𝑎1

⋮
0

−𝑎2

⋮
…
…

⋮
1

−𝑎𝑛−1]
 
 
 
 

[

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛(𝑡)

] + [

0
0
⋮
1

] 𝑢(𝑡)   (5.33)  

             

 𝑦(𝑡) = [𝑏0 − 𝑎0 𝑏𝑛 𝑏1 − 𝑎1 𝑏𝑛    … 𝑏𝑛−1 − 𝑎𝑛−1 𝑏𝑛] [

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛(𝑡)

] + 𝑏𝑛𝑢(𝑡) (5.34)  

                      

It is important to note the output of integrators are the state variables x1, x2, … , xn. In most 

cases the degree of the numerator of the system transfer function is less than the degree of the 

denominator. This means in such cases bn = 0. This simplifies the state variable equations.                            
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Example 8: Obtain the state variable representation of the given system in controllable 

canonical form. 

𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=

2𝑠3+5𝑠2+10

𝑠3+6𝑠2+11𝑠+6
           

            

 Either the system transfer function or the corresponding system differential equation can 

 be used for this purpose. The system differential equation is    

             

 
𝑑3𝑦

𝑑𝑡3 + 6
𝑑2𝑦

𝑑𝑡2 + 11
𝑑𝑦

𝑑𝑡
+ 6𝑦 = 2

𝑑3𝑢

𝑑𝑡3 + 5
𝑑2𝑢

𝑑𝑡2 + 10𝑢       

            

 By inspection a0 = 6, a1 = 11, a2 = 6, b3 = 2, b2 = 5, b1 = 0, b0 = 10. Using equation (5.33) 

 and (5.34) we have          

             

 [

�̇�1

�̇�2

�̇�3

] = [
  0  1   0
   0  0   1
−6 −11 −6

] [

𝑥1

𝑥2

𝑥3

] + [
0
0
1
] 𝑢(𝑡)       

             

 𝑦(𝑡) =  [10 − (6)(2) 0 − (11)(2) 5 − (6)(2)] [

𝑥1

𝑥2

𝑥3

] + 2𝑢(𝑡)    

 𝑦(𝑡) = [−2 −22 −7] [

𝑥1

𝑥2

𝑥3

] + 2𝑢(𝑡)        

             

                         

Example 9: Obtain the state variable representation of the given system in controllable 

canonical form and draw the realization block diagram. 

𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=

𝑠+10

𝑠2+6𝑠+25
            

             

 The system differential equation is        

             

  
𝑑2𝑦

𝑑𝑡2
+ 6

𝑑𝑦

𝑑𝑡
+ 25𝑦 =

𝑑𝑢

𝑑𝑡
+ 10𝑢           

               

 By inspection a0 = 25, a1 = 6, b2 = 0, b1 = 1, b0 = 10. Using equation (5.33) and (5.34) we 

 have            

             

 [
�̇�1

�̇�2
] = [

0 1
−25 −6

] [
𝑥1

𝑥2
] + [

0
1
] 𝑢(𝑡)        

            

 𝑦(𝑡) =  [10 1] [
𝑥1

𝑥2
] + 0𝑢(𝑡)         

            

                           

 The realization block diagram is shown in Figure 5.3 below.    
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            + 

 U(s)                                       1/s                       1/s                    10       +                   Y(s)                                  

              +     _      X2         X1     

   _           

             

     6            

             

             

                                           25      

             

   Figure 5.3 Block Diagram Realization of Example 9    

             

            

 It is important to point out that the realization block diagram can be presented in s-

 domain or time-domain. Figure 5.4 shows the realization diagram of example 9 in time-

 domain.            

   

             

                       +           

    u(t)   +                       ∫𝑑𝑡     ∫𝑑𝑡                 10    +    y(t) 

                  _                                 x2(t)          x1(t)      

                        _          

             

                    6        

             

             

          25      

             

   Figure 5.4 Block Diagram Realization of Example 9    

             

                            

Observable Canonical Form          

Using the system transfer function of equation (5.25)       

           

 𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
= 

𝑏𝑛𝑠𝑛+𝑏𝑛−1𝑠𝑛−1+⋯+ 𝑏1𝑠+ 𝑏0

𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+ 𝑎1𝑠+ 𝑎0
       

                                

we can write            

             

 [𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + ⋯+ 𝑎1𝑠 + 𝑎0]𝑌(𝑠) = [𝑏𝑛𝑠𝑛 + 𝑏𝑛−1𝑠

𝑛−1 + ⋯+ 𝑏1𝑠 + 𝑏0]𝑈(𝑠) 

             

 𝑠𝑛𝑌(𝑠) = [𝑏𝑛𝑠𝑛𝑈(𝑠)] + [𝑏𝑛−1𝑈(𝑠) − 𝑎𝑛−1𝑌(𝑠)]𝑠𝑛−1 + ⋯+ [𝑏1𝑈(𝑠) − 𝑎1𝑌(𝑠)]𝑠 +  

       [𝑏0𝑈(𝑠) − 𝑎0𝑌(𝑠)]        

                                  

Dividing both sides by sn results in         
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 𝑌(𝑠) = [𝑏𝑛𝑈(𝑠)] + [𝑏𝑛−1𝑈(𝑠) − 𝑎𝑛−1𝑌(𝑠)]𝑠−1 + ⋯+ [𝑏1𝑈(𝑠) − 𝑎1𝑌(𝑠)]𝑠−𝑛+1 +  

       [𝑏0𝑈(𝑠) − 𝑎0𝑌(𝑠)]𝑠−𝑛        

             

           (5.35)  

                                          

Using n integrators, summing points, and amplifiers, the block diagram of equation (5.35) is 

shown in Figure 5.5.    

  

                             bn   

                                                                                               

                                                                  bn-1 

                                                                           …. 

          b2                                    

          b1                                                

                                                   +                                                        +                    +                                                   

  U(s)         b0                   1/s                  1/s       ….                   1/s                1/s       Y(s) 

             +                      +                  +  +  +  

       _                    _       _     _    

                                                              an-1   

             

                      ….        an-2                

                              

             

            a1        

             

          a0                 

   

                                         Figure 5.5 Block Diagram Realization of Equation (5.35)  

   

Using the realization diagram of Figure 5.5, we define the outputs of integrators starting from the 

left as X1, X2, … , Xn. The input of the integrators are sX1(s), sX2(s), … , sXn(s) respectively. 

Hence we have           

            

 sX1(s) = b0U(s) – a0Y(s)        

 sX2(s) = X1(s) + b1U(s) – a1Y(s)        

 ………………………………………….      (5.36) 

 sXn-1(s) = Xn-2(s) + bn-2U(s) – an-2Y(s)        

 sXn(s) = Xn-1(s) + bn-1U(s) – an-1Y(s)        

             

 Y(s) = Xn(s) + bnU(s)         (5.37)  

               

Substituting equation (5.37) in equation (5.36) results      
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 sX1(s) = b0U(s) – a0[Xn(s) + bnU(s)] = – a0Xn(s) + [b0 – a0bn]U(s)    

 sX2(s) = X1(s) + b1U(s) – a1[Xn(s) + bnU(s)] = X1(s) – a1Xn(s) + [b1 – a1bn]U(s)   

 ………………………………………………………………………………………..  

 sXn-1(s) = Xn-2(s) + bn-2U(s) – an-2[Xn(s) + bnU(s)] = Xn-2(s) – an-2Xn(s) + [bn-2 – an-2bn]U(s)  

 sXn(s) = Xn-1(s) + bn-1U(s) – an-1[Xn(s) + bnU(s)] = Xn-1(s) – an-1Xn(s) + [bn-1 – an-1bn]U(s) 

                  

                             (5.38)            

Converting equations (5.38) and (5.37) from s-domain to time domain gives    

             

 �̇�1(𝑡) =  −𝑎0𝑥𝑛(𝑡) + [𝑏0 − 𝑎0𝑏𝑛]𝑢(𝑡)       

 �̇�2(𝑡) = 𝑥1(𝑡) − 𝑎1𝑥𝑛(𝑡) + [𝑏1 − 𝑎1𝑏𝑛]𝑢(𝑡)      

 ……………………………………....................      

 �̇�𝑛−1(𝑡) =  𝑥𝑛−2(𝑡) − 𝑎𝑛−2𝑥𝑛(𝑡) + [𝑏𝑛−2 − 𝑎𝑛−2𝑏𝑛]𝑢(𝑡)   (5.39)  

 �̇�𝑛(𝑡) =  𝑥𝑛−1(𝑡) − 𝑎𝑛−1𝑥𝑛(𝑡) + [𝑏𝑛−1 − 𝑎𝑛−1𝑏𝑛]𝑢(𝑡)     

             

 𝑦(𝑡) = 𝑥𝑛(𝑡) + 𝑏𝑛𝑢(𝑡)          

                                   

These equations can be written in matrix form as        

             

             

 

[
 
 
 
 

�̇�1(𝑡)
�̇�2(𝑡)

⋮
�̇�𝑛−1(𝑡)
�̇�𝑛(𝑡) ]

 
 
 
 

 = 

[
 
 
 
 
0 0 … 0 −𝑎0

1 0 … 0 −𝑎1

⋮
0
0

⋮
0
0

⋮
…
…

⋮
0
1

⋮
−𝑎𝑛−2

−𝑎𝑛−1]
 
 
 
 

[
 
 
 
 

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛−1(𝑡)
𝑥𝑛(𝑡) ]

 
 
 
 

 + 

[
 
 
 
 

𝑏0 − 𝑎0𝑏𝑛

𝑏1 − 𝑎1𝑏𝑛
⋮

𝑏𝑛−2 − 𝑎𝑛−2𝑏𝑛

𝑏𝑛−1 − 𝑎𝑛−1𝑏𝑛]
 
 
 
 

𝑢(𝑡)  (5.40) 

            

 𝑦(𝑡) = [0 0   … 1] 

[
 
 
 
 

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛−1(𝑡)
𝑥𝑛(𝑡) ]

 
 
 
 

 + 𝑏𝑛𝑢(𝑡)     (5.41)  

                                                                       

It is important to note the output of integrators are the state variables x1, x2, … , xn. In most 

cases the degree of the numerator of the system transfer function is less than the degree of the 

denominator. This means in such cases bn = 0. This simplifies the state variable equations.  

             

   

Example 10: Obtain the state variable representation of the given system in observable 

canonical form. 

𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=

2𝑠3+5𝑠2+10

𝑠3+6𝑠2+11𝑠+6
           

            

 Either the system transfer function or the corresponding system differential equation can 

 be used for this purpose. The system differential equation is    

             

 
𝑑3𝑦

𝑑𝑡3
+ 6

𝑑2𝑦

𝑑𝑡2
+ 11

𝑑𝑦

𝑑𝑡
+ 6𝑦 = 2

𝑑3𝑢

𝑑𝑡3
+ 5

𝑑2𝑢

𝑑𝑡2
+ 10𝑢                  
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By inspection a0 = 6, a1 = 11, a2 = 6, b3 = 2, b2 = 5, b1 = 0, b0 = 10. Using equation (5.39) and 

(5.40) we have           

            

 [

�̇�1

�̇�2

�̇�3

] = [
0 0  −6
1 0  −11
0 1 −6

] [

𝑥1

𝑥2

𝑥3

] + [
10 − (6)(2)

 0 − (11)(2)

5 − (6)(2)
] 𝑢(𝑡) = [

0 0  −6
1 0  −11
0 1 −6

] [

𝑥1

𝑥2

𝑥3

] + [
−2
−22
−7

]𝑢(𝑡)  

             

 𝑦(𝑡) =  [0 0 1] [

𝑥1

𝑥2

𝑥3

] + 2𝑢(𝑡)        

             

                             

Example 11: Obtain the state variable representation of the given system in observable 

canonical form and draw the realization block diagram. 

𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=

𝑠+10

𝑠2+6𝑠+25
            

            

 The system differential equation is        

            

 
𝑑2𝑦

𝑑𝑡2 + 6
𝑑𝑦

𝑑𝑡
+ 25𝑦 =

𝑑𝑢

𝑑𝑡
+ 10𝑢         

             

 By inspection a0 = 25, a1 = 6, b2 = 0, b1 = 1, b0 = 10. Using equation (5.33) and (5.34) we  

 have            

             

 [
�̇�1

�̇�2
] = [

0 −25
1 −6

] [
𝑥1

𝑥2
] + [

10
1

] 𝑢(𝑡)        

            

 𝑦(𝑡) =  [0 1] [
𝑥1

𝑥2
] + 0𝑢(𝑡)   

 

 

 

The realization block diagram is shown in Figure 5.6 below 

 

 

                 1 

             

    +     +                                           

U(s)            10                                  1/s                               1/s                            Y(s)       

                                       X1               X2     

          _                                  _       

             

                                   6         

             

                                           25        

                       

             

   Figure 5.6 Block Diagram Realization of Example 11  
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Once again the realization block diagram can be presented in s-domain or time-domain. Figure 

5.7 shows the realization diagram of example 11 in time-domain.     

  

  

 

                 1 

             

    +     +                                             

u(t)             10                                 ∫𝑑𝑡                              ∫𝑑𝑡                            y(t)       

                                       x1(t)               x2(t)     

          _                                  _       

             

                                   6         

             

                                           25        

                       

             

   Figure 5.7 Block Diagram Realization of Example 11 

 

 

            

Diagonal Form                                   

Using the system transfer function of equation (5.25)       

           

 𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
= 

𝑏𝑛𝑠𝑛+𝑏𝑛−1𝑠𝑛−1+⋯+ 𝑏1𝑠+ 𝑏0

𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+ 𝑎1𝑠+ 𝑎0
       

                                

In this case we assume the roots of the denominator -p1, -p2, … , -pn (poles of the system) are 

distinct. If bn ≠ 0, we need to perform the division first       

             

 𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
= 𝑏𝑛 + 

𝑅(𝑠)

𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+ 𝑎1𝑠+ 𝑎0
     (5.42)   

                                                  

In equation (5.42), R(s) is the remainder polynomial. After performing partial fractions we obtain 

             

 𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
= 𝑏𝑛 + 

𝐶1

𝑠+𝑃1
+

𝐶2

𝑠+𝑃2
+ ⋯+

𝐶𝑛

𝑠+𝑃𝑛
    (5.43)  

                          

Clearly if bn = 0, no division is required and only partial fractions must be performed. Using 

equation (5.43) we have          

            

 𝑌(𝑠) =  𝑏𝑛𝑈(𝑠) + 
𝐶1

𝑠+𝑃1
𝑈(𝑠) +

𝐶2

𝑠+𝑃2
𝑈(𝑠) + ⋯+

𝐶𝑛

𝑠+𝑃𝑛
𝑈(𝑠)   (5.44)  

                        

We define state variables X1, X2, … , Xn as        
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 𝑋1(𝑠) =
1

𝑠+𝑃1
𝑈(𝑠),  𝑋2(𝑠) =

1

𝑠+𝑃2
𝑈(𝑠),… ,  𝑋𝑛(𝑠) =

1

𝑠+𝑃𝑛
𝑈(𝑠)  (5.45)   

                                     
Hence from equation (5.44) we write         

             

  𝑌(𝑠) =  𝑏𝑛𝑈(𝑠) + 𝐶1𝑋1(𝑠) + 𝐶2𝑋2(𝑠) + ⋯+ 𝐶𝑛𝑋𝑛(𝑠)   (5.46)  

               

Before presenting the complete block diagram realization of equation (5.43), let us consider 

realization of               

             

 𝑋1(𝑠) =
1

𝑠+𝑃1
𝑈(𝑠)  ⇒ 𝑠𝑋1(𝑠) = −𝑃1𝑋1(𝑠) + 𝑈(𝑠)  (5.47)  

                  

The block diagram realization of equation (5.47) is shown in Figure (5.8) below    

                                                                                           

   +                                                             

            U(s)                 1/s      X1     

         _          

                                        

                                           P1        

                                            

  Figure 5.8 Block Diagram Realization of Equation (5.47)    

                               

Using n integrators, summing points, and amplifiers, and Figure (5.8), the complete realization 

block diagram of equation (5.44) is shown in Figure 5.9. 

                      bn 

                                                                                           

   +                      X1                                         

                                   1/s        C1       

         _          

                                        

                                           P1                   

                                                                                           

   +                      X2                                            

                                    1/s                              C2       +      +  

         _        +                

U(s)                                                                   Y(s)  

                                            P2                                        

    ⋮  ⋮  ⋮  ⋮         +                                                                                   

   +                      Xn                                         

                                   1/s                              Cn        

         _          

                                        

                                           Pn        

                                                                                                 

  Figure 5.9 Block Diagram Realization of Equation (5.43)            
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Using the equations obtained and the realization diagram of Figure 5.9 we have   

             

 𝑠𝑋1(𝑠) = −𝑃1𝑋1(𝑠) + 𝑈(𝑠)         

 𝑠𝑋2(𝑠) = −𝑃2𝑋2(𝑠) + 𝑈(𝑠)         

 ……………………………….       (5.48)  

 𝑠𝑋𝑛(𝑠) = −𝑃𝑛𝑋𝑛(𝑠) + 𝑈(𝑠)         

             

 𝑌(𝑠) =  𝑏𝑛𝑈(𝑠) + 𝐶1𝑋1(𝑠) + 𝐶2𝑋2(𝑠) + ⋯+ 𝐶𝑛𝑋𝑛(𝑠)   (5.49)  

                       

Converting equations (5.47) and (5.48) from s-domain to time domain gives    

             

 �̇�1(𝑡) =  −𝑃1𝑥1(𝑡) + 𝑢(𝑡)       

 �̇�2(𝑡) = −𝑃2𝑥2(𝑡) + 𝑢(𝑡)      

 ………………………….       (5.50)  

 �̇�𝑛(𝑡) = −𝑃𝑛𝑥𝑛(𝑡) + 𝑢(𝑡)         

            

 𝑦(𝑡) = 𝐶1𝑥1(𝑡) + 𝐶2𝑥2(𝑡) + ⋯+ 𝐶𝑛𝑥𝑛(𝑡) + 𝑏𝑛𝑢(𝑡)      

                   

These equations can be written in matrix form as        

             

 [

�̇�1(𝑡)
�̇�2(𝑡)

⋮
�̇�𝑛(𝑡)

] = [

−𝑃1

 0

0
−𝑃2

⋯
0
0

⋮ ⋱ ⋮
0      0 ⋯ −𝑃𝑛

] [

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛(𝑡)

] + [

1
1
⋮
1

] 𝑢(𝑡)    (5.51)  

             

 𝑦(𝑡) = [𝐶1 𝐶2    … 𝐶𝑛] [

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛(𝑡)

] + 𝑏𝑛𝑢(𝑡)      (5.52) 

As before the output of integrators are the state variables x1, x2, … , xn and in most cases the 

degree of the numerator of the system transfer function is less than the degree of the 

denominator. This means in such cases bn = 0.       

             

              

Example 12: Obtain the state variable representation of the given system in diagonal form. 

𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=

5𝑠2+28𝑠+35

𝑠2+5𝑠+6
           

            

 After dividing and doing partial fractions we have      

            

 
𝑌(𝑠)

𝑈(𝑠)
= 5 +

−1

𝑠+2
+ 

4

𝑠+3
           

            

 using equations (5.51) and (5.52) we have       
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 [
�̇�1(𝑡)
�̇�2(𝑡)

] = [
−2    0
   0 −3

] [
𝑥1(𝑡)
𝑥2(𝑡)

] + [
1
1
] 𝑢(𝑡)        

            

 𝑦(𝑡) = [−1 4] [
𝑥1(𝑡)
𝑥2(𝑡)

] + 5𝑢(𝑡)      

The realization block diagram is shown in Figure 5.10 below.    

 

                       5 

                                                                                           

   +                      X1                                         

  U(s)                           1/s       – 1       +  

                    _        +   

                                        

                                            2         Y(s)          

                             +                                                              

   +                      X2                                            

                                    1/s                              4        

         _                       

                                                                     

                                            3                                        

  Figure 5.10 Block Diagram Realization of Example 12  

                                                

                         

Figure 5.11 shows the realization diagram of example 12 in time-domain.     

 

                       5 

                                                                                           

   +                      x1(t)                                         

  u(t)                            ∫𝑑𝑡       – 1       +  

                    _        +   

                                        

                                            2         y(t)          

                             +                                                              

   +                      x2(t)                                            

                                    ∫𝑑𝑡                             4        

         _                       

                                                                     

                                            3                                        

  Figure 5.11 Block Diagram Realization of Example 12    
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The realization block diagram is not unique. There are many realizations and each correspond 

to different set of state variable representation. However the system characteristics H(s) 

remains the same and provides the same output for the given input.    

                                            

As an exercise we may consider having been given a realization diagram consisting of 

integrators, amplifies, attenuators, and summing points such as the one shown in Figure 5.12 

and be required to write the state variable equations. To do so, we define the outputs of the 

integrators as state variables 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡). Then the corresponding inputs of the 

integrators are �̇�1(𝑡),  �̇�2(𝑡),… , �̇�𝑛(𝑡). Next using the summing points we write the necessary 

equations for �̇�1(𝑡),  �̇�2(𝑡),… , �̇�𝑛(𝑡), 𝑦(𝑡) in terms of 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡) and inputs.  

             

                            

Example 13: Obtain the state variable representation of the block diagram realization of Figure 

5.12.  

                        +                                           x1(t)                                + 

                     ∫𝑑𝑡                                7                                        y1(t) 

               _                                                                                        

                            5           +                                     

                                                                

                 6                 

    u(t)            4                                                                  

          

       8        _                                       +                                                   

     +                           x2(t)               _                                                                                    

                                    ∫𝑑𝑡                                10      y2(t) 

          _                       

                                                                     

                                            3                                        

  Figure 5.12 Block Diagram Realization of Example 13    

                           The 

output of the two integrators are defined as x1(t) and x2(t) as shown. The summing points are 

used to write the necessary equations for �̇�1(𝑡),  �̇�2(𝑡), 𝑦1(𝑡), 𝑦2(𝑡) as follows   

             

 �̇�1(𝑡) = −5𝑥1(𝑡) + 𝑢(𝑡)         

 �̇�2(𝑡) = −4𝑥1(𝑡) − 3𝑥2(𝑡) + 8𝑢(𝑡)        

 𝑦1(𝑡) = 7𝑥1(𝑡) + 6𝑥2(𝑡)         

 𝑦2(𝑡) = 𝑥1(𝑡) − 10𝑥2(𝑡)         

                          

and in matrix form           

            

 [
�̇�1(𝑡)
�̇�2(𝑡)

] = [
−5    0
−4 −3

] [
𝑥1(𝑡)
𝑥2(𝑡)

] + [
1
8
] 𝑢(𝑡)        

            

 [
𝑦1(𝑡)
𝑦2(𝑡)

] = [
7    6
1 −10

] [
𝑥1(𝑡)
𝑥2(𝑡)

]    
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5.5 – Solution of State Variable Equations – Time Domain  

 
In the previous section the time invariant state variable equations     

             

 �̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡)        (5.53)  

 𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡)        (5.54)  

                                                                         

were presented using variety of forms. It was also emphasized the forms introduced and the 

corresponding realization diagrams are not unique. In this section the solution of state variable 

equations using time-domain is considered.        

       

Homogeneous Solution           

Homogeneous matrix differential equation of equation (5.53) is     

             

 �̇�(𝑡) = 𝑨𝒙(𝑡)          (5.55)  

                      

Similar to scalar version of equation (5.55), the solution is assumed to be of the form  

             

 x(t) = c0 + c1t + c2t2 + c3t3 + … + cktk + …     (5.56)  

                     

Substituting equation (5.56) in equation (5.55) results in      

             

 c1 + 2c2t + 3c3t2 + … + kcktk-1 + … = A [c0 + c1t + c2t2 + … + cktk + …]   

                      

Equating coefficients of the like terms and recognizing x(0) = c0 from equation (5.56) gives 

             

 c1 = Ac0 = Ax(0)          

 c2 = (1/2)Ac1 = (1/2)A2x(0)         

 c3 = (1/3)Ac2 = (1/3x2)A3x(0)       (5.57)  

 ……………………………..         

 ck = (1/k!) Akx(0)          

                  

Substituting equation (5.57) in equation (5.56)          

             

 x(t) = x(0) + Ax(0)t + (1/2)A2x(0)t2 + (1/3x2)A3x(0)t3 + … + (1/k!) Akx(0)tk + …  

             

 x(t) = [ I + At + (1/2!)A2t2 + (1/3!)A3t3 + … + (1/k!) Aktk + …] x(0)  (5.58)  

                   

We define            

            

 eAt = I + At + (1/2!)A2t2 + (1/3!)A3t3 + … + (1/k!) Aktk + …      

       = ∑
𝑨𝑘𝑡𝑘

𝑘!

∞
𝑘=0             (5.59)   

                        

The nxn matrix eAt is known as state transition matrix and in many applications is denoted by 

𝝓(t). Hence the homogeneous solution of equation (5.55) is    
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 x(t) = eAt x(0) = 𝝓(t)𝐱(0)       (5.60)  

                     

From equation (5.59), we note         

             

 eA0 = e0 = I         (5.61)  

                          

and              

             

 
𝑑𝑒𝑨𝑡

𝑑𝑡
 = A + A2t + [1/2!] A3t2 + … + [1/(k-1)!] Aktk-1 + …     

          = A [I + At + (1/2!)A2t2 + (1/3!)A3t3 + … + (1/k!) Aktk + …]    

          = [I + At + (1/2!)A2t2 + (1/3!)A3t3 + … + (1/k!) Aktk + …] A    

          = A eAt = eAtA        (5.62)  

                         

Let us consider the product of eAt and e–At using equation (5.59)     

             

 eAte–At = e–AteAt          

   =[I + At + (1/2!)A2t2 + (1/3!)A3t3 + … + (1/k!) Aktk + …]x     

      [I - At + (1/2!)A2t2 - (1/3!)A3t3 + … + (-1)k(1/k!) Aktk + …]    

    = I + [At – At] + [(1/2!)A2t2 + (1/2!)A2t2 - A2t2] +      

       [(1/3!)A3t3 - (1/3!)A3t3 + (1/2!)A3t3 - (1/2!)A3t3] + …    

    = I                   

This indicates eAt and e–At are inverse of each other.      

             

 [eAt ]–1 = e–At         (5.63)  

 [e–At]–1 = e At           

                       

Now we examine the product of eAt and eBt using equation (5.59)     

             

 eAteBt = [I + At + (1/2!)A2t2 + (1/3!)A3t3 + … + (1/k!) Aktk + …]x     

     [I + Bt + (1/2!)B2t2 + (1/3!)B3t3 + … + (1/k!) Bktk + …]    

  = I + [A + B]t + [ (1/2!)A2 + AB + (1/2!)B2]t2 +      

     [(1/3!)A3t3 + (1/2!)A2Bt3 +  (1/2!)AB2t3 + (1/3!)B3t3] + …  (5.64)  

             

 e(A + B)t = [I + (A + B)t + (1/2!)(A + B)2t2 + (1/3!)(A + B)3t3 … + (1/k!) (A + B)ktk + …] 
   = I + [A + B]t + [(1/2!)A2 + (1/2!)AB + (1/2!)BA + (1/2!)B2] t2 +   

      [(1/3!)A3 + (1/3!)A2B +  (1/3!)ABA + (1/3!)AB2 + (1/3!)BA2 + (1/3!)BAB +  

       (1/3!)B2A + (1/3!)B3 ] t3 + …       

           (5.65)  

                           

Comparing equations (5.64) and (5.65) implies that       

            

 e(A + B)t = eAt eBt        (5.66)  

                              

Only if AB = BA            
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Nonhomogeneous Solution           

Nonhomogeneous matrix differential equation of equation (5.53) is     

             

 �̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡)          

                                  

Pre-multiplying both sides of this equation by e–At gives      

             

 𝑒−𝑨𝑡�̇�(𝑡) = 𝑒−𝑨𝑡𝑨𝒙(𝑡) + 𝑒−𝑨𝑡𝑩𝒖(𝑡)       

 𝑒−𝑨𝑡�̇�(𝑡) − 𝑒−𝑨𝑡𝑨𝒙(𝑡) = 𝑒−𝑨𝑡𝑩𝒖(𝑡)       

 
𝑑

𝑑𝑡
[𝑒−𝑨𝑡𝒙(𝑡)] = 𝑒−𝑨𝑡𝑩𝒖(𝑡)          

                                    

Integrating both sides from 0 to t         

             

 𝑒−𝑨𝑡𝒙(𝑡)|0
𝑡 = ∫ 𝑒−𝑨𝜏𝑩𝒖(𝜏)𝑑𝜏

𝑡

0
          

                    

Substituting upper and lower limit on the left hand side and using equation (5.61) results in 

             

 𝑒−𝑨𝑡𝒙(𝑡) − 𝒙(0) =  ∫ 𝑒−𝑨𝜏𝑩𝒖(𝜏)𝑑𝜏
𝑡

0
          

                               

Pre-multiplying both sides by [e–At]–1 = eAt gives       

             

 𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0) + ∫ 𝑒𝑨(𝒕−𝜏)𝑩𝒖(𝜏)𝑑𝜏
𝑡

0
        (5.67)  

                  

Once x(t) is evaluated using equation (5.67), y(t) can be obtained by substituting x(t) in equation 

(5.54).              

             

 𝒚(𝑡) = 𝑪𝑒𝑨𝑡𝒙(0) +  𝑪 ∫ 𝑒𝑨(𝒕−𝜏)𝑩𝒖(𝜏)𝑑𝜏 + 𝑫𝒖(𝑡)
𝑡

0
      (5.68)  

                     

To find impulse response, we let x(0) = 0 and u(t) = 𝜹(𝑡) and hence y(t) = h(t).   

             

 𝒉(𝑡) = 𝑪∫ 𝑒𝑨(𝒕−𝜏)𝑩𝜹(𝜏)𝑑𝜏 + 𝑫𝜹(𝑡)
𝑡

0
        

             

 𝒉(𝑡) = 𝑪𝑒𝑨𝒕𝑩 + 𝑫𝜹(𝑡)   t ≥ 0     (5.69)  

                  

The solution of state variable equations as described by equations (5.53) and (5.54) has been 

obtained. The system impulse response has been evaluated. Some useful properties of state 

transition matrix (STM) 𝝓(t) = eAt have been introduced. Before considering some examples, 

STM must be evaluated. Here we consider two such methods, one in time-domain and one in s-

domain. The s-domain procedure is discussed in Section 5.6. There are several methods that 

can be used in time domain. Even though possible, it is not advisable to use equation (5.59) to 

evaluate STM. The Cayley-Hamilton method is introduced in this section to determine STM. 

Cayley-Hamilton theorem simply states that every nxn matrix satisfies its own characteristic 

equation. Here the procedure is introduced and examples are given. The proof is left as an 

exercise.               
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Determining State Transition Matrix 𝝓(t) = eAt Using Cayley-Hamilton Theorem            

In Section 5.1, we saw that eigenvalues of an nxn matrix A are given by    

             

            

 det (A – λ I) = |A – λ I| = |

𝑎11 − 𝜆 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 − 𝜆 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮     ⋮
𝑎𝑛2 …

⋮
𝑎𝑛𝑛 − 𝜆

| = 0    

                                       

This results in a polynomial of degree n and is referred to as characteristic polynomial or 

characteristic equation.           

             

 𝜆𝑛 + 𝑎𝑛−1𝜆
𝑛−1 + 𝑎𝑛−2𝜆

𝑛−2 + ⋯+ 𝑎1𝜆 + 𝑎0 = 0    (5.70)  

                         

Using Cayley-Hamilton theorem, it can be shown that any function of a matrix f(A) can be 

written as            

             

 𝒇(𝑨) = 𝛽0𝑰 + 𝛽1𝑨 + ⋯+ 𝜷𝑛−1𝑨
𝑛−1 = ∑ 𝛽𝑘𝑨𝑘𝑛−1

𝑘=0        (5.71)  

                       

Furthermore            

            

 𝑓(𝜆) = 𝛽0 + 𝛽1𝜆 + ⋯+ 𝛽𝑛−1𝜆
𝑛−1 = ∑ 𝛽𝑘𝜆𝑘𝑛−1

𝑘=0        (5.72)  

                       

The objective is to evaluate the n unknown 𝛽0, 𝛽1, . . .  , 𝛽𝑛−1 using equation (5.72) and then 

substituting in equation (5.71) to obtain f(A). Here the f(A) that is of interest is 𝐟(𝐀) = 𝝓(t) = eAt. 

To evaluate 𝛽0, 𝛽1, . . .  , 𝛽𝑛−1, n-independent equations are required. Hence one must separate 

the procedure into two cases. Case 1 is when all n eigenvalues are distinct and case 2 is when 

some or all eigenvalues are repeated.        

              

Case 1 – A Has n Distinct Eigenvalues                             

A has n distinct eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛. Substituting these eigenvalues in equation (5.72) 

results in            

             

 𝑓(𝜆1) = 𝛽0 + 𝛽1𝜆1 + ⋯+ 𝛽𝑛−1𝜆1
𝑛−1        

 𝑓(𝜆2) = 𝛽0 + 𝛽1𝜆2 + ⋯+ 𝛽𝑛−1𝜆2
𝑛−1      (5.73)  

 ……………………………………….        

 𝑓(𝜆𝑛) = 𝛽0 + 𝛽1𝜆𝑛 + ⋯+ 𝛽𝑛−1𝜆𝑛
𝑛−1        

                          

Equation (5.73) needs to be solved for 𝛽0, 𝛽1, . . .  , 𝛽𝑛−1 and then 𝛽′𝑠 are to be substituted in 

equation (5.71) to evaluate f(A) = eAt.         

             

                     

Case 2 – A Has Some Repeated Eigenvalues                             

A has n eigenvalues. Let A have n1 distinct eigenvalues. Let eigenvalue 𝜆𝑖 be repeated n2 

times. Hence n = n1 + n2 – 1. For example if eigenvalues of A are 𝜆 =  −2,−2,−2,−3,−5,−7 

then n = 6, n1 = 4, and   n2 = 3 for 𝜆 =  −2. The n-independent required equations are obtained 

as follows. For the n1 eigenvalues we write        
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𝑓(𝜆1) = 𝛽0 + 𝛽1𝜆1 + ⋯+ 𝛽𝑛−1𝜆1
𝑛−1        

 𝑓(𝜆2) = 𝛽0 + 𝛽1𝜆2 + ⋯+ 𝛽𝑛−1𝜆2
𝑛−1      (5.74)  

 ………………………………………        

 𝑓(𝜆𝑛1) = 𝛽0 + 𝛽1𝜆𝑛1 + ⋯+ 𝛽𝑛−1𝜆𝑛1
𝑛−1    

And for eigenvalue 𝜆𝑖 which is repeated n2 times we use      

           

 
𝑑𝑚𝑓(𝜆)

𝑑𝜆𝑚 |𝜆𝑖
=  

𝑑𝑚

𝑑𝜆𝑚 (𝛽0 + 𝛽1𝜆 + ⋯+ 𝛽𝑛−1𝜆
𝑛−1)|𝜆𝑖

 m = 1, 2, … , n2 –1 (5.75)  

                    

Equations (5.74) and (5.75) provide the n independent equations required to solve for 𝛽0, 𝛽1,
. . .  , 𝛽𝑛−1. Then 𝛽′𝑠 are to be substituted in equation (5.71) to evaluate f(A) = eAt. It is important 

to note that the repeated eigenvalue 𝜆𝑖 is used one time in equation (5.74) and the remaining   

n2 – 1 times in equation (5.75).         

                        

Now let us consider some examples.         

             

                             

Example 14: Evaluate state transition matrix eAt for the given matrix A. 

𝐴 = [
−1 −1
  3 −5

]             

             

 |A – λ I| = 0           

          

 |
−1 − 𝜆 −1

  3 −5 − 𝜆
| = 0          𝜆2 + 6𝜆 + 8 = 0  𝜆 =  −2,−4   

             

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨  Using equation (5.73)      

             

 𝑒𝜆𝑡 = 𝛽0 + 𝛽1𝜆           

             

 𝑒−2𝑡 = 𝛽0 − 2𝛽1           

 𝑒−4𝑡 = 𝛽0 − 4𝛽1          

            

 Solving for 𝛽0 and 𝛽1 gives         

            

 𝛽1 = (
1

2
)(𝑒−2𝑡 − 𝑒−4𝑡)         

 𝛽0 = 2𝑒−2𝑡 − 𝑒−4𝑡          

             

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨 = (2𝑒−2𝑡 − 𝑒−4𝑡) [
1 0
0 1

] + (
1

2
)(𝑒−2𝑡 − 𝑒−4𝑡) [

−1 −1
  3 −5

]     

             

 𝑒𝑨𝑡 = [

1

2
(3𝑒−2𝑡 − 𝑒−4𝑡) −

1

2
(𝑒−2𝑡 − 𝑒−4𝑡)

3

2
(𝑒−2𝑡 − 𝑒−4𝑡)

1

2
(−𝑒−2𝑡 + 3𝑒−4𝑡)

]       
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Example 15: Evaluate state transition matrix eAt for the given matrix A. 

𝐴 = [
−2 −1
   5 −4

]             

             

 |A – λ I| = 0           

          

 |
−2 − 𝜆 −1

  5 −4 − 𝜆
| = 0          𝜆2 + 6𝜆 + 13 = 0  𝜆 = −3 ± 𝑖2    

             

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨  Using equation (5.73)      

            

 𝑒𝜆𝑡 = 𝛽0 + 𝛽1𝜆           

             

 𝑒(−3+𝑖2)𝑡 = 𝛽0 + (−3 + 𝑖2)𝛽1          

 𝑒(−3−𝑖2)𝑡 = 𝛽0 + (−3 − 𝑖2)𝛽1         

             

 Solving for 𝛽0 and 𝛽1 gives         

            

 𝛽1 = (
1

𝑖4
) 𝑒−3𝑡(𝑒𝑖2𝑡 − 𝑒−𝑖2𝑡) = (

1

2
) 𝑒−3𝑡 sin 2𝑡       

            

 𝛽0 = 𝑒(−3+𝑖2)𝑡 − (−3 + 𝑖2) (
1

2
) 𝑒−3𝑡 sin2𝑡       

      = 𝑒−3𝑡(cos2𝑡 + 𝑖𝑠𝑖𝑛 2𝑡) +
3

2
𝑒−3𝑡 sin2𝑡 − 𝑖 𝑒−3𝑡 sin2𝑡     

      = 𝑒−3𝑡 cos 2𝑡 +
3

2
𝑒−3𝑡 sin2𝑡        

            

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨 = (𝑒−3𝑡 cos 2𝑡 +
3

2
𝑒−3𝑡 sin 2𝑡) [

1 0
0 1

] + (
1

2
) (𝑒−3𝑡 sin 2𝑡) [

−2 −1
  5 −4

]    

             

 𝑒𝑨𝑡 = [
(𝑒−3𝑡 cos 2𝑡 +

1

2
𝑒−3𝑡 sin2𝑡) −

1

2
𝑒−3𝑡 sin 2𝑡)

5

2
𝑒−3𝑡 sin2𝑡 (𝑒−3𝑡 cos2𝑡 −

1

2
𝑒−3𝑡 sin 2𝑡)

]                

             

                               

Example 16: Evaluate state transition matrix eAt for the given matrix A. 

𝐴 = [
−3 −1
   1 −5

]             

             

 |A – λ I| = 0           

          

 |
−3 − 𝜆 −1

 1 −5 − 𝜆
| = 0          𝜆2 + 8𝜆 + 16 = 0  𝜆 = −4,−4    

             

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨  Using equations (5.74) and (5.75)    

             

 𝑒𝜆𝑡 = 𝛽0 + 𝛽1𝜆           

             

 𝑒−4𝑡 = 𝛽0 − 4𝛽1           
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𝑑𝑒𝜆𝑡

𝑑𝜆
|𝜆=−4 =  

𝑑

𝑑𝜆
(𝛽0 + 𝛽1𝜆)|𝜆=−4        

             

 𝑡𝑒−4𝑡 = 𝛽1  ⇒  𝛽0 = 𝑒−4𝑡 + 4𝑡𝑒−4𝑡     

             

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨 = (𝑒−4𝑡 + 4𝑡𝑒−4𝑡) [
1 0
0 1

] + (𝑡𝑒−4𝑡) [
−3 −1
  1 −5

]      

            

 𝑒𝑨𝑡 = [
(𝑒−4𝑡 + 𝑡𝑒−4𝑡) (−𝑡𝑒−4𝑡)

(𝑡𝑒−4𝑡) (𝑒−4𝑡 − 𝑡𝑒−4𝑡)
]       

             

                      

Example 17: Assume A is a 5x5 matrix with eigenvalues 𝜆 = −1,−1,−1,−2,−3. Write only the 

necessary equations to solve for 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4. valuate state transition matrix eAt for the given 

matrix A.            

            

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨 + 𝛽2𝑨
𝟐 + 𝛽3𝑨

𝟑 +  𝛽4𝑨
𝟒 Using equations (5.74) and (5.75)  

             

 𝑒𝜆𝑡 = 𝛽0 + 𝛽1𝜆 + 𝛽2𝜆
2 + 𝛽3𝜆

3 + 𝛽4𝜆
4        

             

 𝑒−𝑡 = 𝛽0 − 𝛽1 + 𝛽2 − 𝛽3 + 𝛽4         

 𝑒−2𝑡 = 𝛽0 − 2𝛽1 + 4𝛽2 − 8𝛽3 + 16𝛽4         

 𝑒−3𝑡 = 𝛽0 − 3𝛽1 + 9𝛽2 − 27𝛽3 + 81𝛽4        

           

 
𝑑𝑚𝑒𝜆𝑡

𝑑𝜆𝑚 |𝜆=−1 =
𝑑𝑚

𝑑𝜆𝑚 (𝛽0 + 𝛽1𝜆 + 𝛽2𝜆
2 + 𝛽3𝜆

3 + 𝛽4𝜆
4)|𝜆=−1  m = 1, 2  

             

 𝑡𝑒𝜆𝑡|𝜆=−1 = (𝛽1 + 2𝛽2𝜆 + 3𝛽3𝜆
2 + 4𝛽4𝜆

3|𝜆=−1      

 𝑡𝑒−𝑡 = 𝛽1 − 2𝛽2 + 3𝛽3 − 4𝛽4         

            

 𝑡2𝑒𝜆𝑡|𝜆=−1 = (2𝛽2 + 6𝛽3𝜆 + 12𝛽4𝜆
2|𝜆=−1       

 𝑡2𝑒−𝑡 = 2𝛽2 − 6𝛽3 + 12𝛽4         

             

 Hence the five equations required to solve for 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4 are    

             

 𝑒−𝑡 = 𝛽0 − 𝛽1 + 𝛽2 − 𝛽3 + 𝛽4         

 𝑒−2𝑡 = 𝛽0 − 2𝛽1 + 4𝛽2 − 8𝛽3 + 16𝛽4         

 𝑒−3𝑡 = 𝛽0 − 3𝛽1 + 9𝛽2 − 27𝛽3 + 81𝛽4        

 𝑡𝑒−𝑡 = 𝛽1 − 2𝛽2 + 3𝛽3 − 4𝛽4        

 𝑡2𝑒−𝑡 = 2𝛽2 − 6𝛽3 + 12𝛽4         

             

 once 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4 are evaluated, 𝑒𝑨𝑡 can be obtained using    

             

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨 + 𝛽2𝑨
𝟐 + 𝛽3𝑨

𝟑 +  𝛽4𝑨
𝟒   
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Example 18: A system is described by the following state variable equations. 

[
�̇�1

�̇�2
] = [

1 2
0 2

] [
𝑥1

𝑥2
] + [

1
2
] 𝑢(𝑡)  [

𝑥1(0)
𝑥2(0)

] = [
0
1
]       

                  

𝑦(𝑡) =  [2 −1] [
𝑥1

𝑥2
]    𝑢(𝑡) = unit step function     

                            

a) Evaluate state transition matrix eAt                          

b) Evaluate x(t) and y(t)                          

c) Evaluate impulse response h(t)         

            

 a) eAt 

|A – λ I| = 0           

          

 |
1 − 𝜆 2
  0 2 − 𝜆

| = 0          (1 − 𝜆)(2 − 𝜆) = 0  𝜆 =  1, 2   

             

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨          

             

 𝑒𝜆𝑡 = 𝛽0 + 𝛽1𝜆           

             

 𝑒𝑡 = 𝛽0 + 𝛽1           

 𝑒2𝑡 = 𝛽0 + 2𝛽1           

            

 𝛽1 = −𝑒𝑡 + 𝑒2𝑡          

 𝛽0 = 2𝑒𝑡 − 𝑒2𝑡           

            

 𝑒𝑨𝑡 = 𝛽0𝑰 + 𝛽1𝑨 = (2𝑒𝑡 − 𝑒2𝑡) [
1 0
0 1

] + (−𝑒𝑡 + 𝑒2𝑡) [
1 2
0 2

]       

            

 𝑒𝑨𝑡 = [𝑒
𝑡 −2𝑒𝑡 + 2𝑒2𝑡

0 𝑒2𝑡 ]         

             

 b) x(t) and y(t)           

            

 𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0) + ∫ 𝑒𝑨(𝒕−𝜏)𝑩𝒖(𝜏)𝑑𝜏
𝑡

0
          

 [
𝑥1

𝑥2
] = [𝑒

𝑡 −2𝑒𝑡 + 2𝑒2𝑡

0 𝑒2𝑡 ] [
0
1
] + ∫ [𝑒

(𝑡−𝜏) −2𝑒(𝑡−𝜏) + 2𝑒2(𝑡−𝜏)

0 𝑒2(𝑡−𝜏)
] [

1
2
] (1)

𝑡

0
𝑑𝜏   

             

 [
𝑥1

𝑥2
] = [−2𝑒𝑡 + 2𝑒2𝑡

𝑒2𝑡 ] + ∫ [−3𝑒(𝑡−𝜏) + 4𝑒2(𝑡−𝜏)

2𝑒2(𝑡−𝜏)
]

𝑡

0
𝑑𝜏        

             

 [
𝑥1

𝑥2
] = [−2𝑒𝑡 + 2𝑒2𝑡

𝑒2𝑡 ] + [
−3𝑒𝑡 ∫ 𝑒−𝜏𝑑𝜏

𝑡

0
+ 4𝑒2𝑡 ∫ 𝑒−2𝜏𝑑𝜏 

𝑡

0

2𝑒2𝑡 ∫ 𝑒−2𝜏𝑡

0
𝑑𝜏 

]       

            

 [
𝑥1

𝑥2
] = [−2𝑒𝑡 + 2𝑒2𝑡

𝑒2𝑡 ] + [
−3𝑒𝑡(1 − 𝑒−𝑡) + 2𝑒2𝑡(1 − 𝑒−2𝑡)

𝑒2𝑡(1 − 𝑒−2𝑡)
]    
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 [
𝑥1

𝑥2
] = [−2𝑒𝑡 + 2𝑒2𝑡

𝑒2𝑡 ] + [−3𝑒𝑡 + 2𝑒2𝑡 + 1
𝑒2𝑡 − 1

] =  [−5𝑒𝑡 + 4𝑒2𝑡 + 1
2𝑒2𝑡 − 1

]    

             

 𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡)          

 𝑦(𝑡) = [2 −1] [
𝑥1

𝑥2
] + 0𝑢(𝑡) = 2(−5𝑒𝑡 + 4𝑒2𝑡 + 1) − (2𝑒2𝑡 − 1)    

            

 𝑦(𝑡) = −10𝑒𝑡 + 6𝑒2𝑡 + 3                

             

             

 c) h(t)            

             

 𝒉(𝑡) = 𝑪𝑒𝑨𝒕𝑩 + 𝑫𝜹(𝑡)          

 ℎ(𝑡) = [2 −1] [𝑒
𝑡 −2𝑒𝑡 + 2𝑒2𝑡

0 𝑒2𝑡 ] [
1
2
] = [2 −1] [−3𝑒𝑡 + 4𝑒2𝑡

2𝑒2𝑡 ]    

 ℎ(𝑡) = −6𝑒𝑡 + 6𝑒2𝑡  

             

 One can note the output consists of et, e2t and a constant. This is expected considering 

 the eigenvalue are 𝜆 = 1 and 2 and the input is a unit step. Similarly the terms et, e2t in  

 the impulse response h(t) are expected as well.      

             

             

             

             

              

5.6 – Solution of State Variable Equations – S-Domain  

 

In the previous section the solution of state variable equations in time-domain were obtained. In 

this section the solution of state variable equations in s-domain is evaluated. We begin with the 

equations             

             

 �̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡)         

 𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡)          

                                                                        

Taking Laplace Transform of both equations and using the properties of linearity and derivative 

we have            

            

 sX(s) – x(0) = AX(s) + BU(s)       (5.76)  

 Y(s) = CX(s) + DU(s)        (5.77)  

                                      

From equation (5.76) we write         

            

 (sI – A)X(s) = x(0) + BU(s)       (5.78)  

                                     

Pre-multiplying both sides of equation (5.78) by (sI – A)–1 results in    



158 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

 X(s) = (sI – A)–1 x(0) + (sI – A)–1 BU(s)     (5.79)  

                      

and              

            

 Y(s) = CX(s) + DU(s) = C(sI – A)–1 x(0) + C(sI – A)–1 BU(s) + DU(s) (5.80)  

                   

Finally the system transfer function can be obtained by letting x(0) = 0 in equation (5.80).  

             

 Y(s) = C(sI – A)–1 BU(s) + DU(s) = [C(sI – A)–1 B + D] U(s)    (5.81)  

                      

Hence             

            

 H(s) = C(sI – A)–1 B + D        (5.82)  

             

Comparing the equations obtained in this section with those in the previous section, the 

following observations can be made.         

             

 𝐿[𝝓(t)] =  𝐿[𝑒𝑨𝑡] =  (𝑠𝑰 − 𝑨)−1      (5.83)                 

or             

 𝝓(t) = 𝑒𝑨𝑡 = 𝐿−1[(𝑠𝑰 − 𝑨)−1]       (5.84) 

  

 H(s) = L [h(t)]         (5.85)  

                 

Equation (5.84) can be used to evaluate 𝝓(t) = 𝑒𝑨𝑡 if so desired. However for an nxn matrix A, 

n2 partial fractions will be required to convert state transition matrix from s-domain to time-

domain. The advantage of using equation (5.79) over equation (5.67) in evaluating state 

variables is avoiding integration. However n partial fraction will be necessary to convert X(s) to 

x(t) should equation (5.79) be used and state variables in time domain be desired.  

             

                   

Example 19: A system is described by the following state variable equations. 

[
�̇�1

�̇�2
] = [

1 2
0 2

] [
𝑥1

𝑥2
] + [

1
2
] 𝑢(𝑡)  [

𝑥1(0)
𝑥2(0)

] = [
0
1
]       

                  

𝑦(𝑡) =  [2 −1] [
𝑥1

𝑥2
]    𝑢(𝑡) = unit step function     

                            

a) Evaluate X(s) and x(t) = L–1[X(s)]                                      

b) Evaluate Y(s) and y(t) = L–1[Y(s)]                         

c) Evaluate H(s) and h(t) = L–1[H(s)]                                        

d) Evaluate state transition matrix eAt using 𝐿−1[(𝑠𝑰 − 𝑨)−1]      

                         

             

 a) X(s) and x(t) = L–1[X(s)]  

X(s) = (sI – A)–1 x(0) + (sI – A)–1 BU(s)  
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[
𝑋1(𝑠)
𝑋2(𝑠)

] = [
𝑠 − 1 −2

0 𝑠 − 2
]
−1

[
0
1
] + [

𝑠 − 1 −2
0 𝑠 − 2

]
−1

[
1
2
]

1

𝑠
     

           

 [
𝑋1(𝑠)
𝑋2(𝑠)

] =
1

(𝑠−1)(𝑠−2)
[
𝑠 − 2 2

0 𝑠 − 1
] [

0
1
] +

1

𝑠(𝑠−1)(𝑠−2)
[
𝑠 − 2 2

0 𝑠 − 1
] [

1
2
]    

             

 [
𝑋1(𝑠)
𝑋2(𝑠)

] =
1

(𝑠−1)(𝑠−2)
[

2
𝑠 − 1

] +
1

𝑠(𝑠−1)(𝑠−2)
[
𝑠 + 2
2𝑠 − 2

] =
1

𝑠(𝑠−1)(𝑠−2)
[

3𝑠 + 2
𝑠2 + 𝑠 − 2

]   

             

 [
𝑋1(𝑠)
𝑋2(𝑠)

] = [

3𝑠+2

𝑠(𝑠−1)(𝑠−2)

𝑠2+𝑠−2

𝑠(𝑠−1)(𝑠−2)

] = [

3𝑠+2

𝑠(𝑠−1)(𝑠−2)

𝑠+2

𝑠(𝑠−2)

]        

            

 [
𝑋1(𝑠)
𝑋2(𝑠)

] = [

1

𝑠
−

5

𝑠−1
+

4

𝑠−2
−1

𝑠
+

2

𝑠−2

]         

             

 [
𝑥1(𝑡)
𝑥2(𝑡)

] = [1 − 5𝑒𝑡 + 4𝑒2𝑡

−1 + 2𝑒2𝑡 ]         

             

             

 b) Y(s) and y(t) = L–1[Y(s)]         

             

 Y(s) = C(sI – A)–1 x(0) + C(sI – A)–1 BU(s) + DU(s)      

             

 𝑌(𝑠) = [2 −1]
1

(𝑠−1)(𝑠−2)
[
𝑠 − 2 2

0 𝑠 − 1
] [

0
1
] + [2 −1]

1

𝑠(𝑠−1)(𝑠−2)
[
𝑠 − 2 2

0 𝑠 − 1
] [

1
2
]   

             

 𝑌(𝑠) = 
−𝑠+5

(𝑠−1)(𝑠−2)
+

6

𝑠(𝑠−1)(𝑠−2)
=

−𝑠2+5𝑠+6

𝑠(𝑠−1)(𝑠−2)
       

             

 𝑌(𝑠) =  
3

𝑠
−

10

𝑠−1
+

6

𝑠−2
          

            

 𝑦(𝑡) = 3 − 10𝑒𝑡 + 6𝑒2𝑡                

             

             

 c) H(s) and h(t) = L–1[H(s)]         

             

 H(s) = C(sI – A)–1 B + D         

             

 𝐻(𝑠) = [2 −1]
1

(𝑠−1)(𝑠−2)
[
𝑠 − 2 2

0 𝑠 − 1
] [

1
2
]       

             

 𝐻(𝑠) =
6

(𝑠−1)(𝑠−2)
          

 𝐻(𝑠) =
−6

(𝑠−1)
+

6

(𝑠−2)
          

 ℎ(𝑡) = −6𝑒𝑡 + 6𝑒2𝑡         
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d) State transition matrix eAt using 𝐿−1[(𝑠𝑰 − 𝑨)−1]       

            

 𝜱(𝑠) = (𝑠𝑰 − 𝑨)−1 =
1

(𝑠−1)(𝑠−2)
[
𝑠 − 2 2

0 𝑠 − 1
] = [

𝑠−2

(𝑠−1)(𝑠−2)

2

(𝑠−1)(𝑠−2)

0
𝑠−1

(𝑠−1)(𝑠−2)

]   

             

 𝜱(𝑠) = (𝑠𝑰 − 𝑨)−1 = [

1

(𝑠−1)

2

(𝑠−1)(𝑠−2)

0
1

(𝑠−2)

]       

             

 𝝓(t) = eAt = 𝐿−1[(𝑠𝑰 − 𝑨)−1] = 𝐿−1 [

1

(𝑠−1)
−

2

(𝑠−1)
+

2

(𝑠−2)

0
1

(𝑠−2)

]     

 𝝓(t) = eAt = [𝑒
𝑡 −2𝑒𝑡 + 2𝑒2𝑡

0 𝑒2𝑡 ]        

             

 It can be observed the results obtained in example 19 using s-domain method are the 

 same as those obtained in example 18 using time-domain.     

             

             

             

             

             

              

5.7 – Linear Transformation and Diagonalization  

 
In Section 5.2 it was demonstrated that given an nxn nonsingular matrix T and an nxn matrix A 

the eigenvalues of the similar matrix AT = T–1AT is the same as A and the corresponding 

eigenvectors of AT is XT = T–1X, where X is the eigenvector of matrix A. Furthermore if an nxn 

matrix A has n distinct eigenvalues and n linearly independent eigenvectors and the columns of 

the transformation matrix in the equation AT = T–1AT are made up of the eigenvectors of matrix 

A, then the resulting AT is a diagonal matrix whose diagonal elements are the eigenvalues of A. 

Once again we begin with           

             

 �̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡)         

 𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡)          

                                                                         

We let T be a nonsingular nxn matix and define state z(t) as     

             

 x(t) = T z(t)         (5.86)                

or             

 z(t) = T–1x(t)         (5.87)  

                 

Substituting equation (5.86) in state variable equations shown above results in   
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𝑻�̇�(𝑡) = 𝑨𝑻𝒛(𝑡) + 𝑩𝒖(𝑡)                                                                             (5.88)  

 𝒚(𝑡) = 𝑪𝑻𝒛(𝑡) + 𝑫𝒖(𝑡)       (5.89) 

Pre-multiplying both sides of equation (5.88) with T–1 gives      

            

 �̇�(𝑡) = 𝑻−1𝑨𝑻𝒛(𝑡) + 𝑻−1𝑩𝒖(𝑡)       (5.90)  

                                                   

We now define           

            

 AT = T–1AT            

 BT = T–1B         (5.91)  

 CT = CT           

 DT = D                  

                        

Using transformations defined in equation (5.91), state variable equations become  

             

 �̇�(𝑡) = 𝑨𝑻𝒛(𝑡) + 𝑩𝑻𝒖(𝑡)       (5.92)  

 𝒚(𝑡) = 𝑪𝑻𝒛(𝑡) + 𝑫𝑻𝒖(𝑡)       (5.93)  

                         

and from equation (5.87)          

             

 z(0) = T–1x(0)         (5.94)  

              

The equations already obtained to solve for state transition matrix, state variables, outputs, and 

impulse responses do not change. Same equations in time-domain and s-domain apply. 

However AT, BT, CT, and DT must now be used. Clearly the state variables x(t) is different from 

state variables z(t) unless T = I. Sate variables are in general different depending on what 

modeling form is utilized. However for a given input the system outputs and impulse responses 

remain the same regardless of modeling or transformation matrix T utilized. This is shown in the 

following theorem. 

 

Theorem 5.3                                                                                 

Given a linear time invariant state variable equations      

            

 �̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡)          

 𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡)            

                                                          

The system characteristics are not changed after transforming the it to     

            

 �̇�(𝑡) = 𝑨𝑻𝒛(𝑡) + 𝑩𝑻𝒖(𝑡)         

 𝒚(𝑡) = 𝑪𝑻𝒛(𝑡) + 𝑫𝑻𝒖(𝑡)         

                     

where             

            

 AT = T–1AT            

 BT = T–1B          

 CT = CT           

 DT = D                  
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and T is a nonsingular nxn matix.         

                               

Proof:              

The proof is complete once it is shown that hT(t) = h(t). Using equation (5.69), we have  

             

 𝒉𝑻(𝑡) = 𝑪𝑻𝑒
𝑨𝑻𝒕𝑩𝑻 + 𝑫𝑻𝜹(𝑡)   t ≥ 0    (5.95)  

                         

After the transformation, state transition matrix is       

            

 𝑒𝑨𝑻𝒕 = 𝛽0𝑰 + 𝛽1𝑨𝑻 + ⋯+ 𝜷𝑛−1𝑨𝑻
𝑛−1      (5.96)    

                                    

using equations (5.91) and (5.96)         

             

 𝒉𝑻(𝑡) = 𝑪𝑻[𝛽0𝑰 + 𝛽1𝑨𝑻 + ⋯+ 𝜷𝑛−1𝑨𝑻
𝑛−1]𝑻−1𝑩 + 𝑫𝜹(𝑡)   (5.97)  

                       

Substituting AT from equation (5.91) gives        

            

 𝒉𝑻(𝑡) = 𝑪𝑻[𝛽0𝑰 + 𝛽1𝑨𝑻 + ⋯+ 𝜷𝑛−1𝑨𝑻
𝑛−1]𝑻−1𝑩 + 𝑫𝜹(𝑡)     

             

 𝒉𝑻(𝑡) = 𝑪𝑻[𝛽0𝑰 + 𝛽1(𝑻
−1𝑨𝑻) + ⋯+ 𝜷𝑛−1(𝑻

−1𝑨𝑻)𝑛−1]𝑻−1𝑩 + 𝑫𝜹(𝑡) (5.98)  

                         

Pre-multiplying T from the left hand side and T–1 from the right hand side results in  

             

 𝒉𝑻(𝑡) = 𝑪[𝛽0𝑻𝑰𝑻−1 + 𝛽1𝑻(𝑻−1𝑨𝑻)𝑻−1 + ⋯+ 𝜷𝑛−1𝑻(𝑻−1𝑨𝑻)𝑛−1𝑻−1]𝑩 + 𝑫𝜹(𝑡)  

             

 𝒉𝑻(𝑡) = 𝑪[𝛽0𝑰 + 𝛽1𝑰𝑨𝑰 + ⋯+ 𝜷𝑛−1𝑻(𝑻−1𝑨𝑻)(𝑻−1𝑨𝑻)… (𝑻−1𝑨𝑻)𝑻−1]𝑩 + 𝑫𝜹(𝑡)  

             

 𝒉𝑻(𝑡) = 𝑪[𝛽0𝑰 + 𝛽1𝑨 + ⋯+ 𝜷𝑛−1(𝑰)𝑨(𝑰)𝑨)… (𝑰)𝑨(𝑰)]𝑩 + 𝑫𝜹(𝑡)    

             

 𝒉𝑻(𝑡) = 𝑪[𝛽0𝑰 + 𝛽1𝑨 + ⋯+ 𝜷𝑛−1𝑨
𝑛−1]𝑩 + 𝑫𝜹(𝑡) = 𝑪𝑒𝑨𝑡𝑩 + 𝑫𝜹(𝑡) = 𝒉(𝑡)   

             

           (5.99)  

             

                       

As shown in Theorem (5.3), system response in unaltered after linear transformation using 

matrix T. In general such a transformation allows one to convert from one form of modeling to 

another. For example to convert from controllable canonical form to observable canonical from 

or vice versa. However one of the most useful transformation is diagonalization where matrix A 

is converted to a diagonal form. As indicated earlier, such a form is obtained when the columns 

of the transformation matrix T are made up of the eigenvectors of matrix A.  This is 

demonstrated in the following example.        

             

                           

 

 



163 
 

Ali Amini, Ph. D.                           Professor of Electrical & Computer Engineering                              May 2016        
       California State University, Northridge  

Example 20: A system is described by the following state variable equations. 

[
�̇�1

�̇�2
] = [

−1 −1
  3 −5

] [
𝑥1

𝑥2
] + [

   1
−1

] 𝑢(𝑡)  [
𝑥1(0)
𝑥2(0)

] = [
1
1
]      

                   

𝑦(𝑡) =  [1 2] [
𝑥1

𝑥2
]    𝑢(𝑡) = unit step function     

                            

a) Evaluate H(s)                                                           

b) Evaluate Y(s)                          

c) Transform the system to a diagonal form                        

d) Evaluate HT(s)                                          

e) Evaluate YT(s)                    

            

 a) H(s) = C(sI – A)–1 B + D 

 𝐻(𝑠) = [1 2] [
𝑠 + 1 1
−3 𝑠 + 5

]
−1

[
   1
−1

]        

             

𝐻(𝑠) = [1 2] 
1

(𝑠+2)(𝑠+4)
[
𝑠 + 5 −1

3 𝑠 + 1
] [

   1
−1

]        

            

 𝐻(𝑠) =
−𝑠+10

(𝑠+2)(𝑠+4)
          

             

 b) Y(s) = C(sI – A)–1 x(0) + C(sI – A)–1 BU(s) + DU(s)     

             

 𝑌(𝑠) = [1 2]
1

(𝑠+2)(𝑠+4)
[
𝑠 + 5 −1

3 𝑠 + 1
] [

1
1
] + [1 2]

1

𝑠(𝑠+2)(𝑠+4)
[
𝑠 + 5 −1

3 𝑠 + 1
] [

  1
−1

]  

𝑌(𝑠) = 
3𝑠+12

(𝑠+2)(𝑠+4)
+

−𝑠+10

𝑠(𝑠+2)(𝑠+4)
=

3𝑠2+11𝑠+10

𝑠(𝑠+2)(𝑠+4)
       

                       

 c) Transformation Matrix         

             

 |A – λ I| = 0           
            

 |
−1 − 𝜆 −1

3 −5 − 𝜆
| = 0  ⇒ 𝜆2 + 6𝜆 + 8 = 0 ⇒ λ = –2, –4   

(A – λ I)X = 0           

             

 [−1 − 𝜆 −1
3 −5 − 𝜆

] [
𝑥1

𝑥2
] = [

0
0
] ⇒        

             

 (–1 – λ)x1 – x2 = 0          

 3x1 + (–5 – λ)x2 = 0          

             

 λ1 = –2            

 x1 – x2 = 0          

 3x1 –  3x2 = 0           
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 X1 = [
1
1
]           

             

 λ2 = –4            

 3x1 – x2 = 0          

 3x1 – x2 = 0           

             

 X2 = [
1
3
]           

             

 T =  [
1 1
1 3

]           

             

 AT = T–1AT = (
𝟏

𝟐
) [

   3 −1
−1    1

] [
−1 −1
  3 −5

] [
1 1
1 3

] = [
−2    0
   0 −4

]      

            

 BT = T–1B = (
𝟏

𝟐
) [

   3 −1
−1    1

] [
   1
−1

] = [
   2
−1

]       

            

 CT = CT  = [1 2] [
1 1
1 3

] = [3 7]        

             

 DT = D = 0           

             

 and            

             

 z(0) = T–1x(0) = (
𝟏

𝟐
) [

   3 −1
−1    1

] [
1
1
] = [

1
0
]       

            

 d) HT(s) = CT(sI – AT)–1 BT + DT 

 𝐻𝑇(𝑠) = [3 7] [
𝑠 + 2 0

0 𝑠 + 4
]
−1

[
   2
−1

]       

              

𝐻𝑇(𝑠) = [3 7] 
1

(𝑠+2)(𝑠+4)
[
𝑠 + 4 0

0 𝑠 + 2
] [

   2
−1

]        

            

 𝐻𝑇(𝑠) =
−𝑠+10

(𝑠+2)(𝑠+4)
          

             

 e) YT(s) = CT(sI – AT)–1 z(0) + CT(sI – AT)–1 BTU(s) + DTU(s)     

             

 𝑌𝑇(𝑠) = [3 7]
1

(𝑠+2)(𝑠+4)
[
𝑠 + 4 0

0 𝑠 + 2
] [

1
0
] + [3 7]

1

𝑠(𝑠+2)(𝑠+4)
[
𝑠 + 4 0

0 𝑠 + 2
] [

  2
−1

]   

             

 𝑌𝑇(𝑠) = [3 7]
1

(𝑠+2)(𝑠+4)
[
𝑠 + 4 0

0 𝑠 + 2
] [

1
0
] + [3 7]

1

𝑠(𝑠+2)(𝑠+4)
[
𝑠 + 4 0

0 𝑠 + 2
] [

  2
−1

]   

             

 𝑌𝑇(𝑠) =
3𝑠+12

(𝑠+2)(𝑠+4)
+

−𝑠+10

𝑠(𝑠+2)(𝑠+4)
=

3𝑠2+11𝑠+10

𝑠(𝑠+2)(𝑠+4)
  

             

 As can be observed, H(s) and Y(s) are the same before and after the transformation. 
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CHAPTER 6 

 

Partial Differential Equations  
  

 

 

 

Overview 

Section 6.1 starts with the discussion of partial differential equations (PDE) as compared to 

ordinary differential equations (ODE) and some fundamental definitions such as order of PDE, 

linear and nonlinear PDE, initial and boundary conditions, homogeneous and nonhomogeneous 

PDE, and hyperbolic, parabolic, and elliptic forms. and eigenvectors. Soling PDE using ODE is 

presented in Section 6.2. Section 6.3 discusses the solution of one-dimensional wave equation 

and D’Alembert’s solution. The solution of one-dimensional diffusion or heat equation is 

discussed in Section 6.4 and the solution of two-dimensional Laplace’s equation is presented in 

Section 6.5.  
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6.1 – Introduction  

 
Ordinary differential equations (ODEs) are used in many application to model systems for single 

input-single output as well as for multiple input-multiple output. Such modeling works when 

there is one independent variable such at time (t) is involved. However in many other 

applications there is more than one independent variable defines the system. As a result this 

category of problems cannot be modeled by ordinary differential equations and in such cases 

partial differential equations (PDEs) are utilized. Wave propagation, solid state theory, solid 

mechanics, and electromagnetic theory are just a few to mention that are governed by partial 

differential equations. Partial differential equations involve one or more partial derivatives of 

order one or higher of an unknown function depending on two or more independent variables. 

The unknown function can be voltage, temperature, displacement, etc. and the independent 

variable can be time t as well as displacements x, y, and z. In general the more independent 

variables the more complex the PDE becomes.        

                    

We begin with some definitions involving partial differential equations.    

             

                        

Definitions            

                       

Order of Partial Differential Equation                                           

The order of highest partial derivative present in the partial differential equation. Here are some 

examples with u as the unknown function and x, y, z, and t as independent variables.    

             

 u(x, t)  
𝜕𝑢

𝜕𝑥
+

𝜕2𝑢

𝜕𝑥𝜕𝑡
= 0      second order  

 u(x,y)  
𝜕3𝑢

𝜕𝑥𝜕2𝑦
+ 2

𝜕2𝑢

𝜕2𝑥
+ 10

𝜕𝑢

𝜕𝑦
= 10𝑒−𝑥 sin 2𝑦  third order  

 u(x,y)  (
𝜕𝑢

𝜕𝑥
)3 +

𝜕𝑢

𝜕𝑦
= 0     first order  

             

                         

Initial Conditions and Boundary Conditions                 

In the case of ordinary differential equation with unknown function as y and independent 

variable as t, the solution involved coefficient to be determined using what was referred to as 

initial conditions such as y(0), y'(0), etc. The number of such initial conditions required were the 

same as the order of the given differential equation. In partial differential equation with unknown 

function as u (t, x, y) initial condition are known functions such as u(0, x, y), 
𝜕𝑢

𝜕𝑡
(0, 𝑥, 𝑦), etc. and 

boundary conditions are known functions such as u(t, 0, y), u(t, x, 2),  
𝜕𝑢

𝜕𝑦
(𝑡, 𝑥, 0), 

𝜕𝑢

𝜕𝑥
(𝑡, 5, 𝑦), 

etc. Here are some given initial and boundary conditions.      

            

 u(0, x, y) = x2 + y2 +10    Initial Condition   

 
𝜕𝑢

𝜕𝑡
(0, 𝑥, 𝑦) = 𝑥𝑦     Initial Condition   

 u(t, 0, y) = 10sin t + y + 2    Boundary Condition   

 
𝜕𝑢

𝜕𝑦
(𝑡, 𝑥, 0) = 𝑡2 + sin 4𝑥    Boundary Condition   
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Linear and Nonlinear Partial Differential Equations                 

In system analysis, it was observed that a linear system must satisfy the homogeneity and 

additive property. In other words a system is linear if it satisfy property of superposition. Based 

on the same concept, a partial differential equation is linear if the unknown function and all its 

partial derivatives present in the equation are of first degree, otherwise the partial differential 

equation is nonlinear. Below are examples of some linear and nonlinear partial differential 

equations.            

             

 u(x,t)  
𝜕2𝑢

𝜕𝑥2
+ 10

𝜕2𝑢

𝜕𝑥𝜕𝑡
+

𝜕2𝑢

𝜕𝑡2
+ 2

𝜕𝑢

𝜕𝑥
+ 3

𝜕𝑢

𝜕𝑡
= 4  Linear   

 u(x,y)  
𝜕3𝑢

𝜕𝑥3 +
𝜕3𝑢

𝜕𝑥𝜕𝑦2 +
𝜕3𝑢

𝜕𝑦3 +
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 3

𝜕𝑢

𝜕𝑦
= 4 sin 𝑥 cos 𝑦 Linear   

 u(x,y)  (
𝜕𝑢

𝜕𝑥
)3 +

𝜕𝑢

𝜕𝑦
+ 𝑢 = 0     Nonlinear  

 u(x,t)  (
𝜕2𝑢

𝜕𝑥𝜕𝑡
)
2

+
𝜕𝑢

𝜕𝑡
= 10𝑢2     Nonlinear  

             

                      

Homogeneous and Nonhomogeneous Partial Differential Equations                                  

A homogeneous partial differential equation is one which contains no functions other than the 

unknown function and its partial derivatives with respect to the independent variables. A 

nonhomogeneous partial differential equation is one which contains known function or functions 

along with the unknown function and its partial derivatives with respect to the independent 

variables. Below are some examples of homogeneous and nonhomogeneous partial differential 

equations.            

             

 u(x,t)  
𝜕2𝑢

𝜕𝑥2 + 2
𝜕2𝑢

𝜕𝑥𝜕𝑡
+

𝜕2𝑢

𝜕𝑥2 = 0    Homogeneous        

 u(x,y)   
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 4𝑢2               Homogeneous  

 u(x,t)             
𝜕2𝑢

𝜕𝑥2 + 10
𝜕2𝑢

𝜕𝑥𝜕𝑡
+

𝜕2𝑢

𝜕𝑥2 + 2
𝜕𝑢

𝜕𝑥
+ 3

𝜕𝑢

𝜕𝑡
= 4  Nonhomogeneous              

 u(x,y)  
𝜕3𝑢

𝜕𝑥3 +
𝜕3𝑢

𝜕𝑥𝜕𝑦2 +
𝜕3𝑢

𝜕𝑦3 + 3
𝜕𝑢

𝜕𝑦
= 4 sin 𝑥 cos 𝑦 + 2𝑥 Nonhomogeneous 

             

                     

In this chapter the solutions of the following important partial differential equations will be 

presented.            

             

 u(x,t)  
𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑥2    One Dimensional Wave Equation 

 u(x,y,t)  
𝜕2𝑢

𝜕𝑡2 = 𝑐2(
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)   Two Dimensional Wave Equation 

 u(x,t)  
𝜕𝑢

𝜕𝑡
= 𝑐2 𝜕2𝑢

𝜕𝑥2
    One Dimensional Diffusion Equation 

 u(x,y)  
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0    Two Dimensional Laplace Equation 
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Hyperbolic, Parabolic, and Elliptic Forms                                                                        

Consider a linear, constant coefficient, second order partial differential equation.   

             

             

 𝐴1
𝜕2𝑢

𝜕𝑥2 + 𝐴2
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐴3

𝜕2𝑢

𝜕𝑥2 + 𝐴4
𝜕𝑢

𝜕𝑥
+ 𝐴5

𝜕𝑢

𝜕𝑦
+ 𝐴6𝑢 + 𝐴7 = 0      

                                

If  𝐴2
2 − 4𝐴1𝐴3 > 0  partial differential equation is Hyperbolic 

If  𝐴2
2 − 4𝐴1𝐴3 = 0  partial differential equation is Parabolic  

If  𝐴2
2 − 4𝐴1𝐴3 < 0  partial differential equation is Elliptic    

             

                                                                   

It can be observed that the wave partial differential equation is Hyperbolic, diffusion partial 

differential equation is parabolic, and Laplace partial differential equation is elliptic.  

           

Similar to ordinary differential equation, it can be stated that if u1, u2, … , un are the solutions of 

a linear homogeneous partial differential equation, then       

             

 u = c1u1 + c2u2 + … + cnun       (6.1)       

                     

is also the solution. In equation (6.1), c1, c2, … , cn are constant coefficients. The proof is rather 

simple and it is based on the propertied of linearity (homogeneity and additivity).   

                    

To verify a solution of a partial differential equation, the solution must satisfy the partial 

differential equation as well as given boundary or initial conditions.      

             

                                 

Example 1: Verify u(x,y) = 10 sin 5x cosh 5y is a solution of Laplace’s partial differential 

equation.             
                                        

             

 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0         

𝜕𝑢

𝜕𝑥
= 50𝑐𝑜𝑠5𝑥𝑐𝑜𝑠ℎ5𝑦 

𝜕2𝑢

𝜕𝑥2 = −250𝑠𝑖𝑛5𝑥𝑐𝑜𝑠ℎ5𝑦    

 
𝜕𝑢

𝜕𝑦
= 50𝑠𝑖𝑛5𝑥𝑠𝑖𝑛ℎ5𝑦  

𝜕2𝑢

𝜕𝑦2 = 250𝑠𝑖𝑛5𝑥𝑐𝑜𝑠ℎ5𝑦    

 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= −250𝑠𝑖𝑛5𝑥𝑐𝑜𝑠ℎ5𝑦 + 250𝑠𝑖𝑛5𝑥𝑐𝑜𝑠ℎ5𝑦 = 0     
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6.2 – Solving PDE Using ODE  

 
There are some linear partial differential equations that can be solved using the methods of 

solving ordinary differential equations. In general these partial differential equations contain 

partial derivatives with respect to one of the independent variables or through some substitution 

the transformed new partial differential equation could result as such. The following examples 

demonstrate some of these cases.             

             

                         

Example 2: Solve the following partial differential equations for u(x,y).  

a) 
𝜕𝑢

𝜕𝑦
= 0 

b) 
𝜕𝑢

𝜕𝑥
= 0 

c) 
𝜕2𝑢

𝜕𝑥𝜕𝑦
= 0 

d) 
𝜕2𝑢

𝜕𝑦2 + 6
𝜕𝑢

𝜕𝑦
+ 25𝑢 = 0   

e) 
𝜕2𝑢

𝜕𝑥2 = −16𝑢   

f) 
𝜕2𝑢

𝜕𝑦2 − 9𝑢 = 18𝑒3𝑦          

                                       

a) uy = 0 integrating with respect to y  u(x,y) = f(x)    

  

b) ux = 0 integrating with respect to x  u(x,y) = f(y)    

  

c) uxy = 0 integrating with respect to x  uy = f1(y)    

  integrating with respect to y  u(x,y) = ∫𝑓1 (𝑦)𝑑𝑦 + 𝑔(𝑥)  

       u(x,y) =𝑓(𝑦) + 𝑔(𝑥)   

   

d) uyy + 6uy + 25u = 0 𝜆2 + 6𝜆 + 25 = 0  𝜆 =  −3 ± 𝑖4             

u(x,y) = f1(x)e–3ycos 4y + f2(x)e–3ysin 4y        

  

e) uxx = –16u   uxx +16u = 0       

    𝜆2 + 16 = 0   𝜆 = ±𝑖4            

u(x,y) = f1(y)cos 4x + f2(y)sin 4x        

  

f) uyy – 9u = 18e3y         

Homogeneous solution: uyy – 9u = 0       

    𝜆2 − 9 = 0   𝜆 = ±3               

u(x,y) = f1(x)e3y + f2(x)e–3y          

                       

Nonhomogeneous solution:                            

u(x,y)= f3(x)ye3y  Substituting in the partial differential equation             

[f3(x)6e3y +  f3(x)9ye3y] – f3(x)9ye3y = 18e3y                      

f3(x)6e3y = 18e3y                       

f3(x) = 3                    
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u(x,y) = 3ye3y          

                           

Complete or total solution: u(x,y) = f1(x)e3y + f2(x)e–3y + 3ye3y 

             

             

             

             

             

   

6.3 – Wave Equation  

 
In this section we consider the solution of one dimensional wave equation. Vibration in different 

structural elements and strings are just a couple of examples. We assume a string vibrates only 

in vertical direction and its motion is a function of horizontal one dimensional displacement x 

and time t. Hence tension in the horizontal direction is constant and motion is in vertical 

direction. The partial differential equation of wave equation is derived by applying Newton’s law 

(∑𝐹 = 𝑚𝑎), where F is the algebraic sum of forces in the vertical direction and acceleration is 

the vertical acceleration. Here u(x,t) designates the vertical displacement of the string.  

             

            

 u(x,t)  
𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑥2       (6.2)        

Where              

             

  𝑐2 = 
𝑇

ρ
 and 𝑎 =  

𝜕2𝑢

𝜕𝑡2
      (6.3)  

                           

In equation (6.3), ρ is mass per unit length. The derivation of the wave equation is achieved by 

following the procedure outlined above and is left as an exercise.     

                                    

We assume the string is of length L with the following boundary and initial conditions.  

             

                          

Boundary Conditions:  u(0,t) = 0 u(L,t) = 0    (6.4)  

                                                

Initial Conditions:  u(x,0) = f1(x) 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑓2(𝑥)   (6.5) 

 

    u    

              x = 0                                         x = L            x                       

    

   Figure 6.1 Vibrating String of Length L with Displacement u(x,t) 
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The string is fixed at both ends as described by equation (6.4) and equation (6.5) indicates the 

initial displacement and initial velocity of the string as f1(x) and f2(x) respectively. Clearly f1(0) 

and f1(L) must be both zero.           

               

Solution of wave partial differential equation with boundary and initial conditions described 

above is obtained using separation of variables as shown below.     

            

 u(x,t) = F1(x)F2(t)        (6.6)  

                                             

Substituting equation (6.6) in equation (6.2) results in      

             

 𝐹1(𝑥)
𝑑2𝐹2(𝑡)

𝑑𝑡2
= 𝑐2 𝑑2𝐹1(𝑥)

𝑑𝑥2
𝐹2(𝑡)      (6.7)  

                                    

Dividing both sides of equation (6.6) by c2F1(x)F2(t) we have     

             

 
1

𝑐2𝐹2(𝑡)
[
𝑑2𝐹2(𝑡)

𝑑𝑡2
] =

1

𝐹1(𝑥)
[
𝑑2𝐹1(𝑥)

𝑑𝑥2
]      (6.8)  

                                 

The left hand side of equation (6.8) is mainly a function of t and the right hand side of equation 

(6.8) is a function of x. Therefore the only way a function of t is equal to a function of x is if they 

are both equal to a constant. This constant is designated as 𝐾.      

             

 
1

𝑐2𝐹2(𝑡)
[
𝑑2𝐹2(𝑡)

𝑑𝑡2
] =

1

𝐹1(𝑥)
[
𝑑2𝐹1(𝑥)

𝑑𝑥2
] = 𝐾     (6.9)  

                       

                             

Equation (6.9) results in two homogeneous differential equations as follows.          

             

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2 − 𝐾𝐹1(𝑥) = 0        (6.10)  

 
𝑑2𝐹2(𝑡)

𝑑𝑡2
− 𝐾𝑐2𝐹2(𝑡) = 0       (6.11)  

             

                          

Consider the boundary conditions u(0,t) =0 and u(L,t) = 0. Since u(x,t) = F1(x)F2(t), we have 

             

 u(0,t) = F1(0)F2(t) = 0          

 u(L,t) = F1(L)F2(t) = 0          

                      

Hence             

             

 F1(0) = 0         (6.12)  

 F1(L) = 0         (6.13)  

                       

We begin with solving differential equation (6.10). The constant 𝐾 can be zero, positive, or 

negative. Hence we consider all the three cases.       
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Case I: 𝐾 = 0                                           

From equation (6.10), we have         

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2 = 0    ⇒   F1(x) = C1x + C2  

                                                  

Applying equation (6.12) and (6.13)         

             

 C1(0) + C2 = 0           

 C1(L) + C2  = 0  ⇒  C1 = C2 = 0  ⇒  F1(x) = 0 

             

 u(x,t) = F1(x)F2(t) = 0          

                          

This is a trivial solution.           

             

                         

Case II: 𝐾 > 0,𝐾 = 𝜆2                                           

From equation (6.10), we have         

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2 − 𝜆2𝐹1(𝑥) = 0   ⇒   F1(x) = C1𝑒𝜆𝑥 + C2𝑒−𝜆𝑥 

                                         

Applying equation (6.12) and (6.13)         

             

 C1 + C2 = 0           

 C1eλL + C2e-λL
 = 0 ⇒  C1 = C2 = 0  ⇒  F1(x) = 0 

             

 u(x,t) = F1(x)F2(t) = 0          

                          

This is also a trivial solution.          

  

Case III: 𝐾 < 0, 𝐾 = −𝜆2                                           

From equation (6.10), we have         

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2
+ 𝜆2𝐹1(𝑥) = 0   ⇒   F1(x) = C1cos λx + C2sinλx 

                                         

Applying equation (6.12) and (6.13)         

             

 C1 = 0           

 C2sinλL = 0  ⇒ C2 ≠ 0, otherwise F1(x) = 0 and u(x,t) = F1(x)F2(t) = 0 

                         

Hence             

             

 sinλL = 0  λL = n𝜋  𝜆 =
𝑛𝜋

𝐿
  ⇒    

             

 𝐹1(𝑥) =  𝐶2sin (
𝑛𝜋

𝐿
)𝑥  n = 1, 2, …     (6.14)   
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Using equation (6.11), we have         

             

 
𝑑2𝐹2(𝑡)

𝑑𝑡2 + 𝜆2𝑐2𝐹2(𝑡) = 0         

            

 
𝑑2𝐹2(𝑡)

𝑑𝑡2
+ (

𝑛𝜋

𝐿
)2𝑐2𝐹2(𝑡) = 0       (6.15)  

                                                                                                   

Solution of this differential equation is given by       

             

 𝐹2(𝑡) =  𝐴𝑛 cos (
𝑐𝑛𝜋

𝐿
) 𝑡 + 𝐵𝑛 sin (

𝑐𝑛𝜋

𝐿
) 𝑡     (6.16)  

                             

With u(x,t) = F1(x)F2(t) and using equations (6.14) and (6.16) we have    

             

 un(x,t) = 𝐶2sin (
𝑛𝜋

𝐿
)𝑥[𝐴𝑛 cos (

𝑐𝑛𝜋

𝐿
) 𝑡 + 𝐵𝑛 sin (

𝑐𝑛𝜋

𝐿
) 𝑡]     

                                                                                

Without loss of generality we can assume C2 = 1 and using equation (6.1) write the solution for 

u(x,t) as           ` 

             

            

 u(x,t) = ∑ [𝐴
𝑛
cos (

𝑐𝑛𝜋

𝐿
) 𝑡 + 𝐵𝑛 sin (

𝑐𝑛𝜋

𝐿
) 𝑡]∞

𝑛=1 sin (
𝑛𝜋

𝐿
)𝑥   (6.17)  

             

                               

Equation (6.17) is the solution of the wave equation with boundary conditions as specified by 

equation (6.4). Now the initial conditions of equation (6.5) can be applied to determine An and 

Bn.             

             

 u(x,0) = f1(x)           

 ∑ 𝐴𝑛
∞
𝑛=1 sin (

𝑛𝜋

𝐿
)𝑥 = 𝑓1(𝑥)   

Using Fourier sine expansion we have        

             

 𝐴𝑛 =
2

𝐿
∫ 𝑓1(𝑥) sin (

𝑛𝜋

𝐿
)𝑥𝑑𝑥

𝐿

0
        (6.18)  

                           

Applying initial velocity          

             

 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑓2(𝑥)          

 ∑ [−𝐴
𝑛
(
𝑐𝑛𝜋

𝐿
) sin (

𝑐𝑛𝜋

𝐿
) 𝑡 + 𝐵𝑛 (

𝑐𝑛𝜋

𝐿
) cos (

𝑐𝑛𝜋

𝐿
) 𝑡]∞

𝑛=1 sin (
𝑛𝜋

𝐿
)𝑥|𝒕=𝟎 = 𝑓2(𝑥)   

 ∑ 𝐵𝑛 (
𝑐𝑛𝜋

𝐿
)∞

𝑛=1 sin (
𝑛𝜋

𝐿
)𝑥 = 𝑓2(𝑥)         

                          

Using Fourier sine expansion we have        

             

 𝐵𝑛 (
𝑐𝑛𝜋

𝐿
) =

2

𝐿
∫ 𝑓

2
(𝑥) sin (

𝑛𝜋

𝐿
) 𝑥𝑑𝑥

𝐿

0
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 𝐵𝑛 =
2

𝑐𝑛𝜋
∫ 𝑓

2
(𝑥) sin (

𝑛𝜋

𝐿
) 𝑥𝑑𝑥

𝐿

0
      (6.19)  

                            

In summary, equation (6.17) is the solution of the wave equation with the boundary and initial 

conditions as specified by equations (6.4) and (6.5). Equations (6.18) and (6.19) are used 

determine the unknown coefficients An and Bn.       

              

If the initial velocity 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑓2(𝑥) = 0, Bn = 0 and the solution reduces to     

             

 u(x,t) = ∑ 𝐴𝑛 cos (
𝑐𝑛𝜋

𝐿
) 𝑡∞

𝑛=1 sin (
𝑛𝜋

𝐿
)𝑥      (6.20)  

             

             

                                

Example 3: Solve the wave equation for a string with length L = 1, c =1, and given boundary and 

initial conditions.  

      u(0,t) = 0, u(1,t) =0           

      u(x,0) = {
𝑥                     0 < 𝑥 < 0.5
1 − 𝑥              0.5 < 𝑥 < 1

   
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0 

         

 𝐵𝑛 = 0, 𝑠𝑖𝑛𝑐𝑒 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑓2(𝑥) = 0        

            

 u(x,t) = ∑ 𝐴𝑛 cos(𝑛𝜋𝑡)∞
𝑛=1 sin (𝑛𝜋𝑥)        

             

 𝐴𝑛 =
2

𝐿
∫ 𝑓1(𝑥) sin (

𝑛𝜋

𝐿
) 𝑥𝑑𝑥

𝐿

0
 = 2[∫ 𝑥 sin 𝑛𝜋 𝑥𝑑𝑥 + ∫ (1 − 𝑥 )sin𝑛𝜋 𝑥𝑑𝑥]

1

0.5

0.5

0
 

 𝐴𝑛 = 2[∫ 𝑥 sin 𝑛𝜋 𝑥𝑑𝑥 + ∫ sin 𝑛𝜋 𝑥𝑑𝑥 − ∫ 𝑥 sin 𝑛𝜋 𝑥𝑑𝑥]
1

0.5

1

0.5

0.5

0
  

 𝐴𝑛 = 2[−
𝑥

𝑛𝜋
cos 𝑛𝜋𝑥 +

1

(𝑛𝜋)2
sin 𝑛𝜋𝑥 |0

0.5 −
1

𝑛𝜋
cos 𝑛𝜋𝑥|0.5

1      

         +
𝑥

𝑛𝜋
cos 𝑛𝜋𝑥 −

1

(𝑛𝜋)2
sin 𝑛𝜋𝑥 |0.5

1 ]       

             

 𝐴𝑛 = 2[−
1

2𝑛𝜋
cos(

𝑛𝜋

2
) +

1

(𝑛𝜋)2
sin(

𝑛𝜋

2
) −

1

𝑛𝜋
cos 𝑛𝜋 +

1

𝑛𝜋
cos(

𝑛𝜋

2
)                     

         +
1

𝑛𝜋
cos 𝑛𝜋 −

1

2𝑛𝜋
cos(

𝑛𝜋

2
) +

1

(𝑛𝜋)2
sin(

𝑛𝜋

2
)]      

             

 𝐴𝑛 =
4

(𝑛𝜋)2
sin(

𝑛𝜋

2
)          

             

 u(x,t) = ∑
4

(𝑛𝜋)2
sin(

𝑛𝜋

2
) cos(𝑛𝜋𝑡)∞

𝑛=1 sin (𝑛𝜋𝑥)      

             

 u(x,t) = 
4

𝜋2 (cos 𝜋𝑡 sin 𝜋𝑥 −
1

9
cos 3𝜋𝑡 sin 3𝜋𝑥 +

1

25
cos 5𝜋𝑡 sin 5𝜋𝑥 + ⋯)   
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Example 4: Solve the wave equation for a string with length L = 𝜋, c =1, and given boundary 

and initial conditions.  

      u(0,t) = 0, u(𝜋,t) =0           

      u(x,0) = 5 sin 𝑥 + 3 sin3𝑥 − 10 sin 4𝑥  
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0 

         

 𝐵𝑛 = 0, 𝑠𝑖𝑛𝑐𝑒 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑓2(𝑥) = 0        

            

 u(x,t) = ∑ 𝐴𝑛 cos(𝑛𝑡)∞
𝑛=1 sin (𝑛𝑥)        

             
 Before evaluating An using equation (6.18), consider u(x,0)       
             

 u(x,0) = 𝐴1 sin 𝑥 + 𝐴2 sin 2𝑥 + 𝐴3 sin 3𝑥 + 𝐴4 sin 4𝑥 + 𝐴5 sin 5𝑥 + ⋯    

             

 Comparing with the given initial condition results in      

             

 A1 = 5, A3 = 3, A4 = –10, and An = 0 for n ≠ 1, 3, 4      

             

 u(x,t) = 5 cos t sin x + 3 cos 3t sin 3x – 10 cos 4t sin 4x 

 

Example 5: Solve the wave equation for a string with length L = 𝜋, c =1, and given boundary 

and initial conditions.  

      u(0,t) = 0, u(𝜋,t) =0           

      u(x,0) = {
𝑥                     0 < 𝑥 < 0.5𝜋
𝜋 − 𝑥              0.5𝜋 < 𝑥 < 𝜋

     
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑥(𝜋 − 𝑥)   

u(x,t) = ∑ [𝐴
𝑛
cos𝑛𝑡 + 𝐵𝑛 sin𝑛𝑡]∞

𝑛=1 sin 𝑛𝑥  

             

 𝐴𝑛 =
2

𝐿
∫ 𝑓1(𝑥) sin (

𝑛𝜋

𝐿
) 𝑥𝑑𝑥

𝐿

0
 = 

2

𝜋
[∫ 𝑥 sin 𝑛𝑥 𝑑𝑥 + ∫ (𝜋 − 𝑥 )sin 𝑛𝑥 𝑑𝑥]

𝜋

0.5𝜋

0.5𝜋

0
 

 𝐴𝑛 =
2

𝜋
[∫ 𝑥 sin 𝑛𝑥 𝑑𝑥 + 𝜋 ∫ sin 𝑛𝑥 𝑑𝑥 − ∫ 𝑥 sin 𝑛𝑥 𝑑𝑥]

𝜋

0.5𝜋

𝜋

0.5𝜋

0.5𝜋

0
    

𝐴𝑛 =
2

𝜋
[−

𝑥

𝑛
cos 𝑛𝑥 +

1

𝑛2 sin 𝑛𝑥 |0
0.5𝜋 −

𝜋

𝑛
cos 𝑛𝑥|0.5𝜋

𝜋       

         +
𝑥

𝑛
cos 𝑛𝑥 −

1

𝑛2 sin 𝑛𝑥 |0.5𝜋
𝜋 ]        

            

 𝐴𝑛 =
2

𝜋
[−

𝜋

2𝑛
cos(

𝑛𝜋

2
) +

1

𝑛2 sin(
𝑛𝜋

2
) −

𝜋

𝑛
cos 𝑛𝜋 +

𝜋

𝑛
cos(

𝑛𝜋

2
)                     

         +
𝜋

𝑛
cos 𝑛𝜋 −

𝜋

2𝑛
cos(

𝑛𝜋

2
) +

1

𝑛2 sin(
𝑛𝜋

2
)]       
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 𝐴𝑛 =
4

𝜋𝑛2 sin(
𝑛𝜋

2
)          

             

 𝐵𝑛 =
2

𝑐𝑛𝜋
∫ 𝑓

2
(𝑥) sin (

𝑛𝜋

𝐿
) 𝑥𝑑𝑥

𝐿

0
 = 

2

𝑛𝜋
 ∫ 𝑥(𝜋 − 𝑥) sin 𝑛𝑥 𝑑𝑥

𝜋

0
      

             

  𝐵𝑛 =
2

𝑛𝜋
 [∫ 𝜋𝑥 sin 𝑛𝑥 𝑑𝑥 − ∫ 𝑥2 sin 𝑛𝑥 𝑑𝑥

𝜋

0
 ]

𝜋

0
        

             

 𝐵𝑛 =
2

𝑛
[−

𝑥

𝑛
cos 𝑛𝑥 +

1

𝑛2 sin 𝑛𝑥 |0
𝜋] − 

2

𝑛𝜋
[
2−𝑛2𝑥2

𝑛3 cos 𝑛𝑥 +
2𝑥

𝑛2 sin 𝑛𝑥 |0
𝜋]   

             

 𝐵𝑛 = −
2𝜋

𝑛2
cos 𝑛𝜋 −

2

𝑛𝜋
[
2−𝑛2𝜋2

𝑛3
cos 𝑛𝜋 −

2

𝑛3
] = [−

2𝜋

𝑛2
cos 𝑛𝜋 −

4−2𝑛2𝜋2

𝜋𝑛4
cos 𝑛𝜋 +

4

𝜋𝑛4
] 

             

             

 u(x,t) = ∑ [𝐴
𝑛
cos𝑛𝑡 + 𝐵𝑛 sin𝑛𝑡]∞

𝑛=1 sin 𝑛𝑥       

             

 u(x,t) = ∑ {[
4

𝜋𝑛2 sin(
𝑛𝜋

2
)] cos 𝑛𝑡 + [−

2𝜋

𝑛2 cos 𝑛𝜋 −
4−2𝑛2𝜋2

𝜋𝑛4 cos 𝑛𝜋 +
4

𝜋𝑛4]sin 𝑛𝑡}∞
𝑛=1 sin 𝑛𝑥  

              

D’Alembert’s Solution                 

Let us consider the wave equation          

  

 
𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑥2           

           

with initial conditions as          

                                             

 u(x,0) = f1(x) 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑓2(𝑥)        

                          

D’Alembert’s solution of the wave equation consists of a substitution process of 

variables x and t to alternate variables Χ and Τ and transforming the wave partial 

differential equation into a form whose solution is already evaluated in Section 6.1. This 

process is presented here.          

            
 Χ = x + ct         (6.21)  

 Τ = x – ct          (6.22)  

                  

Now 
𝜕2𝑢

𝜕𝑡2  and 
𝜕2𝑢

𝜕𝑥2 must be transformed in terms of the new variables Χ and Τ.   

             

 𝑢𝑡 = 𝑢ΧΧ𝑡 + 𝑢Τ𝑇𝑡 = 𝑐𝑢Χ − 𝑐𝑢Τ        

 𝑢𝑡𝑡 = (𝑐𝑢Χ − 𝑐𝑢Τ)𝑡 = (𝑐𝑢Χ − 𝑐𝑢Τ)ΧΧ𝑡 + (𝑐𝑢Χ − 𝑐𝑢Τ)T𝑇𝑡     

 𝑢𝑡𝑡 = 𝑐(𝑐𝑢Χ − 𝑐𝑢Τ)Χ − 𝑐(𝑐𝑢Χ − 𝑐𝑢Τ)T = 𝑐2(𝑢ΧΧ − 2𝑢ΤΧ + 𝑢ΤΤ)  (6.23)  
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 𝑢𝑥 = 𝑢ΧΧ𝑥 + 𝑢Τ𝑇𝑥 = 𝑢Χ + 𝑢Τ        

 𝑢𝑥𝑥 = (𝑢Χ + 𝑢Τ)𝑥 = (𝑢Χ + 𝑢Τ)ΧΧ𝑥 + (𝑢Χ + 𝑢Τ)T𝑇𝑥     

 𝑢𝑥𝑥 = (𝑢Χ + 𝑢Τ)Χ + (𝑢Χ + 𝑢Τ)T = 𝑢ΧΧ + 2𝑢ΤΧ + 𝑢ΤΤ    (6.24)  

                      

Substituting equations (6.23) and (6.24) in the wave partial differential equation gives  

             

 𝑐2(𝑢ΧΧ − 2𝑢ΤΧ + 𝑢ΤΤ) = 𝑐2(𝑢ΧΧ + 2𝑢ΤΧ + 𝑢ΤΤ)      

             

 2𝑐2𝑢ΤΧ = 0           

                     

Using example 2c in Section 6.1 we write        

             

 u(Χ, Τ) =𝑓(Χ) + 𝑔(Τ) 

Using equations (6.21) and (6.22) we can write       

             

 u(x,t) = f(x + ct) + g(x – ct)       (6.25)  

                           

Applying initial conditions u(x,0) = f1(x) and 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑓2(𝑥), we have    

             

 f1(x) = f(x) + g(x)        (6.26) 

 f2(x) = cf΄(x) – cg'(x)        (6.27)  

                          

Integrating equation (6.27) from 0 to x results in       

             

 ∫ 𝑓2(𝛼)𝑑𝛼 = 𝑐[𝑓(𝑥) − 𝑓(0)] − 𝑐[𝑔(𝑥) − 𝑔(0)]
𝑥

0
 

 
1

𝑐
∫ 𝑓2(𝛼)𝑑𝛼 + 𝑓(0) − 𝑔(0) = 𝑓(𝑥) − 𝑔(𝑥)

𝑥

0
     (6.28)  

                               

After adding and subtracting equations (6.26) and (6.28) to evaluate f(x) and g(x) we obtain 

             

 𝑓(𝑥) =
1

2
𝑓1(𝑥) +

1

2𝑐
∫ 𝑓2(𝛼)𝑑𝛼 +

1

2
[𝑓(0) − 𝑔(0)]

𝑥

0
    (6.29)  

             

 𝑔(𝑥) =
1

2
𝑓1(𝑥) −

1

2𝑐
∫ 𝑓2(𝛼)𝑑𝛼 −

1

2
[𝑓(0) − 𝑔(0)]

𝑥

0
    (6.30)  

              

Using equations (6.25), (6.29), and (6.30) we have       

             

 u(x,t) = 
1

2
𝑓1(𝑥 + 𝑐𝑡) +

1

2𝑐
∫ 𝑓2(𝛼)𝑑𝛼 +

1

2
[𝑓(0) − 𝑔(0)]

𝑥+𝑐𝑡

0
     

           + 
1

2
𝑓1(𝑥 − 𝑐𝑡) −

1

2𝑐
∫ 𝑓2(𝛼)𝑑𝛼 −

1

2
[𝑓(0) − 𝑔(0)]

𝑥−𝑐𝑡

0
     

             

            

 u(x,t) = 
1

2
𝑓1(𝑥 + 𝑐𝑡) +

1

2
𝑓1(𝑥 − 𝑐𝑡) +

1

2𝑐
∫ 𝑓2(𝛼)𝑑𝛼

𝑥+𝑐𝑡

𝑥−𝑐𝑡
    (6.31)  

             

                               

If  
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑓2(𝑥) = 0, then equation (6.31) reduces to      
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u(x,t) = 
1

2
𝑓1(𝑥 + 𝑐𝑡) +

1

2
𝑓1(𝑥 − 𝑐𝑡)      (6.32)  

    

Example 6: Solve the wave equation for a string with length c = 4, and given initial conditions.  

          

      u(x,0) = 𝑒−𝑥2
    

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 10           

  

u(x,t) = 
1

2
𝑓1(𝑥 + 𝑐𝑡) +

1

2
𝑓1(𝑥 − 𝑐𝑡) +

1

2𝑐
∫ 𝑓2(𝛼)𝑑𝛼

𝑥+𝑐𝑡

𝑥−𝑐𝑡
      

  

u(x,t) = 
1

2
𝑒−(𝑥+4𝑡)2 +

1

2
𝑒−(𝑥−4𝑡)2 +

1

8
∫ 10𝑑𝛼

𝑥+4𝑡

𝑥−4𝑡
  

            

 u(x,t) = 
1

2
𝑒−(𝑥+4𝑡)2 +

1

2
𝑒−(𝑥−4𝑡)2 +

5

4
𝛼|𝑥−4𝑡

𝑥+4𝑡       

              

 u(x,t) = 
1

2
𝑒−(𝑥+4𝑡)2 +

1

2
𝑒−(𝑥−4𝑡)2 + 10𝑡 

             

             

             

             

              

6.4 – Diffusion or Heat Equation  

 
In this section we consider the solution of one dimensional diffusion or heat equation. Here 

u(x,t) designates the temperature of a homogeneous thin rod with length L that is insulated 

completely except at the ends (x = 0 and x = L). The temperature of the rod is assumed to be a 

function of one dimensional displacement x and time t. We also assume the temperature of the 

rod at both ends is kept at zero and the initial temperature of the bar to be f1(x). The partial 

differential equation of the heat equation is given by       

             

            

 u(x,t)  
𝜕𝑢

𝜕𝑡
= 𝑐2 𝜕2𝑢

𝜕𝑥2
       (6.33)     

     

with temperature kept at zero at both end and initial temperature as f1(x), the boundary 

conditions and the initial condition are        

             

                             

Boundary Conditions:  u(0,t) = 0  u(L,t) = 0    (6.34)  

                                                 

Initial Condition:  u(x,0) = f1(x)      (6.35)  
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              x = 0                                         x = L                                   

    

   Figure 6.2 Temperature u(x,t) in a Thin Rod of Length L 

  

Clearly f1(0) and f1(L) must be both zero.        

                       

The constant term c2 in equation (6.33) represents thermal diffusivity. Thermal diffusivity 

depends on thermal conductivity, density, and specific heat of the rod.      

                         

Solution of wave partial differential equation with boundary conditions and initial condition 

described above is obtained using separation of variables as shown below.   

             

             

 u(x,t) = F1(x)F2(t)        (6.36)  

             

                                              

Substituting equation (6.36) in equation (6.33) results in      

             

 𝐹1(𝑥)
𝑑𝐹2(𝑡)

𝑑𝑡
= 𝑐2 𝑑2𝐹1(𝑥)

𝑑𝑥2 𝐹2(𝑡)      (6.37)  

                                    

Dividing both sides of equation (6.37) by c2F1(x)F2(t) we have     

             

 
1

𝑐2𝐹2(𝑡)
[
𝑑𝐹2(𝑡)

𝑑𝑡
] =

1

𝐹1(𝑥)
[
𝑑2𝐹1(𝑥)

𝑑𝑥2
]      (6.38)  

                                 

The left hand side of equation (6.38) is mainly a function of t and the right hand side of equation 

(6.37) is a function of x. Therefore the only way a function of t is equal to a function of x is if they 

are both equal to a constant. This constant is designated as 𝐾.      

             

          

 
1

𝑐2𝐹2(𝑡)
[
𝑑2𝐹2(𝑡)

𝑑𝑡2
] =

1

𝐹1(𝑥)
[
𝑑2𝐹1(𝑥)

𝑑𝑥2
] = 𝐾     (6.39)  

                       

                             

Equation (6.39) results in two homogeneous differential equations as follows.          

           

 
𝑑2𝐹1(𝑥)

𝑑𝑥2
− 𝐾𝐹1(𝑥) = 0        (6.40)  

 
𝑑𝐹2(𝑡)

𝑑𝑡
− 𝐾𝑐2𝐹2(𝑡) = 0       (6.41) 

Consider the boundary conditions u(0,t) =0 and u(L,t) = 0. Since u(x,t) = F1(x)F2(t), we have 

             

 u(0,t) = F1(0)F2(t) = 0          
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 u(L,t) = F1(L)F2(t) = 0          

                      

Hence             

             

 F1(0) = 0         (6.42)  

 F1(L) = 0         (6.43)  

                       

We begin with solving differential equation (6.40). The constant 𝐾 can be zero, positive, or 

negative. Hence we consider all the three cases.       

             

                      

Case I: 𝐾 = 0                                           

From equation (6.40), we have         

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2 = 0    ⇒   F1(x) = C1x + C2  

                                                  

Applying equation (6.42) and (6.43)         

             

 C1(0) + C2 = 0           

 C1(L) + C2  = 0  ⇒  C1 = C2 = 0  ⇒  F1(x) = 0 

             

 u(x,t) = F1(x)F2(t) = 0          

                          

This is a trivial solution.           

             

                         

Case II: 𝐾 > 0,𝐾 = 𝜆2                                           

From equation (6.40), we have         

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2 − 𝜆2𝐹1(𝑥) = 0   ⇒   F1(x) = C1𝑒𝜆𝑥 + C2𝑒−𝜆𝑥 

                                         

Applying equation (6.42) and (6.43)         

             

 C1 + C2 = 0           

 C1eλL + C2e-λL
 = 0 ⇒  C1 = C2 = 0  ⇒  F1(x) = 0 

             

 u(x,t) = F1(x)F2(t) = 0          

                          

This is also a trivial solution.          

  

Case III: 𝐾 < 0, 𝐾 = −𝜆2                                           

From equation (6.40), we have         

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2
+ 𝜆2𝐹1(𝑥) = 0   ⇒   F1(x) = C1cos λx + C2sinλx 
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Applying equation (6.42) and (6.43)         

             

 C1 = 0           

 C2sinλL = 0  ⇒ C2 ≠ 0, otherwise F1(x) = 0 and u(x,t) = F1(x)F2(t) = 0 

                         

Hence             

             

 sinλL = 0  λL = n𝜋  𝜆 =
𝑛𝜋

𝐿
  ⇒    

             

 𝐹1(𝑥) =  𝐶2sin (
𝑛𝜋

𝐿
)𝑥  n = 1, 2, …     (6.44)   

Using equation (6.41), we have         

             

 
𝑑𝐹2(𝑡)

𝑑𝑡
+ 𝜆2𝑐2𝐹2(𝑡) = 0         

            

 
𝑑𝐹2(𝑡)

𝑑𝑡
+ (

𝑛𝜋

𝐿
)2𝑐2𝐹2(𝑡) = 0       (6.45)  

                                                                                                   

Solution of this differential equation is given by       

             

 𝐹2(𝑡) =  𝐴𝑛𝑒−(
𝑐𝑛𝜋

𝐿
)2𝑡

        (6.46)  

                             

With u(x,t) = F1(x)F2(t) and using equations (6.44) and (6.46) we have    

             

 un(x,t) = 𝐶2 sin (
𝑛𝜋

𝐿
) 𝑥[𝐴𝑛𝑒−(

𝑐𝑛𝜋

𝐿
)2𝑡]        

                                                                                                          

Without loss of generality we can assume C2 = 1 and using equation (6.1) write the solution for 

u(x,t) as           ` 

             

            

 u(x,t) = ∑ 𝐴𝑛[𝑒
−(

𝑐𝑛𝜋

𝐿
)
2
𝑡] sin (

𝑛𝜋𝑥

𝐿
)∞

𝑛=1       (6.47)  

             

                               

Equation (6.47) is the solution of the heat equation with boundary conditions as specified by 

equation (6.34). Now the initial condition of equation (6.35) can be applied to determine An. 

             

 u(x,0) = f1(x)           

 ∑ 𝐴𝑛
∞
𝑛=1 sin (

𝑛𝜋

𝐿
)𝑥 = 𝑓1(𝑥)         

  

Using Fourier sine expansion we have        

             

            

 𝐴𝑛 =
2

𝐿
∫ 𝑓1(𝑥) sin (

𝑛𝜋

𝐿
)𝑥𝑑𝑥

𝐿

0
        (6.48)  
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In summary, equation (6.47) is the solution of the diffusion or heat equation with the boundary 

condition and initial condition as specified by equations (6.34) and (6.35). Equation (6.48) is 

used to determine the unknown coefficients An.       

             

             

                                

Example 7: Evaluate the temperature of a thin silver rod with L = 10cm, c2 =1.74cm2/sec, and 

given boundary and initial conditions.  

      u(0,t) = 0, u(10,t) =0           

      u(x,0) = {
𝑥                     0 < 𝑥 < 5
0                   5 < 𝑥 < 10

    

         

 u(x,t) = ∑ 𝐴𝑛[𝑒
−(

𝑐𝑛𝜋

𝐿
)
2
𝑡] sin (

𝑛𝜋𝑥

𝐿
) =∞

𝑛=1  ∑ 𝐴𝑛[𝑒
−0.0174(𝑛𝜋)2𝑡] sin (

𝑛𝜋𝑥

10
)∞

𝑛=1    

             

 𝐴𝑛 =
2

𝐿
∫ 𝑓1(𝑥) sin (

𝑛𝜋

𝐿
) 𝑥𝑑𝑥

𝐿

0
 = 0.2∫ 𝑥 sin 0.1𝑛𝜋𝑥 𝑑𝑥

5

0
      

𝐴𝑛 = 0.2[−
𝑥

0.1𝑛𝜋
cos 0.1𝑛𝜋𝑥 +

1

(0.1𝑛𝜋)2
sin 0.1𝑛𝜋𝑥] |0

5     

 𝐴𝑛 = 0.2[−
5

0.1𝑛𝜋
cos 0.5𝑛𝜋 +

1

(0.1𝑛𝜋)2
sin 0.5𝑛𝜋]      

 𝐴𝑛 = [−
10

𝑛𝜋
cos 0.5𝑛𝜋 +

20

(𝑛𝜋)2
sin 0.5𝑛𝜋]       

             

 u(x,t) = ∑ [−
10

𝑛𝜋
cos 0.5𝑛𝜋 +

20

(𝑛𝜋)2
sin 0.5𝑛𝜋] [𝑒−0.0174(𝑛𝜋)2𝑡] sin (

𝑛𝜋𝑥

10
)∞

𝑛=1    

             

 u(x,t) = 
20

𝜋2 [𝑒−0.0174𝜋2𝑡] sin (
𝜋𝑥

10
) +

5

𝜋
[𝑒−0.0696𝜋2𝑡] sin (

𝜋𝑥

5
)     

             −
20

9𝜋2 [𝑒−0.1566𝜋2𝑡] sin (
3𝜋𝑥

10
) − ⋯       

             

                       
Example 8: Evaluate the temperature of a thin silver rod with L = 10cm, c2 =1cm2/sec, and given 

boundary and initial conditions.  

      u(0,t) = 0, u(10,t) =0           

      u(x,0) = 8 sin 0.2𝜋x  

         

 u(x,t) = ∑ 𝐴𝑛[𝑒
−(

𝑐𝑛𝜋

𝐿
)
2
𝑡] sin (

𝑛𝜋𝑥

𝐿
) =∞

𝑛=1  ∑ 𝐴𝑛[𝑒
−0.01(𝑛𝜋)2𝑡] sin (

𝑛𝜋𝑥

10
)∞

𝑛=1    

             
 Before evaluating An using equation (6.48), consider u(x,0)       

             

 u(x,0) = 𝐴1 sin 0.1𝜋𝑥 + 𝐴2 sin 0.2𝜋𝑥 + 𝐴3 sin 0.3𝜋𝑥 + 𝐴4 sin 0.4𝜋𝑥 + ⋯    
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 Comparing with the given initial condition results in      

             

 A2 = 8, and An = 0 for all n ≠ 2        

             

 u(x,t) = 8𝑒−0.04𝜋2𝑡 sin (
𝜋𝑥

5
)         

             

             

             

             

             

  

6.5 – Laplace’s Equation  

 
In this section we consider the solution of two dimensional Laplace’s partial differential equation. 

Here u is assumed to be a function of coordinates x and y. The applications of Laplace’s partial 

differential solution is in electromagnetics, fluid mechanics, heat, etc. The Laplace’s two 

dimensional partial differential equation is given by       

             

 u(x,y)  
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0       (6.49)        

With the operator ∇2 defined as         

             

  ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2         (6.50)  

                           

Equation (6.49) is simply written as         

             

  ∇2𝑢 = 0         (6.51)   

                              

The boundary conditions assumed here are        

             

                             

Boundary Conditions:  u(0,y) = 0  u(L1,y) = 0    (6.52)  

                                                 

    u(x,0) = 0 u(x,L2) = f1(x)    (6.53)  
  

                x = 0, y = L2                                                     x = L1, y = L2       

        

      x = 0, y = 0                                                      x = L1, y = 0                                      

        

   Figure 6.3 Boundary Condition – Laplace’s Partial Differential Equation 
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Clearly f1(0) and f1(L1) must be both zero.         

                                 

Solution of Laplace’s partial differential equation with boundary described above is obtained 

using separation of variables as shown below.       

            

 u(x,y) = F1(x)F2(y)        (6.54)  

                                             

Substituting equation (6.54) in equation (6.49) results in      

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2 𝐹2(𝑦) + 𝐹1(𝑥)
𝑑2𝐹2(𝑦)

𝑑𝑦2 = 0      (6.55)  

                                    

Dividing both sides of equation (6.55) by F1(x)F2(y) we have     

             

 
1

𝐹1(𝑥)
[
𝑑2𝐹1(𝑡)

𝑑𝑥2
] +

1

𝐹2(𝑦)
[
𝑑2𝐹2(𝑦)

𝑑𝑦2
] = 0       

             

 
1

𝐹1(𝑥)
[
𝑑2𝐹1(𝑡)

𝑑𝑥2
] = −

1

𝐹2(𝑦)
[
𝑑2𝐹2(𝑦)

𝑑𝑦2
]      (6.56)  

                                 

The left hand side of equation (6.56) is mainly a function of x and the right hand side of equation 

(6.56) is a function of y. Therefore the only way a function of x is equal to a function of y is if 

they are both equal to a constant. This constant is designated as 𝐾.     

             

 
1

𝐹1(𝑥)
[
𝑑2𝐹1(𝑥)

𝑑𝑥2
] = −

1

𝐹2(𝑦)
[
𝑑2𝐹2(𝑦)

𝑑𝑦2
] = 𝐾     (6.57)  

                               

Equation (6.57) results in two homogeneous differential equations as follows.          

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2 − 𝐾𝐹1(𝑥) = 0        (6.58)  

 
𝑑2𝐹2(𝑦)

𝑑𝑦2 + 𝐾𝐹2(𝑦) = 0        (6.59)  

                           

Consider the boundary conditions u(0,y) = 0 and u(L1,y) = 0. Since u(x,y) = F1(x)F2(y), we have 

             

 u(0,y) = F1(0)F2(y) = 0          

 u(L1,y) = F1(L1)F2(y) = 0         

                       

Hence             

             

 F1(0) = 0         (6.60)  

 F1(L1) = 0         (6.61)  

                       

We begin with solving differential equation (6.58). The constant 𝐾 can be zero, positive, or 

negative. Hence we consider all the three cases.       
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Case I: 𝐾 = 0                                           

From equation (6.58), we have         

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2 = 0    ⇒   F1(x) = C1x + C2  

                                                  

Applying equation (6.60) and (6.61)         

             

 C1(0) + C2 = 0           

 C1(L1) + C2  = 0 ⇒  C1 = C2 = 0  ⇒  F1(x) = 0 

             

 u(x,y) = F1(x)F2(y) = 0          

                          

This is a trivial solution.           

             

                         

Case II: 𝐾 > 0,𝐾 = 𝜆2                                           

From equation (6.58), we have         

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2 − 𝜆2𝐹1(𝑥) = 0   ⇒   F1(x) = C1𝑒𝜆𝑥 + C2𝑒−𝜆𝑥 

                                         

Applying equation (6.60) and (6.61)         

             

 C1 + C2 = 0           

 C1eλL1 + C2e-λL1
 = 0 ⇒  C1 = C2 = 0  ⇒  F1(x) = 0 

             

 u(x,y) = F1(x)F2(y) = 0          

                          

This is also a trivial solution.          

  

Case III: 𝐾 < 0, 𝐾 = −𝜆2                                           

From equation (6.58), we have         

             

 
𝑑2𝐹1(𝑥)

𝑑𝑥2
+ 𝜆2𝐹1(𝑥) = 0   ⇒   F1(x) = C1cos λx + C2sinλx 

                                         

Applying equation (6.60) and (6.61)         

             

 C1 = 0           

 C2sinλL1 = 0  ⇒ C2 ≠ 0, otherwise F1(x) = 0 and u(x,y) = F1(x)F2(y) = 0 

                         

Hence             

             

 sinλL1 = 0  λL1 = n𝜋  𝜆 =
𝑛𝜋

𝐿1
  ⇒    
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 𝐹1(𝑥) =  𝐶2sin (
𝑛𝜋

𝐿1
)𝑥  n = 1, 2, …     (6.62)  

   

Using equation (6.59), we have         

             

 
𝑑2𝐹2(𝑦)

𝑑𝑦2 − 𝜆2𝐹2(𝑦) = 0          

           

 
𝑑2𝐹2(𝑦)

𝑑𝑦2 − (
𝑛𝜋

𝐿1
)2𝐹2(𝑦) = 0       (6.63)  

                                                                                                   

Solution of this differential equation is given by       

             

 𝐹2(𝑦) =  𝐴𝑛 cosh (
𝑛𝜋

𝐿1
) 𝑦 + 𝐵𝑛 sinh (

𝑛𝜋

𝐿1
) 𝑦     (6.64)  

                             

With u(x,y) = F1(x)F2(y) and using equations (6.62) and (6.64) we have    

             

 un(x,y) = 𝐶2sin (
𝑛𝜋

𝐿1
)𝑥[𝐴𝑛 cosh (

𝑛𝜋

𝐿1
) 𝑦 + 𝐵𝑛 sinh (

𝑛𝜋

𝐿1
) 𝑦]     

                                                                                

Without loss of generality we can assume C2 = 1 and using equation (6.1) write the solution for 

u(x,y) as           ` 

             

            

 u(x,y) = ∑ [𝐴
𝑛
cosh (

𝑛𝜋

𝐿1
)𝑦 + 𝐵𝑛 sinh (

𝑛𝜋

𝐿1
)𝑦]∞

𝑛=1 sin (
𝑛𝜋

𝐿1
)𝑥   (6.65)  

             

                               

Equation (6.65) is the solution of the Laplace’s equation with boundary conditions as specified 

by equation (6.52). Now the boundary conditions of equation (6.53) can be applied to determine 

An and Bn.            

             

 u(x,0) = 0           

 ∑ 𝐴𝑛
∞
𝑛=1 sin (

𝑛𝜋

𝐿1
)𝑥 = 0   ⇒  𝐴𝑛 = 0    

                                  

Hence we have           

             

             

 u(x,y) = ∑ 𝐵𝑛 sinh (
𝑛𝜋

𝐿1
)𝑦∞

𝑛=1 sin (
𝑛𝜋

𝐿1
)𝑥      (6.66)  

             

                           

We now apply the final boundary condition        

            

 u(x,L2) = f1(x)           

 u(x,L2) = ∑ [𝐵
𝑛
sinh (

𝑛𝜋

𝐿1
)𝐿2]

∞
𝑛=1 sin (

𝑛𝜋

𝐿1
)𝑥 = 𝑓1(𝑥)      
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Using Fourier sine expansion we have        

             

 𝐵𝑛𝑠𝑖𝑛ℎ (
𝑛𝜋𝐿2

𝐿1
) =

2

𝐿1
∫ 𝑓

1
(𝑥) sin (

𝑛𝜋

𝐿1
) 𝑥𝑑𝑥

𝐿1

0
       

             

 𝐵𝑛 =
2

𝐿1𝑠𝑖𝑛ℎ(
𝑛𝜋𝐿2

𝐿1
)
∫ 𝑓

1
(𝑥) sin (

𝑛𝜋

𝐿1
) 𝑥𝑑𝑥

𝐿1

0
     (6.67)  

                            

In summary, equation (6.66) is the solution of the Laplace’s partial differential equation with the 

boundary conditions as specified by equations (6.52) and (6.53). Equations (6.67) is used 

determine the unknown coefficient Bn. Should the boundary conditions be different than those 

specified by equations (6.52) and (6.53), a new solution of Laplace’s partial differential equation 

needs to be evaluated following similar procedure as done above.     

             

             

                                   

Example 9: Solve the Laplace’s partial differential equation with length L1 = 𝜋, L2 =1, and given 

boundary conditions.  

      u(0,y) = 0, u(𝜋,y) =0           

      u(x,0) = 0, u(x,1) = 1 – cos 2x 

             

 u(x,y) = ∑ 𝐵𝑛 𝑠𝑖𝑛ℎ (
𝑛𝜋

𝐿1
)𝑦∞

𝑛=1 𝑠𝑖𝑛 (
𝑛𝜋

𝐿1
)𝑥        

            

 u(x,y) = ∑ 𝐵𝑛 𝑠𝑖𝑛ℎ(𝑛𝑦)∞
𝑛=1 𝑠𝑖𝑛(𝑛𝑥)        

             

 𝐵𝑛 =
2

𝐿1𝑠𝑖𝑛ℎ(
𝑛𝜋𝐿2

𝐿1
)
∫ 𝑓

1
(𝑥) sin (

𝑛𝜋

𝐿1
) 𝑥𝑑𝑥

𝐿1

0
       

 𝐵𝑛 =
2

𝜋𝑠𝑖𝑛ℎ(𝑛)
∫ (1 − 𝑐𝑜𝑠 2𝑥) 𝑠𝑖𝑛(𝑛𝑥) 𝑑𝑥 =

2

𝜋𝑠𝑖𝑛ℎ(𝑛)
∫ [𝑠𝑖𝑛(𝑛𝑥) − 𝑠𝑖𝑛 𝑛𝑥 𝑐𝑜𝑠 2𝑥] 𝑑𝑥

𝜋

0

𝜋

0
 

             
 Note:  sin(nx)cos(2x) = (1/2)[sin(n + 2)x + sin(n –2)x]     

             

 𝐵𝑛 =
2

𝜋𝑠𝑖𝑛ℎ(𝑛)
[−

1

𝑛
𝑐𝑜𝑠 𝑛𝑥 +

0.5

𝑛+2
𝑐𝑜𝑠(𝑛 + 2)𝑥 +

0.5

𝑛−2
𝑐𝑜𝑠(𝑛 − 2)𝑥]|0

𝜋    

             

 𝐵𝑛 =
2

𝜋𝑠𝑖𝑛ℎ(𝑛)
[−

1

𝑛
𝑐𝑜𝑠(𝑛𝜋) +

0.5

𝑛+2
𝑐𝑜𝑠(𝑛 + 2)𝜋 +

0.5

𝑛−2
𝑐𝑜𝑠(𝑛 − 2)𝜋 +

1

𝑛
−

0.5

𝑛+2
−

0.5

𝑛−2
]  

             

             

 𝐵𝑛 evaluated here cannot be used to compute 𝐵2 due to the term (n – 2) in the 

 denominator. The coefficient 𝐵2 needs to be evaluated separately as shown below. 

             

 𝐵2 =
2

𝜋𝑠𝑖𝑛ℎ(2)
∫ (1 − 𝑐𝑜𝑠 2𝑥) 𝑠𝑖𝑛(2𝑥) 𝑑𝑥 =

2

𝜋𝑠𝑖𝑛ℎ(2)
∫ [𝑠𝑖𝑛(2𝑥) − 0.5𝑠𝑖𝑛 4𝑥] 𝑑𝑥

𝜋

0

𝜋

0
 

 𝐵1 =
2

𝜋𝑠𝑖𝑛ℎ(2)
[−

1

2
𝑐𝑜𝑠 2𝑥 +

1

8
𝑐𝑜𝑠 4𝑥]|0

𝜋        

 𝐵1 = 0 
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 Bn can Now be substituted in u(x,y) and the series solution can be expanded for as many 

 terms as desired.           

             

             

                              

Example 10: Solve the Laplace’s partial differential equation with length L1 = 4, L2 =4, and given 

boundary conditions.  

      u(0,y) = 0, u(4,y) =0           

      u(x,0) = 0, u(x,4) = 3𝑠𝑖𝑛 (
𝜋

4
)𝑥 − 2𝑠𝑖𝑛 (

3𝜋

4
)𝑥 

             

 u(x,y) = ∑ 𝐵𝑛 𝑠𝑖𝑛ℎ (
𝑛𝜋

𝐿1
)𝑦∞

𝑛=1 𝑠𝑖𝑛 (
𝑛𝜋

𝐿1
)𝑥        

            

 u(x,y) = ∑ 𝐵𝑛 𝑠𝑖𝑛ℎ (
𝑛𝜋𝑦

4
)∞

𝑛=1 𝑠𝑖𝑛(
𝑛𝜋𝑥

4
)        

             
 Before evaluating Bn using equation (6.67), consider u(x,4)       
             

 u(x,4) = ∑ 𝐵𝑛 𝑠𝑖𝑛ℎ(𝑛𝜋)∞
𝑛=1 𝑠𝑖𝑛(

𝑛𝜋𝑥

4
)        

            

 u(x,4) = 𝐵1 𝑠𝑖𝑛ℎ(𝜋)𝑠𝑖𝑛(
𝜋

4
)𝑥 + 𝐵2 𝑠𝑖𝑛ℎ(2𝜋)𝑠𝑖𝑛(

𝜋

2
)𝑥 + 𝐵3 𝑠𝑖𝑛ℎ(3𝜋)𝑠𝑖𝑛 (

3𝜋

4
) 𝑥 + ⋯  

             

 Comparing with the given boundary condition u(x,4) results in    

             

 𝐵1 𝑠𝑖𝑛ℎ(𝜋) = 3  𝐵1 =
3

𝑠𝑖𝑛ℎ 𝜋
       

          

 𝐵3 𝑠𝑖𝑛ℎ(3𝜋) = −2  𝐵3 =
−2

𝑠𝑖𝑛ℎ 3𝜋
       

             

 𝐵𝑛 = 0    𝑛 ≠ 1, 3       

             

            

 u(x,t) = 
3

𝑠𝑖𝑛ℎ 𝜋
𝑠𝑖𝑛ℎ (

𝜋𝑦

4
) 𝑠𝑖𝑛ℎ (

𝜋𝑥

4
) −

2

𝑠𝑖𝑛ℎ 3𝜋
𝑠𝑖𝑛ℎ (

3𝜋𝑦

4
) 𝑠𝑖𝑛ℎ (

3𝜋𝑥

4
)  

              

  


